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ABSTRACT

Machine learning has become a widely popular and successful paradigm, especially in data-driven science and engineering. A major applica-
tion problem is data-driven forecasting of future states from a complex dynamical system. Artificial neural networks have evolved as a clear
leader among many machine learning approaches, and recurrent neural networks are considered to be particularly well suited for forecasting
dynamical systems. In this setting, the echo-state networks or reservoir computers (RCs) have emerged for their simplicity and computational
complexity advantages. Instead of a fully trained network, an RC trains only readout weights by a simple, efficient least squares method. What
is perhaps quite surprising is that nonetheless, an RC succeeds in making high quality forecasts, competitively with more intensively trained
methods, even if not the leader. There remains an unanswered question as to why and how an RC works at all despite randomly selected
weights. To this end, this work analyzes a further simplified RC, where the internal activation function is an identity function. Our simplifi-
cation is not presented for the sake of tuning or improving an RC, but rather for the sake of analysis of what we take to be the surprise being
not that it does not work better, but that such random methods work at all. We explicitly connect the RC with linear activation and linear
readout to well developed time-series literature on vector autoregressive (VAR) averages that includes theorems on representability through
the Wold theorem, which already performs reasonably for short-term forecasts. In the case of a linear activation and now popular quadratic
readout RC, we explicitly connect to a nonlinear VAR, which performs quite well. Furthermore, we associate this paradigm to the now widely
popular dynamic mode decomposition; thus, these three are in a sense different faces of the same thing. We illustrate our observations in
terms of popular benchmark examples including Mackey–Glass differential delay equations and the Lorenz63 system.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0024890

The power and success of artificial neural networks (ANNs) have
been profound across many disciplines, including dynamical sys-
tems. A leader among methodologies for forecasting has been the
recurrent neural network (RNN) for aspects of memory. How-
ever, because of the large number of parameters to train to data
observations, and likewise the nonlinear nature of the associ-
ated optimization process, the training phase can be computa-
tionally extremely intensive. The echo-state reservoir computing
(RC) concept is a significant simplification where only the output
weights are trained and in a manner that allows for a straight-
forward and cheap least squares method. The rest of the weights,

those of input layers and those of inner layers, are simply selected
randomly. It is clear that this would be cheaper to train, but
what is not clear and perhaps a surprise is that it would work
at all, but work it does. With a simplification of the concept to
allow for a linear activation function, while the performance is
not quite as good but it does still work, now we are able to ana-
lyze in detail the role of the randomly selected parameters and
how there is still freedom in fitting a well defined time-series
forecasting model, which, in fact, is equivalent to the well devel-
oped theory of vector autoregression (VAR). Within the VAR and
related vector moving average (VMA) theory, we recall the Wold
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theorem that allows us to discuss the representation, and now, as
we show, it is relevant to the RC for machine learning. Also, with
this description, we are able to connect to the recently highly pop-
ular dynamic mode decomposition (DMD) concept. While we do
observe that the fully linear version of the RC, and so the cor-
responding VAR, does make reasonable short-term forecasts, a
linear RC with a quadratic readout significantly improves fore-
casts, and even apparently once errors do occur, they seem more
true to the true nature of the original system. In the spirit of the
linear RC plus linear readout yields a VAR, we show that a linear
RC with a (Hadamard) quadratic readout yields a nonlinear VAR
(NVAR) that includes monomials of all quadratic forms.

I. INTRODUCTION

Artificial neural networks (ANNs) have emerged as a core
and powerful technology in machine learning,25,52,62,63,65 which is
well suited for the supervised learning in data-driven science and
engineering, specifically including for forecasting problems in com-
plex dynamical systems.15,28,40,42,48,50,53 However, the most straightfor-
ward feedforward ANN with backpropagation for training concepts
can be extremely expensive to optimize the data, even considering
important recent innovations, such as stochastic gradient descent
or hardware breakthroughs, such as GPU-based processing. Recur-
rent neural network (RNN) concepts are particularly suitable for
temporal data from a dynamical system,5,6,22,28,47,74 as they naturally
embed temporal information, especially the long short-term mem-
ory (LSTM) approach demonstrates excellent fidelity,20,22,41,88,89,94 but
these are especially expensive to train fully.69

The reservoir computing (RC)44,58,87 and the closely related
echo-state network (ESN)43,57 and liquid state machine (LSM)35,60

have emerged as a special variant of an RNN, where only the out-
put layer is trained rather than the entire network of weights. As
such, this requires only a simple and efficient least squares esti-
mation rather than the more expensive full nonlinear optimization
associated with fully training an RNN. Nonetheless and perhaps a
most surprising outcome is that, despite this gross simplification,
the forecasting capability can still be competitive even for chaotic
or spatiotemporally complex problems.18,19,30,56,70,89,96 Specifically, an
RC thrives when a full state observation is available, while fuller and
more expensive variants of RNN, especially the LSTM, would be
considered highly perming, especially when only a reduced variable
set is available.88,89 Still, the RCs are popular surely because of their
simplicity to train and perhaps, in part, because of their undeniable
even if surprising fidelity.

The purpose of this work is to offer at least a partial expla-
nation as to how an RC can be such a successful and general
universal dynamical system for forecasting such a wide array of sys-
tems despite randomly “trained” read-in and inner weights. In other
words, we work to better understand “where does the randomness
go?” The purpose of this paper is not specifically to build a new
method or to improve the current method, but to explain what is
perhaps surprising is that the RC method works at all. In doing so,
we challenge the concept with a simplified linear activation func-
tional version for the sake that this allows our simplified analysis
throughout, and even if this version has reduced fidelity, we show

that it does still have theoretical reasons that it still works, which we
are now in a position to describe in detail. Our simplification to a
linear activation function also allows us to explicitly write the RC as
a VAR, serving as a bridge to the more theoretically well established
time-series theory and also to DMD. Nonetheless, we do describe a
simple scenario where the linear RC is expected to perform no worse
than the widely used nonlinear counterpart in terms of efficiency,
but the linear version we can now show in detail without ambigu-
ity when there will be a good forecasting version by tying it to the
representation theory of VAR as seen through the Wold theorem.
While the linear activation reservoir and the linear readout is explic-
itly connected to a VAR and results at least for short-term forecasts
are reasonable, we also show that linear reservoir with quadratic
readout (as quadratic readout has become popular70) is equivalent
to a NVAR and this turns to perform quite well.

There have been few explanations as to how despite the ran-
dom construction, an RC works so well, but notably.17,24,32 Usually
alternatively, we find in the literature a collection of descriptions as
to how to choose random networks as the inner layers regarding
sparsity34,81 or regarding the design of the spectral radius for lin-
ear stability19,34,45 and the echo property.29 An especially strong result
comes from the study of Volterra series, by Boyd and Chua,14 where
it was proven that a finite-dimensional linear dynamical system with
a nonlinear readout, even a polynomial readout, can approximate
very general signals. A new analysis by Hart et al. shows that reg-
ularized echo state machines make good universal approximators
of ergodic dynamical systems39 and furthermore give generalized
embedding results38 reminiscent of the classical Taken’s embedding
theorem.83 Also, recently, it has been shown that fading memory
leads to universality in Gonon and Ortega.33

In the spirit of still incomplete theoretical basis as to the under-
lying success of RC, we allow a simplified version of RC with
linear activation functions for which we are able to more fully
identify the inner workings of how the RC can be a universal fore-
casting machine even for time-series from complex and chaotic
dynamical systems. We show that by this simplification, the RC
still works, albeit with reduced performance quality, but nonethe-
less, the purpose here being theoretical explanation of how such
a simple system of only training the readout is possible. We offer
this variant as a theoretical construction. By this interpretation,
we will also be able to connect the RC concept to other theoreti-
cally more matured theories. Specifically, the theory of autoregres-
sion (AR) from time-series analysis and moving averages (MA),
together called ARMA,13,21,68,72,80,84 are found in the Wold theorem,92

which we show is directly related to the RC concept. The vec-
tor formulation of these,59,73 called vector autoregression (VAR)
and vector moving averages (VMAs), is also connected by a cor-
responding Wold theorem. Furthermore, we describe a relation-
ship to the recently highly popular dynamic mode decomposition
(DMD),8,49,53,78,91 which is an empirical formulation of the Koopman
spectral theory.3,8,11 Therefore, while we do not offer this simplified
RC for performance over other approaches, we hope that this work
will serve to shed light on how the simplified RC approach is capable
of providing useful time-series forecasts and likewise as a suggestion
as to how the general RC is successful. There are related concepts
concerning how an RNN is closely related to a NARMA model of a
stochastic process (nonlinear autoregressive moving average), which
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are found in Ref. 23. While this paper is mostly motivated to describe
connections between different approaches, the machine learning
RC approaches, the econometrics time-series VAR approach, and
also the dynamical system operator theoretical DMD approach, we
show reasonable but not excellent forecasting ability of the linear RC
with linear readout equivalent of a VAR. However, we do go on to
connect a linear RC with quadratic readout (as quadratic readout
popular for reasons of matching signal parity so it is described70),
which we show explicitly can be written as a quadratic NVAR. That
nonlinearities of the reservoir may be usefully moved to the output
layer has been pointed out as a possibility and of practical use when
building a photonic device implementation in Ref. 86.

This paper is organized as follows. In Sec. II, we describe the
nature of the data as derived from a stochastic process. In Sec. III, we
review the standard RC concept, and we demonstrate it already with
time-series data from a Mackey–Glass differential delay equation.
Section IV is the heart of this paper, where we first present that
a linear activation function allows the RC to be stated as a lin-
ear recursion, and, therefore, fitting just the readout weights can
proceed in a manner such that despite random read-in and inner
weights, there is a well-posed problem. Then, in this form, we are
able to directly relate the linear RC solution to the classical VAR(k)
solution. As such, we are then able to enlist statistical time-series
forecasting theory for forecasting stochastic processes so that the
Wold theorem that guarantees a VMA can then be translated to a
VAR. Furthermore, the associated companion form of a VAR(1)
usefully states the full vectorized problem. In Sec. VII, we note
that the companion form of the VAR(1) is reminiscent of prior
work for another famous concept in data-driven dynamical systems,
which is the time-delay formulation of a DMD–Koopman analysis.
In Sec. VIII, we present two classical examples, the Mackey–Glass
differential delay equation and the Lorenz63 ordinary differential
equation, that compare aspects of a full nonlinear RC and the lin-
ear variant of an RC. We will consider the issue of fading memory
in Sec. IX. Finally, in Sec. VI, we show that a linear RC but with a
Hadamard quadratic readout is equivalent to a quadratic NVAR of
all monomial quadratic terms, analogous to the earlier result of a
VAR.

II. THE DATA AS SAMPLED FROM A STOCHASTIC
PROCESS

For data-driven forecasting problems, we require data from a
process, including from a deterministic or otherwise from a stochas-
tic dynamical system.12 A process, stated,

{Xt : t ∈ T} (1)

is in terms of a collection of random variables; Xt on a common
probability space; and (!,B, P), where ! is the sample space, B the
σ -algebra, and P a corresponding probability measure. T is a “time”
index set and commonly it is chosen as either R or Z or subsets. For
the sake of discussing finite samples of data, we emphasize maps,
which may well be from discretely sampling a flow. A data set from
such a process samples xti of Xti , stated as a time sorted sample,
{xi}

N
i=1, t1 < t2 < · · · < tN, using indexing notation, xi := xti . Uni-

form timing is also a simplifying assumption, h = ti+1 − ti, for all
ti ∈ T. Assuming a vector real valued time-series, of dimension dx,

{xi}
N
i=1 ⊂ Rdx . Data derived from a flow, say,

ẋ = f(x), (2)

may be collected by a stroboscopic map,

xi+1 = Ft(xi) = x(t + τ ) = x(t) +

∫ t+τ

t

f(x(s))ds. (3)

Suppressing the stroboscopic time t, this is a discrete time map
F; likewise, other Poincaré maps may be useful for flight between
the surface of section, and random dynamical systems may also be
relevant.12,79 An underlying principle here is that the data should be
“long enough”; likewise, a general failing of any data-driven machine
learning method for forecasting a stochastic process will tend to do
much better in terms of interpolation than extrapolation. Generaliz-
ing, to allow for out of sample, forecasts will tend to fare much better
when the point to the forecasts is close to other observed inputs. Said
another way, the quality of results can be brittle, depending as much
upon curating a representative data set as the details of the method
used to avoid that struggle between fitting between observations and
overfitting and too far out of sample.

As a matter of presenting examples, we will highlight two clas-
sic problems that remain popular in benchmarking for machine
learning in the recent literature. These will be

• the Mackey–Glass differential delay equations [Eq. (60)] and
• the Lorenz63 system [Eq. (61)],

both of which will be presented in detail in Sec. VIII. In Fig. 1, we
show early in this presentation for the sake of context, a time-series
data set of the Mackey–Glass system, from Eq. (60), to stand in as a
typical data set. This problem is a useful benchmark, and it is often
used as such2,9,27,36,61,66,93 perhaps because it is a well-known chaotic
process but also for the sake of dimensional complexities that we
recall in Sec. VIII A.

III. REVIEW OF THE TRADITIONAL RC WITH A
NONLINEAR SIGMOIDAL ACTIVATION FUNCTION

In this section, we review the standard and fully nonlinear RC
method, by which we mean, including the use of a nonlinear acti-
vation function q(s). In this context, q(s) is usually taken to be a
sigmoidal function such as the hyperbolic tangent function. How-
ever, in Sec. IV, we will challenge these steps including simplifying
to the identity function, q(s) = s.

Assuming the training data, {xi}
N
i=1 ⊂ Rdx , the reservoir

computing RNN is stated,

ri+1 = (1 − α)ri + αq(Ari + ui + b),

yi+1 = Woutri+1.
(4)

The hidden variable ri ∈ Rdr is generally taken to be of a much
higher dimension dr > dx by a linear lifting transformation,

ui = Winxi, (5)

and Win is a randomly selected matrix dr × dx of weights (see Fig. 2).
A is also a linear transformation, as randomly chosen square matrix
dr × dr of weights, which should be designed with certain prop-
erties such as spectral radius for convergence19,45 or sparsity56,70,89
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FIG. 1. Time-series acquired from the Mackey–Glass differential delay equation [Eq. (60)] has become a standard example for time-series forecasting for benchmarking
data-driven methods since it is dynamically rich and high-dimensional and, therefore, challenging. (Top) Time-series, index. (Bottom) Three-dimensional projection in delay
coordinates, (x(t), x(t − τ ), x(t − 2 ∗ τ )), and τ = 20. A sample of N = 10 000 data points is chosen as the training data set.

or otherwise consideration of the “echo-state” property.17 Likewise,
the readout is by a linear transformation using a dx × dr matrix of
weights Wout. However, Wout, and only Wout, is trained to the data,
allowing for forecasts yi given data xi ∈ Rdx , which is the major
simple aspect of RC since it can be done by a simple and cheap
least squares computation. Finally, q : R → R is an “activation”
function, using the phrasing from machine learning in the neural
network community to mimic the concept of a biological network
that fires when a voltage has reached a threshold. Popular choices

include q(s) = tanh(s), meaning a componentwise application of
the scalar hyperbolic tangent function when s is multivariate. Other
activations are popular in general neural network theory, including
other sigmoidal functions, and also the ReLu function in certain
contexts but not so commonly in RC.30 0 ≤ α ≤ 1 serves to slow
down the RC to moderate stability of the fitting, but we will restrict
to α = 1 in this paper as outside the purpose of challenging the
concept of explaining how the RC may work in a special case of
identity q in which case, nonzero α can be considered absorbed into
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FIG. 2. Reservoir computing (RC) as defined in Eq. (4), including a randomly
selected dr × dx read-in matrix, Win from dx × 1 states vector x, a randomly
selected dr × dr inner layer recurrence matrix A for inner states dr × 1 vector
r, and the dx × dr trained readout matrix W

out .

the random A; (1 − α)r + αAr = ((1 − α)I + αA)r, and since A is
chosen randomly, then ((1 − α)I + αA) may be an alternative ran-
dom selection. Finally, b serves as an offset for activation, which is
useful in some context, but it is also not relevant for our needs for
the same reason we choose α = 1 and b = 0.

What is remarkable about RC is that the usual hard work of
optimally developing a full RNN is almost entirely skipped. Instead
of learning Win and A optimally fitted to the data, these seemingly
very important matrices are simply picked randomly. This is enor-
mous savings over what would usually be inherently hard to handle
since the parameters are composed within the nonlinear activation
q and require at least a gradient descent optimization of backprop-
agation in a high-dimensional and likely multi-peaked optimization
space. Almost any matrix distribution may plausibly be due, but
several different recipes are suggested. We say “recipe” rather than
algorithm since these are descriptions of successful observations
in practice rather than a product of mathematical theory that is
still not complete. Here, we choose the entries of A uniformly,
Ai,j ∼ U(−β , β), with β to scale the spectral radius, but other
choices are common, notably for sparsity. The read-in matrix is also
chosen uniformly randomly, Win

i,j ∼ U(0, γ ), with γ > 0 chosen to
scale the inner variables r.

The crucial aspect of the simplification that makes reservoir
computing so easy and computationally efficient is that training to
the output becomes just a linear process. The cheap and simple least
squares solution is easily handled directly by matrix computations.
Let

Wout = arg min
V∈Rdx×dr

‖X
¯

− VR‖F

= arg min
V∈Rdx×dr

N
∑

i=k

‖xi − Vri‖2, k ≥ 1. (6)

Notation here is standard that ‖ · ‖F denotes the Frobenius-norm of
the matrix, which is the least squares equivalent of the least squares
matrix parameter estimation problem. The data {xi}

N
i=1 are stated as

a dx × N − k array,

X = [xk+1|xk+2| . . . |xN] = [Vrk+1|Vrk+2| . . . |VrN] = VR, k ≥ 1
(7)

are the forecasts to X to be optimized in least squares by Wout,
processed through the RC,

R = [rk+1|rk+2| . . . |rN], k ≥ 1. (8)

While k = 1 is allowable, here, for theoretical development in
Secs. IV–IX, we allow for larger k ≥ 1, describing memory. In prac-
tice, a ridge regression (Tikhonov regularization with least squares
regularity7,30,31,70) is used to mitigate overfitting, the solution of
which may be written formally,

Wout := XRT(RRT + λI)
−1

. (9)

Here, ·T is the matrix transpose, I is the identity matrix, and the
choice of regularity parameter is λ ≥ 0. We will write a regularized
pseudo-inverse with the notation

R†λ := RT(RRT + λI)
−1

. (10)

In Appendix A, we review the matrix theory as to how to form reg-
ularized pseudo-inverses such as R†λ by a regularized singular value
decomposition (SVD) in terms of regularized singular values such
as σi/(σ

2
i + λ) obtained from the singular values σi from the SVD

of R.
In Fig. 3, we show an example of an RC machine from

data obtained from the Mackey–Glass differential delay equations
[Eq. (60)]. We see fitting for N = 10 000 data points x(t), dx = 1,
regularizing parameter λ = 1.0 × 10−8 and fitting for constant time
offset. Fit and true data are shown to be so close that in fact, the blue
fit curve hides the red true data curve. Also shown are several (7)
of the dr = 500 hidden variables r(t). The fit matrix A is randomly
chosen with entries from a uniform distribution and then scaled so
that the spectral radius ρ(A) = 1. The random matrix Win is also
chosen uniformly, scaled so that x values lead to r in [−0.6, 0.6]. In
Fig. 4, the trained RC is used to forecast into the future. We see small
errors grow in scale, as illustrated by the bottom error curve. Results
from an RC forecasting for the Lorenz63 system are presented in
Sec. VIII B; notably, the forecasting quality degrades more quickly
in part due to known large Lyapunov instability of that system.

What is amazing is despite the fact that RC may seemingly be
a gross oversimplification of the RNN concept, it still seems to work
quite well. Also from our experience, it is generally stable in that it
is somewhat insensitive to the parameters and hyperparameters of
the fitting process even if the level of quality does depend on these.
Furthermore, once it starts to make larger errors, the kind of dynam-
ics it produces is still plausible alternative wave forms of the process.
Nonetheless, there are some parameter choices to make; notably,
dr > dx must be “large enough,” but how big is not well understood.
Furthermore, the nature of the underlying distribution of matrices
Win and A is not fully understood. We hope to contribute some gen-
eral perspective as to why an RC may work at all. Our goal here
is not specifically to improve performance and admitting that the
corresponding VAR makes reasonable short-term forecasts, but per-
haps no better than that, as illustrated in our examples. However, we
go on in Sec. VI, with details in Appendix B, to show that fitting a
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FIG. 3. Standard nonlinear RC, one-time-step forecasts from the Mackey–Glass differential delay equation [Eq. (60)], using a training data set from N = 10 000 samples
as shown in Fig. 1. (Top) Time-series data, N = 5000, shown for clearer illustration. (Middle) Reservoir trained across the data set, and 500 samples are shown for clarity
where we see the error is sufficiently small that the one-time-step forecasts and the true data are almost the same so that the plot is indistinguishable (both shown, but curves
overlay). Regularity is chosen to be λ = 1 × 10−6. (Bottom) Some randomly selected seven of the (usually hidden) dr = 500 activation functions illustrate the general
appearance. Contrast to forecasting into the future as shown in Fig. 4 and the linear method in Fig. 5.

quadratic readout; that is, extending Eq. (8) to also include terms
r ◦ r (componentwise multiplication, “◦” is called the Hadamard
product) yields a quadratic NVAR of all monomial quadratic terms,
which we observe performs quite well.

IV. RC WITH A FULLY LINEAR ACTIVATION, q(s)= s,
YIELDS A VAR(k)

Now, we attempt to challenge a central typical assumption of
the RC method. Instead of choosing the activation function to be
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FIG. 4. Standard nonlinear RC, forecasts into the future, from the Mackey–Glass differential delay equation [Eq. (60)], using a training data set from N = 10 000 samples as
shown in Figs. 1 and 3. (Top) Time-series data, 0 ≤ t ≤ 500, zoom plotted for clearer illustration. (Top) Forecasts into the future (red) diverge from true (blue), and (bottom)
the error is shown. All forecasts shown will be closed-loop, once trained on the training set, meaning that the RC output is then input back into the RC input. We compare the
error vs the true evolution, as is standard such as Ref. 56.

a sigmoid function, we use the identity function, q(x) = x. With
this assumption, we can show that the resulting linear RC machine
is equivalent to a vector autoregressive process (VAR),37,73 which is
extremely popular and successful in the time-series forecasting field,
particularly in econometrics.1 With this simplification, we find that
not only can the linear RC still make useful forecasts, but also, we are
able to connect the RC concept to this well established theory asso-
ciated with VAR time-series analysis, notably the existence of the
representation Wold theorem.68,92 However, while this gives some
explanation as to why a standard nonlinear RC may work despite
the seemingly oversimplification of a full RNN, we show that the
linear RC does still perform and furthermore, now with theoreti-
cal underpinnings, even if the full nonlinear RC may still perform
better. Therefore, it is for the theoretical connections that we make
this simplification rather than a suggestion that it may be a new or
simpler method.

Before proceeding with a discussion of q(s) = s, notice that r is
related to the scale of the read-in matrix, Win. Proceed by initializing
the process, by Eq. (5),

u1 = Winx1, but also, we choose r1 = 0. (11)

Consider that since Win is randomly chosen and we choose uni-
formly Win ∼ U(0, γ ), then the parameter γ > 0 moderates the
subsequent scale of terms ui and then ri. See, for example, Fig. 3,
where the native data x from the Mackey–Glass system are translated
to scaled internal variables. Recall the power series of the nonlinear
activation function,

q(s) = tanh(s) ≈ s − s3/3 + s5/5 − · · · . (12)

Clearly, for s - 1, then q(s) ∼ s even if chosen as a sigmoid, and the
choice of read-in scale could be designed to put us in this regime
as long as A is designed to keep us in this regime. That is, if we
choose the scale of the read-in matrix, 0 < γ - 1, giving small val-
ues of the matrix Wout

i,j , then at least for a stable RC such as when
A has a sufficiently small spectral radius, the arguments of s from
Ar + u + b in Eq. (4) remain small. Therefore, in practice,
tanh(s) ∼ s. Stated roughly, if γ is small, then at least for some short
time, we might expect that the fully nonlinear RC is close to a fully
linear RC. To advance beyond that as an idea, for now, we believe
the insights gained for a linear activation RC should be relevant to
the general problem.
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In the following, we proceed to study the consequences of
stating the activation exactly as the identity,

q(s) = s. (13)

With this assumption, the first several iterations follow from Eq. (4)
and Eq. (11) as a forward propagation for which we explicitly
observe the following recursion:

r2 = Ar1 + u1 = u1 = Winx1, (14)

r3 = Ar2 + u2

= AWinx1 + Winx2, (15)

r4 = Ar3 + u3

= A(Ar2 + u2) + u3

= A2Winx1 + AWinx2 + Winx3, (16)

...

rk+1 = Ark + uk

= A(Ark−1 + uk−1) + uk,

...

= Ak−1Winx1 + Ak−2Winx2 + · · · + AWinxk−1 + Winxk (17)

=

k
∑

j=1

Aj−1uk−j+1 =

k
∑

j=1

Aj−1Winxk−j+1, (18)

using notation, A0 = I, the identity matrix. Since the readout of this
process is by Eq. (4), yi = Woutri, then we may rewrite the final
equation [Eq. (18)] by multiplying the left-hand side by Wout,

y)+1 = Woutr)+1

= Wout
)

∑

j=1

Aj−1Winx)−j+1

= WoutA)−1Winx1 + WoutA)−2Winx2 + · · ·

+ WoutAWinx)−1 + WoutWinx)

= a)x1 + a)−1x2 + · · · + a2x)−1 + a1x), (19)

with notation

aj = WoutAj−1Win, j = 1, 2, . . . , ). (20)

Each of these coefficients aj are dx × dx matrices. This follows simply
by Eq. (20), collecting products between dx × dr to dr × dr and then
dr × dx matrices and notation Al = *l

i=1A = A · A · · · · A, l-times if
l > 0 or the identity matrix when l = 0.

In some sense, Eq. (20) and quadratic generalization
equations (52) and (53) are the heart of this paper as it is an explicit
representation of the coefficient matrices of a VAR, (or NVAR), but
as found in terms of projection onto iterations of the random matri-
ces involved in developing a linear activation function version of an
RC. With exactly k VAR matrices aj, the randomness of the d2

r free
parameters of the random matrix A collapses onto kd2

x parameters,

meaning that it yields only the many finitely fitted parameters of the
matrices of a1, . . . , ak. However, for longer observations, which are
the more usual way an RC is trained and practiced, Eq. (20) implies
that when condition

dr < kdx, (21)

the randomness of the choice of A and Win is completely specified by
stating matrices Aj−1Win, for many j. We will expand upon this state-
ment in Sec. V and then show how it relates to vanishing memory in
Sec. IX.

By Eq. (19), a linear RC yields a classical VAR(k) (a vector
autoregression model of k-delays) that in a general form is73

yk+1 = c + akx1 + ak−1x2 + · · · + a2xk−1 + a1xk + ξ k+1. (22)

In this writing, c allows for a general offset term, a dx × 1 vector that
here we do not pursue. ξ k+1 is the underlying “noise” of the stochas-
tic process, which is part of the stability theory that we review in
Sec. V, which must be assumed to come from a covariance station-
ary process. This relationship between an RC and a VAR(k) allows
us to relate to the corresponding theoretical discussions of relevant
alternative forms and stability and convergence from the stochas-
tic process time-series literature, which we will also expand upon in
Sec. V.

Considering the complete data set of vector time-series, {xi}
N
i=1,

yields




| | | |
yk+1 yk+2 . . . yN

| | | |



 =

[

[

a1

] [

a2

]

. . .
[

ak

]

]

×













































| |
... |

xk xk+1 · · · xN−1

| |
... |

xk−1 xk · · · xN−2

| |
... |

...
...

...
...

| |
... |

x1 x2 · · · xN−k

| |
... |













































. (23)

Restating this as a single linear equation,

Y = aX. (24)

Again, remembering that xi are dx × 1 vectors and that ai are
dx × dx matrices, a =

[[

a1
]

|
[

a2
]

| . . . |
[

ak

]]

is a dx × (kdx) matrix.
Y =

[

yk+1|yk+2|...|yN

]

is a dx × (N − k) matrix, and X is a (kdx)
× (N − k) matrix.

Formally, minimizing in least squares, with regularization,

J(a) = ‖Y − aX‖F + λ‖a‖F, (25)

with Y being the target output of the right hand side of Eq. (23) by
best fitted matrix a∗. The solution of this regularized least squares
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problem may be written in its matrix form,

a∗ = YX
T(XX

T + λI)
−1

:= YX
†
λ, (26)

where the symbol † refers to the Penrose pseudo-inverse, with the
notation described in detail in Eqs. (A5) and (A6), when formulating
the “ridge” Tikhonov regularized pseudo-inverse X

†
λ.

A. Decomposing the VAR(k) solution explicitly relates
to RC

Now, we will further decompose the derived VAR(k) coeffi-
cients found in Eq. (26) to emphasize the training of just the output
matrix Wout of an associated RC in terms of randomly pre-choosing
A and Win.

Referring to Eqs. (19) and (20), we can rewrite Eqs. (23)
and (24) as

Y = aX = vAX, (27)

with the matrix defined,

A = [Win|AWin| . . . |Ak−2Win|Ak−1Win]. (28)

This A is a combination of exponents of the random dr × dr matrix
A and the random dr × dx matrix Win; therefore, it is itself a dr × kdx

random matrix. Interestingly, considering just one column at a time
of the Win

l , l = 1, 2.., dr, Ak−1 can be understood as a collection of
columns from a Krylov space, and this entire process can be dis-
cussed as an Arnoldi-iteration, which is something we will explore
further in Sec. VII.

Consider that the least squares objective equation (30) can be
expanded to split

a = vA (29)

to emphasize that since if we pre-choose A and Win, then only the
readout matrix v is a free parameter,

J(v) = ‖Y − aX‖F = ‖Y − vAX‖F. (30)

Optimizing for v yields

Wout := v∗ = Y(AX)† = (YX
†)A†. (31)

Comparing this equation with Eq. (26), defining a, we see (XX†) for-
mally appears in both expressions. Only the associative property of
matrix multiplication is needed to emphasize the role of A. More
importantly, this expression [Eq. (31)] for Wout is written so as to
emphasize that the reservoir computing process is designed with A

and X. Combined through the iteration, as (AX) is the data that
result from Eq. (17),

r)+1 = A)−1Winx1 + A)−2Winx2 + · · · + AWinx)−1 + Winx). (32)

This is written naturally as

R = (AX). (33)

In a simple way, Eq. (31) uses a matrix identity of pseudo-inverses,31

(AX)† = X
†
A
†. (34)

Associativity emphasizes that since A is deterministically defined,
once A and Win are chosen, and separately from the data X, the

fitting of only the parameters of Wout is sufficient. If we want the
VAR(k) parameters, then we could either ignore the prior knowl-
edge of choice of A and Win and compute a directly from Eq. (30) or
from Eq. (31) by defining

Wout := v∗ = a∗
A
†
λ = YX

†
λA

†
λ. (35)

We summarize that these manipulations concluding with
Eq. (35) serve directly as the connection between the RC fitted
readout and the coefficient matrices of a VAR(k). The roles of
pre-choosing A and Win relate directly to Wout coefficients or indi-
rectly to the fitted data. Considering the training of Wout, Eqs. (29),
(31), and (35), in terms of geometric description of least squares
estimation,31 Wout best estimates orthogonal projections of rows of
a into the row space of A, which has dr-row vectors of dimension
kdx. Therefore, no more than dr dimensions can remain free or as
described similarly in the inequality equation (21).

Concluding this section with an example, we simplify the non-
linear RC of the Mackey–Glass data from Figs. 1 and 3 to a purely
linear RC fit shown in Fig. 5, which clearly is not as well perform-
ing, but it does still make some forecast into the future. Further
discussion of this example and also likewise a Lorenz63 example is
discussed in Sec. VIII.

V. VAR(k) THEORY SUGGESTS CONVERGENCE WITH k

Since the VAR(k) model of vector autoregression appears nat-
urally in our discussion from the simplified activation function
q(x) = x, as summarized by Eqs. (19) and (22), we now recall
some of the classical underlying theories from the statistical time-
series analysis literature73,92 that describe sufficient conditions under
which we expect the existence of a VAR(k) representation.

The Wold theorem plays a central role in time-series analy-
sis as it describes the existence of a vector moving average (VMA)
model representation, which then under further assumption for
invertibility is equivalent to a VAR. Assumptions require a sta-
tionary process as the sum of two components: (1) a stochas-
tic component consisting of “linear” combinations of lags from
a white noise process and (2) a deterministic component that is
uncorrelated with the stochastic component. First, we recall the
definitions. A d-dimensional stochastic process ξ t of zero mean,
E(ξ t) = 0, is derived from a white noise stochastic process, writ-
ten with zero mean ξ t = [ξ1,t, ξ2,t, . . . , ξd,t] ∼ WN(0, !) if E(ξ t) = 0
and E(ξ t1

ξT
t2
) = 0, for t1 .= t2, but E(ξ tξ

T
t ) = ! is symmetric pos-

itive semi-definite. A stochastic process is covariance stationary if
all terms of the sequence have the same mean and any two terms
depend only on their relative positions. That is, E(ξ t′) = E(ξ t), for
all t′, and for all t′ ≥ 0, there exists γt′ ∈ R such that Cov(ξ t, ξ t−t′ )
= γt′ for all t > t′, meaning depending on t − t′ rather than t or
t′. With these definitions, we can state the central theorem of this
section that we recall.

Theorem 1 (Wold decomposititon theorem73,92): A zero
mean covariance stationary vector process {xt} admits a representa-
tion,

Xt = C(L)ξ t + µt, (36)

where C(L) =
∑∞

i=0 CiLi is a polynomial delay operator polynomial,
Ci are the moving average matrices, and Li(ξ t) = ξ t−i. The term
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FIG. 5. The fully linear RC, q(s) = s, forecasts from the Mackey–Glass differential delay equation [Eq. (60)], using the same training data set from N = 10 000 samples as
shown in Fig. 1. Contrasting to forecasts into the future as shown in Fig. 4, we see that clearly, the nonlinear RC outperforms the linear RC and by a wide margin. However,
that is not the message here, rather which is one of explaining the relationships and fitting of the parameters; therefore, that fitting just the readout matrix Wout is relevant is
established by Eq. (35).

C(L)ξ is the stochastic part of the decomposition. The µt term is the
deterministic (perfectly predictable) part as a linear combination of
the past values of Xt. Furthermore,

• µt is a d-dimensional linearly deterministic process.
• ξ t ∼ WN(0, !) is white noise.
• Coefficient matrices are square summable,

∞
∑

i=0

‖Ci‖
2 < ∞. (37)

• C0 = I is the identity matrix.
• For each t, µt is called the innovation or the linear forecast errors.

Clarifying notation of the delay operator polynomial, with an
example, let

C(L) =

[

1 1 + L

−
1

2
L

1

2
− L

]

=

[

1 1

0
1

2

]

+

[

0 1

−
1

2
−1

]

L = C0 + C1L, and Ci =

[

0 0
0 0

]

if i > 1; (38)

therefore if, for example, xt ∈ R2,

C(L)xt =

[

1 1 + L

−
1

2
L

1

2
− L

]

[

x1,t

x2,t

]

=

[

x1,t + x2,t + x2,(t−1)
1

2
x1,(t−1) +

1

2
x2,t − x2,(t−1)

]

.

(39)

For interpretation and definition, consider

• If µt = 0, then this is called a “regular” process; therefore, there
is a purely vector moving average (VMA) representation. If
Ci = 0 for i > p for some finite p > 0, then it is called a VMA(p)
or otherwise, it is a VMA(∞) representation.

• If Xt is regular, then the representation is unique.

Now, we consider our point to relate a Wold VMA represen-
tation to the linear RC where we already saw a VAR(k) results,
[Eq. (19)], when the activation is linear q(x) = x. If the delay
polynomial C(L) is invertible with C(L)−1C(L) = I and denotes
C(L)−1 = B(L) = B(L) = B0 − B1L − B2L2 − · · · in terms of matri-
ces Bi, then writing explicitly,

(B0 − B1L − B2L
2 − · · · )(I + C1L + C2L

2 + · · · ) = I. (40)
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The existence of this inverse implies that the Wold implied VMA
process has a representation,

Xt = C(L)ξ t =⇒ B(L)Xt = ξ t, (41)

which is a VAR representation in that this represents the latest Xt as
a linear combination of prior values of X written succinctly in terms
of the delay operator B(L).

In practice, when an infinite order vector moving average
process VMA(∞) corresponds to an infinite order vector autore-
gressive process, VAR(∞), then recursion of expanding Eq. (40) and
matching term by term yields

B0 = I, B1 = C1, . . . , Bk = Ck + B1Ck−1 + · · · + Bk−1C1, . . . . (42)

However, a VAR representation may be found from a VMA through
several methods, including a method of moments leading to the
Walker–Yule equations71 or a least squares method in the case of
finite presentations. Often, for parsimonious efficiency of presenta-
tion, a mixed form of a p-step AR and a q-step MA model might
make a suitable approximation for what is called a ARMA(p,q)
model.

While not allowing ourselves to be drawn entirely into the
detailed theory of econometrics and statistical time-series analysis,
pursuing stronger necessary conditions, we wish to point out some
already apparent relevant points from the stated special sufficient
conditions.

Remark 1: Summary statements. If a vector stochastic process
satisfies the hypothesis of a Wold theorem, then

• it can be written either as a VMA or a VAR, when Eq. (41) of C(L)
is invertible [Eq. (42)];

• in practice, a finite k, VAR(k) estimates a VAR(∞) as k ↑, since the
sequence of coefficient matrices {Ci} is square summable [Eq. (37)]
and considering Eq. (42); and

• furthermore, in practice, a least squares estimate of a VAR(k) may
be used for finite k, which relates to an RC by the least squares fit
[Eqs. (31) and (35)].

Finally, we separate from the above technical points the follow-
ing fundamental remark to distinguish existence vs uniqueness of a
representation,

Remark 2: While a stochastic process may have a VMA repre-
sentation and if through invertibility, a corresponding VAR, which is
a linear description of the process, it may not taken to be “the” unique
physical underlying description since nonlinear descriptions certainly
may exist.

Remark 3: The processes that we may be interested in, such
as those derived from Eq. (1), may describe the evolution of a
(chaotic) dynamical system, and these may allow a representation
[Eq. (3)].10,12,51,82 However, in many of these natural examples, the
“color” or even the nature of the noise may well not be conform-
ing to the white noise assumption of the Wold Theorem 1. Certainly,
contrasting samples from an invariant measure of a chaotic dynam-
ical system to a white noise process is a well studied46,75 but still
undecided topic. While the existence of the VMA and the correspond-
ing VAR representation by referring to the Wold theorem does depend
on that hypothesis, nonetheless, successful constructive fitting of a
VAR(k) by regression, even if implicitly through an RC, seems to
proceed successfully in practice in a wide array of examples.

With this last remark, we admit that while the details of the rigor
guaranteeing existence may in practice break down, due to inability
to check all hypotheses, as often such gaps occur between mathe-
matics, applied mathematics, and practice as related to real world
data, we feel that the concept is still highly instructive as underlying
explanation despite strong sufficient assumptions used to extend the
rigorous theory.

We summarize this section that the relationship between the
Wold theorem for the VAR to our interest in an RC gives two con-
clusions: (1) the existence of the VMA representation follows the
Wold, which in turn leads to a VAR when the delay operator is
invertible and (2) that the coefficient matrices are square summable
serves as an upper bound that memory must be fading. We describe
the memory further in Sec. IX.

A. Stability of the VAR(k) and relationship to a VAR(1)

To discuss stability, we recall73 the fact that a VAR(k) [Eqs. (19)
and (22)],

xk+1 = c + akx1 + ak−1x2 + · · · + a2xk−1 + a1xk + ξ k+1, (43)

can be stated as a VAR(1) in terms of “stacked” (delayed) variables,
called the companion system. This idea is familiar in dynamical sys-
tems as we see it is related to stating time-delay variables and Taken’s
embedding theorem.9,64,67,77,83,95 Define

Xk+1 = AXk + C + ek, where Xk =





























|
xk

|
xk−1

|
...
|

x1

|





























, ek =





























|

ξk

|
0
|
...
|
0
|





























,

C =





























|
c
|
0
|
...
|
0
|





























, and A =











a1 a2 · · · ak

I 0 · · · 0

0 I
. . . 0

0 · · · I 0











, (44)

where since ai are each dx × dx matrices, A is kdx × kdx and Xk is
kdx × 1. For discussion in Sec. VI, it will be convenient to consider
in contrast to Eq. (54), a matrix of all the data,

X =
[

Xk Xk+1 · · · XN−k−1

]

; likewise let

X
′ =

[

Xk+1 Xk+2 · · · XN−k

]

, (45)

kdx × (N − k − 1). Notice that the data in X are also from Eq. (23).
It follows that analysis of stability of a VAR(1) sufficiently

describes the stability of a VAR(k). If there is even a small offset c,
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whether by a bias or imperfection of fit, then it follows the recursion,

Xk = C + AXk−1 + ek−1, =⇒ Xk = (I + A + · · · + Al−1)C

+ Al
Xk−l +

l−1
∑

j=0

Ajek−l. (46)

This relates the VAR(1) back to a VMA(l) form. Clearly, even a small
constant disturbance C is successively influenced by the (delay)
matrixA. In the limit l → ∞, recall the geometric series of matrices,

(I − A)−1 = lim
l→∞

(I + A + · · · + Al−1), (47)

converges if the spectral radius is strictly contained in the complex
unit disk,

ρ(A) = max
λ:det(A−λI)=0

|λ| < 1. (48)

Equivalently, a general VAR(k) [Eq. (43)] is stable if and only if a
characteristic polynomial,

det(I − a1z − a2z
2 − . . . − akz

k) = 0, (49)

has all its roots outside the unit disk. Under this stability assumption,
we conclude that

Xk = C + AXk−1 + ek−1 = (I − A)−1
C +

∞
∑

j=0

Ajek−l, (50)

which relates a VAR(1) form to a Wold form through a VMA(∞).
Since by Eq. (20), each matrix aj = WoutAj−1Win, the magnitude of
entries in the matrix A and the read-in matrix Win each moderate the
magnitudes of entries of aj. Therefore, considerations by the Gersh-
gorin disk theorem31 relates these magnitudes to the magnitudes of
z. Generally, by controlling the sparsity of A, the magnitude of the
spectrum of A, and the magnitudes of Win, stability and the “mem-
ory” associated with converges (with k), can be controlled. These
magnitudes were already discussed for the sake of a regime where
the usual sigmoidal q would be close to the identity.

VI. QUADRATIC NONLINEAR VAR

In this section, as is common practice,70 we investigate an RC
that fits the readout Wout using not just linear r values from the
RC but also in terms of r ◦ r. Notation “◦” is the Hadamard prod-
uct, meaning componentwise multiplication, [r ◦ r]j = [r]2

j for each
j. This yields Wout that is dx × 2dr. Here, we state results briefly with
detailed derivations given in Appendix B.

Generalizing the VAR results of Sec. IV, here, we state that a
linear VAR with a Hadamard product-quadratic readout is equiv-
alent to a quadratic nonlinear VAR, (NVAR) with all quadratic
terms in rirj. That is, analogously to the VAR stated equations (19)
and (22), a quadratic nonlinear VAR may be stated [abbreviated
restatement of Eqs. (B10)–(B12), derived in Appendix B],

yk+1 = akx1 + ak−1x2 + · · · + a2xk−1 + a1xk + a2,(k,k)p2(x1, x1)

+ a2,(k−1,k)p2(x2, x1) + · · · + a2,(1,1)p2(xk, xk), (51)

with the notation for the k linear coefficient dx × dx matrices,

aj = Wout
1 Aj−1Win, j = 1, 2, . . . , k. (52)

Now, we have k2 quadratic term dx × d2
x coefficient matrices,

a2,(i,j) = Wout
2 P2(A

i−1Win, Aj−1Win), i, j = 1 · · · k. (53)

The notation, p2(v, w) = [v1w1|v1w2| · · · |vnwn]T defines a n2-vector
of all quadratic terms stated between vectors v = [v1| · · · |vn]T

and w = [w1|..|wn]T. P2(Ai−1Win, Aj−1Win) is a dx × d2
x coefficient

matrix built from columnwise Hadamard products. Both of these
are expanded upon further in Eqs. (B2)–(B5), and the form of a2,(i,j),
Eq. (53), is derived in Eq. (B12).

We summarize in this brief section that the discussion of non-
linear quadratic VAR from a linear RC with Hadamard quadratic
readout is similar to that of linear VAR with linear RC and lin-
ear readout as discussed in Sec. IV. However, Eq. (35) generalizes
so that we may still write Wout := v∗ = a∗A

†
λ = YX

†
λA

†
λ, but now,

A =
[

A1
A2

]

. In this statement, A1 is a renaming of what was A in

Eq. (28), but now, A2 is the dr × kd2
x matrix defined in Eq. (B8) in

Appendix B; likewise, X =
[

X1
X2

]

is defined in Eq. (B9).

While the linear reservoir + linear readout = VAR forecasting
seems to only give reasonable results for short time forecasting
(Fig. 7), linear reservoir + quadratic readout = NVAR seems to give
better and longer range forecasting, which also seems to remain true
to the statistic of the chaotic attractor once errors have swamped the
point forecasts (see Fig. 8).

VII. IS THERE A CONNECTION TO DMD–KOOPMAN?

To briefly answer the question titling this section, the answer
is yes; there is a connection between VAR and DMD and so to
RC. The more nuanced answer is that the connection is not com-
plete. Throughout the discussion so far, a specialized version of an
RC using an identity activation function yields a linear process that
is shown to relate to a VAR that is also a linear process. In this
section, we ask if it also relates to the dynamic mode decompo-
sition (DMD),49,76,78,91 a concept that is also premised on a linear
process model as a finite estimation of the infinite-dimensional
linear action of the Koopman operator on a function space of
observables.3 In the Koopman theory, instead of describing the
evolution and geometry of orbits in the phase space, the trans-
fer operator methods generally describe the evolution of functions
whose domain is the phase space.12,51 Recently, this approach has
excited a huge trend in applied dynamical systems, with many excel-
lent research papers,8,49,53,91 review papers,3,16 and books49 toward
theory, numerical implementation, and scientific application prac-
tice. Our focus here will remain narrow, the goal being to simply
identify a connection to the RC and its related VAR, as discussed
above. The primary purpose of DMD methods is for modal analy-
sis of the system to describe coherent and typical behaviors, but it
also can be used for forecasting; for this reason, the analogy is drawn
here.

For direct comparison, first allow some minor manipulations
to relate the VAR(k) [Eqs. (43) and (23)] to a typical DMD form. A
time-delay version of a linear evolution is a special case of an exact
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DMD written as follows, with the notation used as above,
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xk−1 xk · · · xN−2
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...
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...
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... |

x1 x2 · · · xN−k−1
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,

(54)

or simply,

X
′ = KX, (55)

where X and X′ are the kdx × (N − k − 1) data matrices in Eq. (45)
and K is a kdx × kdx DMD matrix approximating the action of the
infinite-dimensional Koopman operator. Abusing notation slightly,
the least squares problem,

K = arg minK‖X
′ − KX‖F, (56)

has the solution

K = X
′
X
†, (57)

which is called the “exact DMD” solution. While there are many
variants of DMD, this so-called exact DMD is popular for its sim-
plicity of implementation while still being useful for interpreting the
system in terms of modal behaviors.

Contrasting K derived by exact DMD [Eq. (54)] vs A for the
VAR(1) form described in Eqs. (44) and (45) reveals clear similar-
ities since each states a linear relationship between the same data,
X′ = KX vs X′ = AX, but these are ill-posed equations and A need
not be the same as K. Closer inspection reveals that Eq. (57) allows
freedom for a best least squares fit considering the entire matrix K;
therefore, differences are relative to Eqs. (23) and (26). Whereas only
the first k rows of A are free parameters in the regression, the sub-
sequent rows of A are sparsely patterned with either zeros or the
identity matrix [Eq. (44)].

A similar, but not identical, structural difference appears when
contrasting the SVD based exact DMD to the original DMD method
of Schmid78 and also Rowley and Mezić,76 which is an Arnoldi-like
version of DMD in terms of iterations in a Krylov space.4,85 Review-
ing that Arnoldi-version of DMD, using the notation of Ref. 76,
observations xk ∈ Rd are assumed (fitted) to be from a linear process
and also by considering the iterations are to be fitted in the Krylov
space, assuming that xm ∈ Krym(x0) = span{x0, Ax0, . . . , Am−1x0}
for data, K = [x0|x1| . . . |xm] = [x0|Ax0| . . . |Am−1x0]. The lin-
ear combination xm = Axm−1 = c0x0 + · · · + cm−1xm−1 = Kc, where

c = [c0; c1;
...; cm−1] is the vector of coefficients. Then, a key and clever

observation was to rewrite this in terms of a companion matrix,

C =















0 0 · · · 0 c1

1 0 0 c1

0 1 0 c2

...
. . .

...
0 0 · · · 1 cm−1















. (58)

Therefore, the results are

AK = KC. (59)

From there, exploiting the theme of Arnoldi methods, the eigenval-
ues of C are related as a subset of the eigenvalues of A, and with
a direct linear relationship between eigenvectors of C and A, Ritz
vectors and the unknown coefficients c of C can be computed by
a least squares procedure. Keeping in mind that power iterations
as one does in Krylov spaces emphasize just the dominant direc-
tion, the Arnoldi methods take care to orthogonalize at each step
in the algorithm for stabilization an otherwise unstable search for
large sparse matrices, and these make deliberate use of QR decom-
positions. Our interest here is only to point out analogies between A

from reservoir computing and VAR(1) and K rather than to con-
tinue toward discussion of modal analysis as one does in DMD
analysis. Summarizing, the analogy we see is that the companion
matrix C in Eq. (58) reminds us of the companion matrix A in
Eq. (44). However, the most significant difference is that while ci

are scalars, ai are dx × dx matrices.

VIII. EXAMPLES

The examples in Figs. 1 and 3–5 already threaded in the
above presentation of methods were in terms of the Mackey–Glass
differential delay equation system, which we now recall. Then, sub-
sequently, we will show similar figures highlighting the concepts
in a different system, the famous Lorenz63 ordinary differential
equation.

A. Example 1: Mackey–Glass differential delay
equation

The Mackey–Glass differential delay equation61

x′(t) =
ax(t − td)

1 + [x(t − td)]
c − bx(t) (60)

has now become a classic standard example in time-series
analysis26,54 of a high (infinite)-dimensional dynamical system with
a low-dimensional attractor, which we have used as a benchmark in
our own previous work for machine learning9 dynamical systems.
The problem is physiologically relevant for describing dynamic
diseases. Differential delay equations can be described as infinite-
dimensional dynamical systems, a concept that is more easily under-
standable in terms of the notion that an initial condition state
advances to not just a finite-dimensional vector, but rather an entire
interval [t0, t0 + td] of initial values of x(t) is required. However,
the MG equations have a nice property for its practical use as a
benchmark problem, which is that there is essentially an attractor
whose fractal dimension varies with respect to the parameters cho-
sen, allowing for a complexity tunable test problem. We have chosen
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parameters td = 17, a = 0.2, b = 0.1, and c = 10.0 in which parsing
time-delay embedding gives an embedding dimension of d = 4. We
use integration steps of ,t = td/100 throughout. We show time-
series in Fig. 1 a standard nonlinear RC forecast of the system in
Fig. 3 and the linear RC/VAR forecast of the system in Figs. 4 and 5.

B. Example 2: Lorenz63

The Lorenz63 system55 is the three coupled ordinary differen-
tial equations,

ẋ = 10(y − x),

ẏ = x(28 − z) − y,

ż = xy − (8/3)z.

(61)

While these Lorenz equations may have been originally posed as
time varying Fourier coefficients for describing a partial differen-
tial equation system describing convection rolls of heated fluid in an
atmospheric system, they have become a popular paradigm in the
study of chaotic systems for foundation principles of chaos histori-
cally and ongoing, as a simple and familiar benchmark problem and
also in the pedagogy of dynamical systems. The chaotic attractor in
the phase space {x(t), y(t), z(t)} illustrates a familiar butterfly, but we
show a segment of the x(t) time series that will be used as our data set
in Figs. 6–8. Also shown are nonlinear RC, q(x) = tanh(x) activation
forecasts in Fig. 6 using the usual nonlinear reservoir computing,
with excellent success. In Fig. 7, we show forecasting results using a
linear q(x) = x activation RC with still good results for short-term
forecasting agreeable with the expectation with the VAR theory.

Consider the following summary of results of three experi-
ments shown in Figs. 6–8.

1. Figure 6 shows a standard fully nonlinear RC, with activation
q(x) = tanh(x) and Hadamard quadratic readout Wout of the
reservoir variable [r; r ◦ r]. Forecasting is excellent; interest-
ingly, apparently, even once errors have accumulated, the RC
continues to produce a Lorenz-like attractor.

2. Figure 7 shows a fully linear RC with linear activation, q(x) = x,
and linear readout Wout of the reservoir variable r is equivalent
to a VAR and it produces good short-term forecasts, but for a
shorter time than the fully nonlinear RC. Also, once errors accu-
mulate, the long-term forecasts do not produce a Lorenz-like
attractor but rather seems to converge to zero.

3. Figure 8 shows a linear RC, so q(x) = x, but with a Hadamard
quadratic readout Wout of [r; r ◦ r]. Forecast performance is
good and the attractor seems to be well reproduced even once
the error has grown, comparably to the fully nonlinear case of
Fig. 6.

IX. ON FADING MEMORY

There are several ways to consider memory in the system.
Memory as it turns out is an important property for an echo-state
machine since it was recently shown by Gonan and Ortega,33 and
that these are universal. The VAR representation shown here allows
for an own discussion of this property.

A. Fading memory in terms of the role of the
internal layers

One way is to think that the connection between the reser-
voir and the coefficient matrices aj may become increasingly small
in a way that is moderated in part by the randomly chosen A
yielding a fading bound on the true memory. From Eq. (20),
aj = WoutAj−1Win, follows a bound, in norm,

‖aj‖- = ‖WoutAj−1Win‖-

≤ ‖Wout‖-‖Aj−1‖-‖Win‖-

≤ ‖Wout‖-‖A‖j−1
- ‖Win‖-. (62)

‖ · ‖- denotes an induced matrix norm inherited by the correspond-
ing vector norm. That is, allowing a (possibly not square) matrix
B mapping between vector spaces V1, V2, by B : V1 → V2, then
‖B‖-,V1,V2 := sup‖x‖-,V1 =1 ‖Bx‖-,V2 , and ‖ · ‖∗,Vi describes the vector

norm in Vi. For example, typical favorite vector norms include the
Euclidean norm, ‖ · ‖2; the 1-norm, ‖ · ‖1; and the ∞-norm, ‖ · ‖∞.
The specific vector norm is not important; thus, the noncommittal
notation - for good reason is to be described in a moment. For sim-
plicity of notation in Eq. (B12), we omit emphasis of domain V1 and
range V2 vector spaces of each matrix operator, understanding that
dimensionality of the induced vector norms depends on the matrix
sizes and ranks.

Inspecting the term, ‖A‖
j−1
- , in Eq. (62), we can bind by its

eigenvalues. For any chosen ε > 0,31 there exists some induced
matrix norm, ‖ · ‖- (which is why we used the noncommittal nota-
tion -) such that ‖A‖- ≤ ρ(A) + ε, where ρ(A) = max{λi} |λi| is the
spectral radius defined as the largest magnitude of eigenvalues, not-
ing that A is square. By theorem,31 if ρ(A) < 1, then there exists
an induced norm such that in terms of that norm, ‖A‖- < 1, which
implies ‖An‖- ≤ ‖A‖n

- → 0 as n → ∞. Therefore, by equivalence of
norms, An → 0. This last statement is stronger than a convergence
in norm, but rather, it is a componentwise statement of convergence
of the matrix to the zero matrix with respect to exponentiation under
the condition of the spectral radius bounded by 1.

A result regarding the VAR matrix mentioned in Eqs. (20)
and (62) that as long as the readout matrix is bounded ‖Wout‖
< C < ∞ and ρ(A) < 1, the coefficient matrices then become
increasingly close to the zero matrix,

aj → 0, as j → ∞, (63)

stated strongly as componentwise convergence of the matrices.
However, this is not to say that convergence needs to be mono-
tone or that the bound must be sharp. What is interesting in
this statement is that the distribution from which the randomly
chosen matrix A is drawn controls the spectral radius ρ(A), which
in turn dominates the VAR matrices aj. This is agreeable with the
general VAR theory reviewed in Sec. V that a general VAR(∞) is
well approximated by a finite VAR(k).
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(a)

(b)

FIG. 6. Lorenz time-series with nonlinear RC, with q(x) = tanh(x), of size dr = 1000, and quadratic readout, Wout , fitted to input R = [R1;R2] from Eq. (B1). The top
three time-series are state variables; blue curves show forecasts whereas red shows true data. Bottom, error shown, growing from initial seed. (Right) The phase space
presentation of the forecast variables, [x(t),y(t),z(t)]. Error performance is excellent. Even once the error has grown, the produced attractor seems true to the forecast Lorenz.
Compare to Figs. 7 and 8.
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FIG. 7. Lorenz time-series with fully linear RC, so q(x) = x of size dr = 1000, and linear readout. (Left) The top three time-series are state variables; blue curves show
forecasts, whereas red shows true data. Bottom, error shown, growing from initial seed. This fully linear RC, being equivalent to a VAR, does produce good forecasts for a
finite time even if for a shorter time than that of the nonlinear methods of Figs. 6 and 8. (Right) The phase space presentation of the forecast variables, [x(t), y(t), z(t)]. Now,
unlike the nonlinear RC or the nonlinear readout cases, despite forecasts for a little while, once errors have occurred in forecasting the time-series of the fully linear RC, the
form of the attractor is entirely wrong.
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FIG. 8. Lorenz time-series with linear RC, so q(x) = x of size dr = 1000, but quadratic readout, Wout , fitted to input R = [R1;R2] from Eq. (B1). (Left) The top three
time-series are state variables; blue curves show forecasts, whereas red shows true data. Bottom, error shown, growing from initial seed. (Right) The phase space presentation
of the forecast variables, [x(t), y(t), z(t)]. As in the full nonlinear RC method of Fig. 6, the attractor seems true even once errors have grown. Compare to Figs. 6 and 7.
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FIG. 9. Fading memory as observed by the magnitude of VAR(k) matrices ak , as k vs ‖ak‖2 induced norm, of (top) the Mackey–Glass system, the VAR(6) model is descriptive
since ‖a6‖2 is already relatively small. (Bottom) The Lorenz system where we see that after k = 9, coefficient matrices ‖a9‖2 are relatively small, suggesting that the VAR(9)
description is close to the large k model. However, we do not see convergence to zero suggested by Eq. (62), which we attribute to numerical instabilities since the details
of the computed aj seem to vary with details of the orbit data, whereas the head (the early terms) remains stable. Shown in a green curve are the ak computed by Eq. (62)
involving the RC, but the blue curve directly as a VAR fit [Eq. (26)], and we see that these closely agree as the two curves are almost coincident.

B. Experiments on fading memory of the RC

Consider the actual computed aj matrices and their corre-
sponding induced norms ‖aj‖2 as computed from the example of
chaotic systems studied in Sec. VIII, which were the Mackey–Glass
system and the Lorenz system.

In Fig. 9 (top), a (k, ‖ak‖2) curve is shown as computed from
Eq. (62) in the case of a RC model derived from the Mackey–Glass
equation, corresponding to RC forecasts of the same system in Fig. 1.
We see a pronounced fading memory as ‖ak‖2 has diminished to
negligible values by k ≥ 6. This is not unexpected since the attractor
of these equations shown in Fig. 1 illustrates primarily a rotation and
otherwise weak chaos in the sense that while the embedding dimen-
sion may be d = 4, the Lyapunov exponent is relatively small even if
positive, with λmax = 0.0058.90

Considering the memory curve (k, ‖ak‖2) of the Lorenz sys-
tem in Fig. 9 (bottom), we see that initially, ‖ak‖2 decreases quickly
to small values by k = 9, but then the computed values fail to
decrease further for larger k. We attribute this to difficulties of
long range forecasting of this highly chaotic system. Another way
of realizing this point is that the details of the tail of the large k
ak values vary with different data samples even though the front
part of the series (small k) is stable across samples. Interestingly,
nonetheless, as an affirmation of the theoretical discussion, the
green curve derived from Eq. (62) involving the RC and the blue
curve derived as a VAR fit [Eq. (26)] almost entirely coincide, the

difference being likely due to numerical estimation issues for very
large k.

X. CONCLUSION

The success of machine learning and artificial neural networks
has led to a clear and overwhelming widely adopted wave across
so many areas where data are relevant and patterns are of interest.
Dynamical systems are no exception, and forecasting a dynamical
system is a specific application that is broadly relevant and of interest
to us here. The RNN framework is particularly relevant for dynam-
ical systems since the reserve memory aspect of the concept allows
for a good framework and some aspects of delay embedding. How-
ever, while the RNN tends to have many parameters to fit, with the
danger of overfitting always present, and in any case the large cost
of optimization in the training phase, there is a surprising shortcut.
The echo-state/reservoir computing concepts presume to choose the
weights for the input layer and the internal layer entirely randomly.
Then, only the output layer is trained. Furthermore, output layer
training will be by linear algebraic manipulations toward a least
squares solution rather than the usual nonlinear optimization nec-
essary for the many parameters of the full nonlinear RNN. That this
would allow for huge computational savings is clear. What is per-
haps a surprise is how this gross simplification still yields useful
results. While there have been a number of studies experimentally
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describing how to choose better random processes to define the ran-
dom parameters, e.g., such as to emphasize sparsity or to control the
spectral radius and other properties, in this work, we have taken a
different approach, which is not specifically to improve the perfor-
mance of the concept but instead to give a partial explanation as to
how the concept can work at all. After all, at first glance, it may seem
that it would be impossible that such a simplification could work. In
this work, we have simplified the RC concept, allowing for the acti-
vation function to be an identity function instead of the more typical
sigmoidal function. In this case, the process is entirely linear and
so easier to study. As it turns out, the RC still performs reasonably
well for short-term forecasts, and it certainly leads to easier analysis.
Herein, we prove that the linear RC is in fact directly related to the
more matured topic of VAR, vector autoregressive time-series fore-
casting, and with all the related theory including the Wold theorem
as a representation theorem, which, therefore, now applies to the
RC. Also, we are able to make a direct connection to the increas-
ingly popular DMD theory. Furthermore, the commonly used fitting
upon readout of linear and Hadamard quadratic observations of
the reservoir states yields a nonlinear VAR (NVAR) allowing for
all quadratic monomial term generalization of the VAR result. This
NVAR version apparently not only makes competitive forecasts, but
also the errors seem to respect the original attractor in the case of the
Lorenz system.
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APPENDIX A: REVIEW OF REGULARIZED
PSEUDO-INVERSE

We review how to numerically and stably compute the pseudo-
inverse by the singular value decomposition, with regularized sin-
gular values (SVD). Reviewing the matrix theory of regularized
pseudo-inverses for general matrices, if

Xb = z, (A1)

Xn×p, bp×1, zn×1 and if the SVD is X = U/V, with orthogonal matri-
ces, n × n, then U satisfies UUT = UTU = I and p × p, V satisfies
VVT = VTV = I, and / is a n × p “diagonal” matrix of singular
values, σ1 ≥ σ2 ≥ σr ≥ 0 ≥ σp ≥ 0,

/ =







σ1

. . .
σp






if n = p, / =







σ1

. . .
...

σp






, if n > p,







σ1 . . .

. . . . . .
σp . . .






, if n < p. (A2)

Then,

X† := (XTX)
−1

XT

= V/†UT, where





















1

σ1
. . .

1

σp

...
...

...





















, in the n > p case . (A3)

The least squares estimator of Xb = z is

b∗ = (XTX)
−1

XTz := X†z, (A4)

and we write the ridge regression Tikhonov regularized solution,

b∗
λ = (XTX + λI)

−1
Xtz = V(/T/ + λI)

−1
/TUTz := X†λz. (A5)

The regularized pseudo-inverse X†λ is better stated in terms of the
regularized singular values by

/
†
λ := (/T/ + λI)

−1
/T

=





















σ1

σ 2
1 + λ

. . .
σp

σ 2
p + λ

... · · ·





















in the n > p case, (A6)

and then,

b∗
λ = X†λz = V/

†
λUTz. (A7)

Throughout, since we will always refer to regularized pseudo-
inverses, we will not emphasize this by abusing notation, allowing
that b∗ denotes b∗

λ even if only a very small λ > 0 is chosen, unless
otherwise stated, λ = 1.0 × 10−8. This mitigates the tendency of
overfitting or likewise stated in terms of zero or almost zero singular
values that would otherwise appear in the denominators of /†. The
theory is similar for n = p and n < p, as well as the scenario where z
is not just a vector but a matrix, and likewise as in Eq. (9), where we
refer to the transpose scenario.

APPENDIX B: ON QUADRATIC NVAR CONNECTION
TO RC

In this appendix, we give details claimed in Sec. VI that a
linear RC with the Hadamard quadratic nonlinear readout also cor-
responds to a VAR like entity from stochastic process modeling of
time-series. Now, however, a quadratic type nonlinear VAR results,
which is an NVAR. This is a generalization of the linear VAR
discussion of Sec. IV.
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A commonly used scenario of RC56 is to fit Wout not just to
r data but also to r ◦ r, where ◦ denotes the Hadamard product
(implemented in array languages such as Matlab by “array arith-
metic” using the “.∗” notation with the dot, in place of what would
otherwise be “‘∗′′′ for standard matrix multiplication). For a vector
r = [r1|r2| · · · |rdr ]

T, this is defined as component-wise operations:
r ◦ r = [r2

1|r
2
2| · · · |r

2
dr

]T. The reason for using nonlinear terms is cited
as improved performance, allowing for matching the parity of the
process. In this case, we rename what before we called R to now
being called R1. Therefore, Eq. (8) is replaced with

R1 =
[

rk |rk+1 | · · · |rN

]

,

R2 =
[

rk ◦ rk |rk+1 ◦ rk+1 | · · · |rN ◦ rN

]

,

R =

[

R1

R2

]

.

(B1)

Then, Eq. (9) remains written as before, Wout := XRT(RRT + λI)
−1

,
but now since R is 2dr × N − k, then Wout is dx × 2dr. For conve-
nience, in the rest of this section, partition these matrices Wout into
top and bottom half portions. These, as we show, act on linear and
quadratic terms of the corresponding NVAR,

Wout =

[

Wout
1

Wout
2

]

, (B2)

each of size dx × dr.
First, note an identity of how the Hadamard product distributes

with standard matrix–vector multiplication. Let w = [w1|w2|

· · · |wn]T be a vector with scalar vector components wi and B be a
general m × n matrix. Let B = [b1|b2| · · · |bn] be written in terms of
the column vectors bj of B. Then,

Bw ◦ Bw = (w1b1 + w2b2| · · · |wnbn) ◦ (w1b1 + w2b2| · · · |wnbn)

= [b1 ◦ b1|b2 ◦ b2| · · · |bn ◦ bn]

































w2
1

w1w2

...
w1wn

w2w1

w2
2

...
w2

n

































:= P2(B, B)p2(w, w).

(B3)

Thus, the Hadamard operator distributes through matrix multipli-
cation to be written purely as matrix multiplication with carefully
stated matrices. We have defined the matrix of Hadamard products
as P2(B, B), which is a m × n2 matrix by the matrix function defined
in Eq. (B3),

P2 : R
m×n × R

m×n → R
m×n2

, (B4)

and vector function also in Eq. (B3),

p2(v, w) : R
n × R

n → R
n2

,

(v, w) 3→ [v1w1|v1w2| · · · |v1wn|v2w1|v2w2| · · · |vnwn]T, (B5)

to be the n2 × 1 vector of all quadratic combinations suggested in
the equation above, p2 : Rn × Rn → Rn2

. By this notation, we will
state for convenience identity operators, P1(B) = B and p1(w) = w.
Higher order operators follow similarly, but we will not need these
here.

With this notation, we can proceed comparably to Eqs. (14)–(18)
by tracking iterations of the RC but with quadratic readout and with
the terms in the ◦ product for use in building Wout to be used in the
readout. Let r1 = 0. Then,

r2 ◦ r2 = (Winx1) ◦ (Winx1)

= P2(W
in, Win)p2(x1),

r3 ◦ r3 = (AWinx1 + Winx2) ◦ (AWinx1 + Winx2)

= (AWinx1) ◦ (AWinx1) + (AWinx1) ◦ (Winx2)

+ (Winx2) ◦ (AWinx1) + (Winx2) ◦ (Winx2)

= P2(AWin, AWin)p2(x1, x1) + P2(AWin, Win)p2(x1, x2)

+ P2(W
in, AWin)p2(x2, x1) + P2(W

in, Win)p2(x2, x2),

...

rk+1 ◦ rk+1 =

k
∑

i=1

(Ai−1Winxk+1−i) ◦





k
∑

j=1

Aj−1Winxk+1−j





=

k
∑

i,j=1

P2(A
i−1Win, Aj−1Win)p2(xk+1−i, xk+1−j) (B6)

:= A2[X2]k. (B7)

That is, A defined in Eq. (28) is dr × kdx, and analogously,

A2 = [P2(W
in, Win)|P2(AWin, Win)|P2(A

2Win, Win)| · · ·

· · · |P2(A
k−1Win, Win)|P2(W

in, AWin)|P2(AWin, AWin)

× |P2(A
2Win, AWin)| · · ·

· · · |P2(A
k−2Win, Ak−1Win)|P2(A

k−1Win, Ak−1Win)] (B8)

is a dr × kd2
x matrix.

Similarly, where X is a (kdx) × (N − k) matrix of data, X2 is a
(kdx2) × (N − k) matrix of data, but quadratic forms, analogous to
the (kdx) × (N − k) array X from Eqs. (23) and (24), and [X2]k is
the kth column,
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X1 =













































| |
... |

xk xk+1 · · · xN−1

| |
... |

xk−1 xk · · · xN−2

| |
... |

...
...

...
...

| |
... |

x1 x2 · · · xN−k

| |
... |













































, X2 =

























































































| |
... |

p2(xk, xk) p2(xk+1, xk+1) · · · p2(xN−1, xN−1)

| |
... |

p2(xk−1, xk) p2(xk, xk+1) · · · p2(xN−2, xN−1)

| |
... |

...
...

...
...

| |
... |

p2(x1, xk) p2(x2, xk+1) · · · p2(xN−k−1, xN−1)

| |
... |

p2(xk, xk−1) p2(xk+1, xk) · · · p2(xN−1, xN−2)

| |
... |

p2(xk−1, xk−1) p2(xk+1, xk−1) · · · p2(xN−2, xN−2)

| |
... |

...
...

...
...

| |
... |

p2(x1, x1) p2(x2, x2) · · · p2(xN−k, xN−k)

| |
... |

























































































. (B9)

Now, we write X =
[

X1
X2

]

.

With Eqs. (9) and (B1) in mind and with [R]2, the second
column of R, being [R]2 =

[ rk+1
rk+1◦rk+1

]

, we generalize the VAR stated
in Eq. (19). The quadratic NVAR follows:

y)+1 = Wout[R]2

= Wout
1

)
∑

j=1

Aj−1Winx)−j+1 + Wout
2

)
∑

i,j=1

P2(A
i−1Win, Aj−1Win)

× p2(x)+1−i, x)+1−j)

= Wout
1 A)−1Winx1 + Wout

1 A)−2Winx2 + · · · + Wout
1 AWin

1 x)−1

+ Wout
1 Winx) +

)
∑

i,j=1

Wout
2 P2(A

i−1Win, Aj−1Win)

× p2(x)+1−i, x)+1−j)

= a)x1 + a)−1x2 + · · · + a2x)−1 + a1x) + a2,(),))p2(x1, x1)

+ a2,()−1,))p2(x2, x1) + · · · + a2,(1,1)p2(x), x)), (B10)

with the notation for the ) linear coefficient dx × dx matrices as
before,

aj = Wout
1 Aj−1Win, j = 1, 2, . . . , ), (B11)

and now, we have )2 quadratic term coefficient dx × d2
x matrices,

a2,(i,j) = Wout
2 P2(A

i−1Win, Aj−1Win), i, j = 1, . . . , ). (B12)

This is the generalization of the VAR equation coefficients writ-
ten explicitly in Eq. (20) to these coefficient matrices of a quadratic
NVAR that results in a linear RC with the Hadamard quadratic
readout.
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57M. Lukoševičius, “A practical guide to applying echo state networks,” in Neural
Networks: Tricks of the Trade (Springer, 2012), pp. 659–686.
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