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Abstract

Many interesting phenomena in nature and society are generated by the interac-
tions of a large number of simpler components. Examples include global climate, the
functioning of a living cell, and human cognition. In order to understand how the be-
haviors of individual components combine to create large scale emergent phenomena,
it is important to understand the interactions between the components.

Defining and identifying the interactions is often a nontrivial problem. The thesis
proposes three criteria for such a definition: 1) the relationships are predictive, 2)
they do not depend on model-specific assumptions, and 3) the definition distinguishes
between direct and indirect relationships.

These criteria lead to the consideration of information theory. A notable con-
tribution of the thesis is a unification and generalization of differential entropy and
Shannon entropy. This unification is made possible by an unconventional definition
of Kullback-Leibler divergence which makes different assumptions from the definition
traditionally used in information theory.

The consideration of information theory in a dynamical setting leads to notions
of “information flow”, such as Transfer Entropy (TE). Causation Entropy (CSE)
generalizes TE and satisfies the three criteria defining a causal relationship.

The optimal Causation Entropy algorithm (oCSE) is used with CSE to efficiently

identify causal relationships. The application of oCSE to real world problems requires
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estimating CSE from time series data. This thesis gives an introduction to estimation
that is novel in that it is both purely measure-theoretic and synthesizes the principles
of parametric and non-parametric statistics.

The thesis introduces geometric k-nearest neighbors estimators which are shown to
outperform conventional k-nearest neighbors (knn) estimators in the task of estimat-
ing mutual information when the underlying dynamical systems are either dissipative
or have multiple time scales.

The utility of oCSE and knn estimation is demonstrated with an application
to insect swarming. The nodes are stochastic processes describing the trajectories
of individual insects in a number of mating swarms in a laboratory environment.
The results suggest that the insects often do not interact with their nearest spatial

neighbors.
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Chapter 1

Introduction

Many phenomena in nature, society, and technology seem to arise from the collective
interactions of large sets of simpler components. For instance, schools of fish can
synchronize their motions to avoid predators in a way that would not be possible
by an individual fish [92]. Humans make social connections with other humans in
ways that make it possible for ideas and viruses to spread rapidly across an entire
society [13]. Human DNA consists of thousands of genes, many of which interact
by slowing or speeding up the expression of other genes, in a way that gives rise to
the function of the cell and allows the cell to adapt to changing conditions [83]. The
human brain consists of over 10'® neuronal cells [56] (in addition to non-neuronal
cells), which interact via synapses to give rise to problem solving and emotion. The
brain also has mesoscopic structures that form anatomical units, which could also be
thought of as nodes communicating via information pathways to solve problems and
produce emotions.

The systems in each of these phenomena can be described as directed graphs (also
called networks). Directed graphs can be defined as a set of vertices, V together with

a set of edges, £ C V x V. It is often the case that the nodes are easily identified. For
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example, nodes might be fish in a school of fish, or genes in a cell. More generally, the
nodes typically correspond to observables, or measurable quantities associated with
a system.

The edges are more elusive. In general terms they represent direct causal relation-
ships, but they are difficult to identify, since in many cases they do not correspond
to a physical connection between the nodes. For example it is unclear what signal
a fish sends out that causes another fish to respond. In other cases the mechanism
is understood, but observing the interactions would be unfeasible. For instance, we
know how humans share viruses but we often do not know who causes a particular
person to get sick. We know that genes produce proteins that can interfere with or
accelerate the rate that other genes produce proteins, but the interactions occur at
the molecular level so that they cannot be directly observed. The neuronal network
that forms the human brain has too many neurons to trace down every synapse be-
tween neurons. The information pathways between mesoscopic brain regions would
likely vary from task to task and emotion to emotion, and therefore seem to reflect
something more than the static physical structure of the brain.

Although it would be hard, if not impossible, to directly identify the edges in
these examples, it is often easier to observe the system in motion. For instance, a set
of cameras could be used to record the positions of the fish over time. A microarray
could be inserted into a cell with thousands of sites that fluoresce when a protein, or
a chemical associated with the production of that protein is abundant. Humans can
be placed inside fMRI machines, or wear EEG equipment, that records activity at
brain sites while they perform different tasks.

An edge in each of the examples might be evidenced by a statistical relationship
between the states of variables over time. Simple examples of a statistical relationship

are, “whenever brain region 1 becomes highly active, brain region 2 becomes more
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active over the ensuing 2 seconds,” and, “when the amount of the protein produced
by gene A increases there is usually a subsequent decrease in the amount of protein
produced by gene B.” More complicated statistical relationships would be needed to
ensure that the relationships that are inferred are direct relationships.

Statistical relationships may not represent valid causal relationships. In many
of these cases no experiment could be performed to verify the inferred graph since
direct manipulation of one of the variables would either be unethical or would change
the behavior of the entire system. Instead, the inferred graphs could be validated
by prediction. For instance using an inferred graph to successfully predict the future
movement of a fish, or the entire school, would suggest that the relationships were
indeed causal relationships. Therefore, the causal relationships that the researcher
seeks might be called predictive statistical relationships.

The goal in each of these examples can be thought of as learning structure from
observing dynamics. Thus, this problem can be seen as an inverse problem to the
forward problem of describing the effect of network topology on dynamics. Being
able to learn network topology from dynamics could be very important for the un-
derstanding of complex systems. Although there is no precise definition of a complex
system, an important feature in addition to being a networked dynamical system, is
the emergence of function, properties, or phenomena, that exist at macroscopic levels
(for instance the entire system) but not evidenced by the dynamics at the microscopic
levels (for instance the dynamics of individual nodes). In the above examples, the
coordinated function of a school of fish to evade a predator, and cognition and con-
sciousness of the human brain are considered emergent properties. It is possible that
learning the topologies of the networks that form complex systems could shed light
on the nature of emergence.

Chapter 2 concerns the mathematical definition of a causal relationship. The
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chapter gives some background on different approaches to defining causal relation-
ships, and concludes with an introduction to, and definition of, Causation Entropy
(CSE) [124]. In addition to reviewing work that was done prior to the start of this
thesis, this chapter also introduces a novel perspective on entropy. A generalization
of the notion of Kullback-Leibler divergence, based on absolute continuity and the
Radon-Nikodym derivative, leads to a generalization and unification of differential
and Shannon entropy.

Chapter 3 concerns mathematical methods for using time series data to provide
evidence for a causal relationship. This chapter serves two purposes. It gives an in-
troduction to the theory of estimation that is novel in that it is both purely measure-
theoretic and synthesizes the principles of parametric and non-parametric statistics.
It also introduces a novel class of nonparametric estimators called geometric k-nearest
neighbors (g-knn)estimators. It is shown that a problem with traditional applications
of k-nearest neighbors estimation methods is that they can be very biased when the
underlying dynamical system is dissipative or has multiple time scales. A particular
(g-knn) estimator is developed which solves these problems. Much of the presentation
of the new estimator is taken from Warren M Lord, Jie Sun, and Erik M Bollt, “Ge-
ometric k-nearest neighbor estimation of entropy and mutual information,” Chaos:
An Interdisciplinary Journal of Nonlinear Science 28.3 (2018) [72].

Chapter 4 describes a novel application of CSE to collective animal motion. In
this application the nodes are individual insects which are part of a larger swarm.
At a macroscopic level the swarm stays together and keeps roughly the same shape,
indicating the existence of communication channels among the individual insects. A
causal edge from one insect to another indicates that the first insect is receiving
information from the second and using it to adjust its flight path. The chapter shows

how the insects’ positions are measured, turned into time series data, and used to
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infer the networks that form the structure of the swarm. A novel feature of these
networks is that they are dynamic, meaning that they evolve in time. Much of
the presentation is taken from Warren M Lord, Jie Sun, Nicholas T Ouellette, and
Erik M Bollt, “Inference of causal information flow in collective animal behavior,”
IEEE Transactions on Molecular, Biological and Multi-Scale Communications 2.1
(2016) [73].

Chapter 5 discusses some ideas for future research. Although the estimator intro-
duced in Ref. [72] shows great promise for the estimation of differential entropy and
mutual information for low sample sizes, it may be possible to improve the asymp-
totic properties describing the behavior of the estimator as the sample size increases
unboundedly. Another project is the inference of information pathways in the human
brain. A final idea concerns the correspondence between the causal relationships
inferred by two scientists watching the same phenomenon from different coordinate
reference frames.

This thesis takes a probabilistic approach to the above questions. For instance,
the nodes are assumed to be random variables in the measure-theoretic sense. This
approach shifts the focus from individual data points in the state space to relationships
between measurable functions that take values in that space. The approach results
in a novel introduction to information theory in Ch. 2 and a unified approach to
parametric and nonparametric estimation in Ch. 3. The necessary background in

probability is covered in Appendix



Chapter 2

Networks of causal relationships

2.1 Causality for scientists

Although the concept of causality is intuitive, and the language of causality is used
in everyday speech, defining a framework for causality that is practical and useful to
scientists studying complex systems is difficult. Two common frameworks, which are
suitable for different types of scientific inquiry, are methods based on structural forms

of systems of equations, and ones based on improvement in prediction.

2.1.1 Methods based on structural form

The framework of causality based on the structure of systems of equations is motivated
by the idea that direct manipulation of the value of a causal variable will result in
predictable changes in the variable that is being affected. A commonly cited method

for determining causality in this sense has been devised by Judea Pearl [93]. Consider
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a system of relationships between the variables in V = {Xj,..., X,,} defined by

X1 = fi(P, Uy), (2.1)
Xi = fi(Pi, Uy), (2.2)

where P; C V, and the U; are unobserved variables, which introduce randomness
into an otherwise deterministic set of relationships. The system defined by Eqgs.
to defines a directed graph with nodes V and an edge X; — X if X; € P;. Call
such a graph a structural graph for a system of equations like Eqs. to .
Pearl lays out a set of conditions on the system defined by Egs. to under
which the edges in the structural graph can be called causal. Among the conditions,

the functions f; are assumed to be “autonomous,”

meaning that changing one of the
equations by directly manipulating an X; would not disrupt the other equations. An
“intervention” in X; is defined by replacing Eq. with X; = x; for a particular
value of x;, and treating X; as an unvarying parameter in the other equations. If the
system is autonomous then the structural graph of the system with Eq. fixed
by an intervention would be the subgraph of the original structural graph obtained
by removing the node X;. The directed graph defined by a system of equations
that satisfy Pearl’s assumptions has the structure of a directed acyclic graph (DAG)
between the observed and unobserved variables. Starting with some assumptions on
the distributions of the unobserved variables, U;, Pearl’s approach builds a directed

acyclic graph in which the edges are causal relationships [93].

By including the effects of unobserved variables and updating their distributions
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by directly manipulating the observed variables, Pearl’s method avoids the pitfalls
of confounding variables. Although this framework for causation is popular in some
areas of science, it has some features that make it unsuitable for finding causal re-
lationships in complex systems research. One is that the focus on DAGs rules out
feedback loops, which could be important to self-organization and emergence in an-
imal or human interactions, gene networks, and human cognition. Another problem
is that the system of interventions seems unfeasible in a high dimensional nonlinear
dynamical environment. More generally, the variables in nonlinear dynamical systems
can become inextricably intertwined over time, so that the conditions required to do
Pearl’s causality analysis are unlikely to hold.

Pearl’s interventionist framework is not the only method based on the structure
of a system of equations. Liang and Kleeman’s formalism considers the case where
the static system, Eqs. to , is replaced with a stochastic process |71} 106,
107].

Definition 2.1.1 (Stochastic process). A stochastic process is a collection of random
variables taking values in the same state space, where the variables are indexed by a
set, T, called the index set. When 7' has a linear ordering, such as when 7" = Z, or
T = R, T is often called “time,” and the stochastic process is said to be indexed by

time.

Since the applications depend on time series data, the index set will usually be
assumed to be T'=N = {1,2,...}, in which case the system is called a discrete time
system. For the purposes of describing many systems 7' can be taken to be R, and
the system called a continuous time system. In this thesis the time index will be
indicated with a subscript. For instance, {X;}en is a stochastic process, and if there
are multiple stochastic processes with the same time index, then they will be denoted

with a superscript such as {X}};en. A stochastic process will sometimes be referred
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to by removing the time subscript, so that X = {X;};cn. Note that a collection of
stochastic processes X!, X2, ..., X™ indexed by N can be equivalently thought of as
a single stochastic process, (X!, X2 ... X™) taking values in the Cartesian product
of the sample spacesﬂ

Liang and Kleeman |71}, {106} [107] consider stochastic processes defined by systems

of equations such as

XZ = fi(Ailth_la AiQXtQ—la o 7Aith"—117 Ut—1)7 (24)

where A;; are fixed parameters and U, is an independent stochastic process that
represents noise. System determines a structural graph where the nodes are
the processes X', and there is an edge X7 — X" if and only if A;; = 1. The matrix
{Ai;j}ij=1,. m is called the adjacency matrix because it determines which nodes are
“next to” each other in the structural graph. Liang and Kleeman also consider systems
of differential equations and partial differential equations in which the structural
graph can be defined in a similar fashion.

The Liang-Kleeman method identifies transfers of information between variables
(see Sec. for a more detailed explanation of information transfer). It defines these
information transfers by comparing the behavior of the original system to the behavior
after an intervention.

Many of the problems with the application of Pearl’s framework to complex sys-
tem also apply to the Liang and Kleeman formalism. For instance fixing a variable
in a stochastic process could dramatically alter the relationships between the re-
maining variables. As a simple illustration, fixing a variable in the Lorenz system

destroys chaotic dynamics, often leading to fixed point behavior. It is therefore un-

1Refs. |14, 109] give more examples and a good introduction to the theory of stochastic processes.
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clear whether anything like the “autonomous” condition described by Pearl exists for
complex systems. A further problem with the Liang and Kleeman formalism is that

from a practical standpoint it seems to require a priori knowledge of the update rules,

jEak

2.1.2 Predictive causality

An alternative notion of causality was introduced by Norbert Wiener in 1956 [19,
136], and later given a practical implementation by Clive Granger in 1969 [47]. This

notion is defined by the two conditions:
1. The cause comes before the effect.

2. The cause and the effect share informationﬂ that is not contained in any other

available sources.

The method applies specifically to stochastic processes.

By the first of the Wiener-Granger conditions, if X! causes X2 then t < ¢'.
The second of the conditions could have many interpretations. The condition is
generally interpreted in a sense of predictive power. Qualitatively, if (X!, ... X™)
is a stochastic process, then X' is said to G-cause X? if the best predictor of X7,
based on the set of variables {Xﬁ}55t7i:17,,.7m is better than the best predictor of the
same quantity but with the variables {X!}.<; removed from the set of predictors.

As Clive Granger points out, these conditions do not necessarily imply a causal
relationship between variables since there can always be unmeasured confounding

variables. However, Granger also points out that if one restricts their attention to

2Pearl’s framework seems to avoid needing specific knowledge of f; by modeling the distribution
of the variables in U;, and using chain rules for conditional distributions, along with interventions,
to find distributions of connected variables in the DAG.

3The term information here is meant colloquially, and not necessarily in the sense defined in

Sec. @
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what can be observed, then one can use Granger’s analysis to test for causal relation-
ships within that set of observables, which provides one justification for the use of the
word “causal” [48]. G-causality seems to capture what is meant by causality for many
scientists who study time series data, and as long as the results are only interpreted
to be “causal” within the scope of the observed variables, then there should not be
any confusion in using causation-related terminology.

One of the assumptions that are often imposed in order to make computations
more tractable is that the distributions of the stochastic processes (See Appendix

are stationary.

Definition 2.1.2 (Stationary distribution). A stochastic process, {X;}ier, has a
stationary distribution if the distribution of X; does not depend on t (See App. (1] for

the definition of distribution). In other words, for all ¢1,t, € T, Vx, = VX,

Clive Granger built the first implementation of these conditions by interpreting
the improved predictive power in terms of linear regression. Given a time lag, 7 € N,

X? is said to G-cause X! if the removal of the X? term in the regression

remove

1 1 2 1
Xy = AnX] + ApXy 4+ + AR X + B (2.5)

increases the variance of the error term, E}!. More generally, one can compare the

variances of the errors after fitting the multivariate regressions

m T
X =A (X X, X XX X B (2.6)
m T
X =A (X X, X XX XXX+ B
(2.7)

For more details see Refs. |7} [19].



CHAPTER 2. NETWORKS OF CAUSAL RELATIONSHIPS 12

The interpretation of the second of Granger’s two conditions as a linear regression
leads to efficient implementation. It has the drawback, however, that the functional
relationships between variables are assumed to be linear and the error term is assumed
to be Gaussian. Nonlinear relationships can be included by adding functions of mea-
sured variables to the list of predictors [3], but they rely on modeling assumptions

and often pit efficiency against modeling precision.

2.2 Shannon Entropy

Entropy can be used to form an alternative interpretation of Granger’s second con-
dition, which is that “the cause and the effect should share information that is not
contained in any other variables.” Linear regression can be thought of as a prediction
of the mean of a variable, which gives partial information about the variable related
to its central tendency. The Shannon or differential entropy of a random variable
is a description of the variable that relates to the distribution as a whole. Unlike
methods based on linear regression, information-theoretic measures of dependence
do not require model specific assumptions about the functional dependence between
variables or distributional assumptions. Shannon entropy has a natural interpretation
as the information associated with a random variable, and therefore leads to a literal

interpretation of Granger’s second condition.

2.2.1 Some intuition about information

Shannon Entropy is a measure of how much “information,” on average, is gained by
measuring a random variable. Some simple examples illustrate the meaning of the in-
formation content of a random variable. Let us suppose that a math professor teaches

a large calculus class, and that the chairman of the department approaches the pro-
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fessor and asks if a certain student has been attending lectures. The professor replies
that it would be hard to know in a class of that size, but the chairman immediately
notes that this student’s height is 7’6” (which would be extraordinarily tall at most
universities). Such a statement would give the professor a lot more information about
who the student is. On the other hand, if the professor had said that the student is
5’8" (roughly average height), the professor would not have learned much. Certain
measurements of the variable “height” convey more information than others.

The Shannon entropy of a random variable measures on average how much infor-
mation is learned, where the average is taken over the entire population, or equiva-
lently, over all possible outcomes of the measurement of the random variable. In the
case of the height variable, a lot is learned by knowing a student is 7’6", but if most
students are roughly average height, then most of the times that a student’s height
is revealed, not much is learned. Other variables might convey more information on
average. For instance, if the students were divided equally among 10 majors, then
asking the chairman about the student’s major would on average provide a lot of
information because the answer would always rule out 90% of the class.

On the other hand, if majoring in math was a prerequisite for taking the class, the
answer would not convey any new information. Therefore, it seems that the amount
of information that is learned on average is a function of the probability distribution
of the variable. In fact it may seem that information is just another way of describing
variance, which is the building block for the measures of dependence described in
Sec. 2.1.2] If, for example, the heights of students in the class have a large variance,
then on average, height could provide a lot of information, but if all of the students
are exactly 5’8", so that the variance is 0, no information is gained by asking about
height. But there is a big difference. If there were only two outcomes and half of

the students were exactly 7’87, and the other half 3’8”, then learning the height
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would provide much less information than if the heights were uniformly distributed
across every value between 3’8" and 7’8”. On the other hand, the variance of the
first distribution with two outcomes is far greater than the variance of the second,
uniform distribution. Instead of being based on variance, entropy is related to the

sizes of the partitions created by the variable.

2.2.2 Shannon’s treatment of entropy

A mathematical description of the entropy of a random variable was introduced by
Shannon in his seminal 1948 paper, “A mathematical theory of communication,”
in the Bell System Technical Journal [110]. Shannon proposes a set of intuitions
which such a measure should posses and demonstrates that these intuitions uniquely
characterize, up to a multiplicative constant the entropy of a discrete random variable,

meaning a variable with a discrete outcome space.

Theorem 2.2.1 (Shannon’s uniqueness theorem). Suppose that for any random vari-
able X taking values in a finite set {x1,...,x,}, there is a unique real number H(X)

such that H(X) satisfies the following conditions

1. H(X) depends only on the probability distribution of X. Because of this az-
iom, without loss of generality, H(X) can be written H(p1,...,p,), where p; =

P(X = x;), and x1,. .., x, is an enumeration of the elements in the range of X.

2. (Continuity) For a fized n, among variables X with n possible outcomes with

probabilities py,...,pn, H is a continuous function of (p1,...,pn)-

3. (Monotonicity) If X, has ny possible outcomes, each with probability 1/n,, and
Xy has ny possible outcomes, each with probability 1/ng, then H(X;) > H(X3)

z'fm > No.
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4' (R@CUT'SZ"U’L‘ty) H(p17p27 s 7pn) = H(p1+p27p37 s 7pn)+(pl+p2)H <p1711p2, plpTQI@) .

Then there is some positive o € R such that

H(X) = —a Zpi log p;. (2.8)

It is customary to take a to be 1, giving the following definition

Definition 2.2.1 (Shannon Entropy). The Shannon entropy of a discrete random

variable, X, taking values in {xi,...,z,} with probability mass function P(X =
x;) = p; is
H(X) = - sz‘ log p;. (2.9)
i=1

The second condition states that if two probability distributions are close to each
other (in any R™ norm), then their entropies are close to each other. The third
condition states that among variables that break the population into equal sized
partitions, more partitions means more information. The final condition is called
recursivity. Suppose that X can take values in {1,2,3,...,n}. Then X could be
rewritten in terms of two variables, X; and X5, where X; chooses from the n — 1
choice {{1,2},3,...,n}, and X5 chooses between 1, and 2. The fourth statement
expresses H(X) as a weighted sum of H(X;) and H(X3).

Despite the success of Shannon’s paper, it is somewhat dissatisfying to some math-
ematicians. It is mostly stated in terms of communication theory, even though the
results should apply to a broad mathematical context. When one tries to trans-
late the communication theory language about sources, transmitters, lines, channels,
codes, and receivers, into the language of probability theory as expressed in terms

of Appendix [I] a number of ambiguities and confusions arise. For instance, it is of-
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ten unclear from Shannon’s exposition whether an object should be interpreted as
a random variable or as a sequence of measurements of a random variable, and the
difference sometimes affects the interpretation of the text. A number of more purely
mathematical treatments of Shannon’s ideas have arisen. The earliest attempt was
given by the Russian mathematician Khinchin in 1957 [63], who introduces a different
set of axioms for Shannon Entropy. Since then many more axiomatizations of Shan-
non Entropy have been proposed [27]. The different choices of axioms correspond to
different characterizations of Shannon entropy.

Similar quantities describing information content can be defined when there is
more than one variable. For instance, the joint entropy describes the information

gained on average by measuring a pair of variables.

Definition 2.2.2 (Joint Shannon entropy). Given two random variables X and Y
taking values in X = {xy,..., 2, } and YV = {y1,...,Yn, }, the joint entropy of X
and Y is the entropy of the variable (X, Y), that produces pairs of observations, (3, j),

with probability p; ; = P(X = x;,Y = y;). Therefore the joint entropy is

H(X)Y) = _Zpi,j log pi j, (2.10)

where the sum ranges over (z,y) € X x ).
The conditional entropy of X given Y can be defined in a similar fashion.
Definition 2.2.3 (Conditional Shannon Entropy). Given two variables X and Y

taking values in X = {z1,..., 2, } and YV = {y1,...,Yn, }, define
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Then the conditional entropy of X given Y is

H(X|Y) = pr log pjj;.- (2.12)

Conditional entropy can be interpreted as the amount of uncertainty involved in
measuring X given that the value of Y has already been revealed. Probabilities of
events can be 0, in which case, the convention is made that 0log0 = 0 log % = 0. These

conventions are justified by the continuity axiom characterizing Shannon entropy.

Note that for discrete variables p;; = p 4l g0 that

HX|Y) = Zp”logp” (2.13)

For reference, Table records a list of useful properties of H that follow from
the axioms characterizing Shannon entropy. These properties are very intuitive for a
measure of uncertainty. For instance, positivity is a statement that a variable cannot
have negative uncertainty. In fact, the most certainty occurs when there is a k£ such
that p = 1, which implies H(X) = 0. Invariance means that relabeling, or permuting
the symbols will not affect the uncertainty in a measurement. Additivity states that
the uncertainty in simultaneously measuring two independent variables (as described
in Appendix , independence between X and Y is denoted X 1l Y') is the same as
the sum of uncertainties involved in measuring each variable separately. The Chain
Rule, sometimes called Strong Additivity, states that the entropy contained in two
variables is equal to the entropy in one of the variables plus the entropy in the other
conditioned on knowledge of the first variable. The independence bound states that
if two variables are not independent, then together they convey less uncertainty than
two independent distributions with the same probability mass functions. The fact

that conditioning reduces uncertainty simply states that if there are two variables,
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Positivity H(X)>0
Invariance H(f(X))=H(X) if f is one-to-one
Additivity XUY=HX,)Y)=HX)+H(Y)
Chain Rule HX,Y)=H(X)+ HY[X)
Independence Bound HX)Y)<HX)+H(Y)
Conditioning Reduces Entropy H(X|Y) < H(X)

Table 2.1: Properties of Shannon Entropy. A “*” symbol indicates that the property
is not shared by differential entropy (see Sec. [2.3).

which are possibly related, then knowing the value of one can only decrease the

uncertainty in the measurement of the other.

2.2.3 Alternative ways of thinking about entropy

The axiomatic approach to defining entropy is useful for establishing intuition. There
may be other ways to arrive at the definition of entropy. Alternative frameworks
have the potential to lead to new ways of thinking about entropy, and may suggest
different generalizations.

The following thread of thought introduces entropy in a way that connects it
to a familiar concept from algebra, the geometric mean. There are different ways
to assign algebraic structure to probability distributions and probabilities of events.
Unlike random variables, probability distributions cannot be added, and even adding
probabilities of individual events is of limited significance. On the other hand, mul-
tiplication is a natural operation for use with probabilities in many circumstances.
For instance, the probabilities of independent events multiply, and in particular, if

{Xi}2, is a sequence of independent discrete variables, then
P(Xl = .CEl,XQ = T2,... ,Xd = .CEd) = ]P)(Xl = Qfl)P(XQ == 1'2) N ]P)(Xd = ZL‘d). (214)

Although the average in the definition of Shannon entropy is an average over all
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possible outcomes, it could equally be considered an average over many independent
samples, because over time the empirical distribution converges to the probability
distribution.

A different way of thinking about the information of an event as described in
Sec. is as an amount of “surprise” upon learning the outcome — more “sur-
prising” outcomes imply a greater reduction in uncertainty, and therefore a greater
gain in information. Surprise can be defined precisely and shown to have a natural
multiplicative structure like probability. It is reasonable that a measure of surprise
at an event should be inversely related to the probability of the event. So in par-
ticular, the surprise at measuring X = x; is proportional to 1/p,,. One can define
variables P; and S; such that P;j(w) = P(X; = X;(w)), S;(w) = 1/Pi(w), where P; is
recognized as the probability mass function and S; can be called surprise. Together
with Equation this definition of surprise states that in the context of making

many measurements of the same variable, surprise multiplies:

d
St.d = H S;. (2.15)
i=1

Entropy can be thought of as the average surprise on measuring a variable. The
mathematically appropriate way to average objects that multiply is the geometric
mean, which is sometimes written as the nth root of a product of the objects. Another

way to write the geometric mean of a variable Y is
GM(Y) = [T E[f(Y)] (2.16)

where f(z) = log(z), so that f~!(z) = e®. This way of writing the geometric mean

might seem unnecessary at first, but it actually generalizes a wide class of means. For
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instance taking f to be the identity yields the arithmetic mean and taking f(z) = 1/z
yields the harmonic mean.

Substituting the surprise, S, for Y in Eq. yields

i) - oo (8 e 1) )

= exp (— E [log P)) (2.18)

1 n
= exp <_ﬁ Zpk logpk> : (2.19)
k=1

Since we are only interested in the rate at which this quantity scales we define H(X)

to be the exponent

1 n
H(X)= -~ > pilog pr., (2.20)
k=1

which is identical to Def. 2.2.1]

2.3 Extending Shannon entropy to differential en-

tropy

One of the main goals of Shannon’s 1948 paper was to create a theory of communi-
cation that applied equally well to continuous and discrete signals, as well as signals
containing mixtures of continuous and discrete components. This section discusses
attempts at extending Shannon’s theory for discrete random variables to the more
general setting of continuous and mixed variables. For simplicity, in this section a con-
tinuous random variable is an R%valued variable with a probability density function
(pdf).

The most straightforward approach is to apply the intuitions that define Shannon
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entropy in the discrete case. The axioms that uniquely define Shannon entropy for
discrete variables do not generalize easily to include continuous variables. For in-
stance, there is no distribution with constant probability density on R or R?, which
makes the third of Shannon’s axioms, monotonicity, difficult to interpret.

A different approach to the extension is to treat the summation in the definition
of Shannon entropy, Def. , as a Riemann summation. As an example, suppose
X is an R-valued random variable taking values in [0, 1]. Then one might try to define

i— )

N’N] as

the entropy of X by considering the probabilities of partition elements [

N — oo:

X Z—Z&;“%OZP( “|'s

—1 %D 1ogIP>(Xe {2&1%}) (2.21)

The problem is that this sum in not likely to converge, which can be demonstrated by

assuming that X has a probability density function, fx. Then P (X € [}, £]) =

L fx(x;), where z; € [%, %], so that

N
H(X) =~ Jim 3~ ijifxi) log ijifi) (2.22)
= ]\}1_1}202 fX;\[xi) log fx(z;) + Z ijifxi) log N, (2.23)

and assuming the first term has a finite limit, it can be removed from the limit,

yielding
' fx(
H(X) = _/ () log fx(w)do + Jim $7 (2.24)
0 o0
1
2 —/ fx(x)log fx(x) dx—i-]\}im log N (2.25)
0 —00

= o0, (2.26)
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where the integral is interpreted as a Riemann integral. Since this approach yields
H(X) = oo it is not useful as a definition of entropy for continuous random variables.

Another approach, which was taken by Shannon, is to notice that the left hand
term in Eq. looks a lot like a continuous version of Shannon entropy. He more
generally defined entropy for an R-valued random variable (not necessarily taking

values in [0, 1]) with a probability density function, fx as

) == [ fele) log () d (2.27)

Eq. is commonly referred to as differential entropy.

Unfortunately, Equation does not satisfy many of the intuitions of Sec. 2.2
For instance, with this definition, H(X) is not always positive, so that it would
appear that learning the value of a random value could impart a negative amount
of information[] An example is given by the variable that is uniform on the interval
0, a], where a < 1. By Def. the entropy is log(a), which is negative. As another
example, if the heights of the students in Sec. were modeled using a normal
distribution, and the normal distribution had a small enough variance, then we might
lose information by learning the height of a student.

Another difference from Shannon intuition is that one-to-one transformations of
the variables can change their information. For instance, a variable which is uniform
on [0,1] has entropy equal to 0. Multiplying the variable by a € (0,1) produces a
variable with entropy log(a) < 0. It should be noted, however, that as a consequence

of the change of random variables theorem (see Appendix/[I]), given an invertible linear

4Some scientists avoid this problem by focusing on the variable e”(X) which is necessarily positive.
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transformation A, Eq. satisfies

H(AX) = H(X) + log |A], (2.28)

where | - | indicates determinant. Also, Eq. satisfies translation invariance,

H(X +¢) = H(X). (2.29)

But translation seems to be the only operation that is invariant under Eq. , and
for more general transformations it is difficult to find simple formulas like Eq. .

Another problem with interpreting Eq. as an extension of Shannon entropy
to continuous random variables is that given an H that is defined for the subspace
of discrete variables as well as the space of absolutely continuous variables, it should
be apparent how to compute H for variables which have distributions that can be
described as mixtures of discrete and continuous parts. The recursivity axiom de-
scribes how to compute the entropy of variables which are formed from sampling
two variables (Shannon calls this making two choices), so a suitable generalization
of the axiom might determine the entropy of the mixture variable. But, consider a
distribution such as a variable X with cdf

;

0 x <0
Fx(x)=91+Lls zelo,1] (2.30)
1 x>1

\

This variable could be decomposed into two choices in a number of ways. For instance,
first one could choose uniformly from the discrete set{0, 1}, then if the outcome is 1,

sample uniformly from the interval (0, 1). Another way would be to sample uniformly
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from [—1, 1], and if the answer is less than 0, round up to 0. Although it is not clear
what generalization of the recursivity axiom Shannon would have used, it seems that
some interpretations could lead to inconsistent derivations of H(X). This might not
be surprising after learning that Eq. lacks the same interpretation as Shannon
entropy as a measure of information or uncertainty in a random variable, but it is
interesting that it seems that there might not be any known extension of Shannon
Entropy to a functional that gives consistent results on mixed distributions. The
derivation of an entropy functional that works in the space of distributions spanned
by the discrete and continuous subspaces remains a challenging open question.

Yet another issue is that the definition in Eq. only holds for distributions
which are absolutely continuous with respect to Lebesgue measure (See Appendixfor
a definition of absolute continuity and a discussion of the Radon Nikodym theorem).
One drawback to using this domain is that it is not a vector space, a fact that is
easily verified, for instance by considering that the sum of X and —X would be a
discrete variable taking values only at the origin. In fact, the space of absolutely
continuous variables does not seem to be closed under any of the algebraic operations
it inherits from the range space. Although there are some analytic results regarding
the behavior of differential entropy under algebraic operations such as Eq. [2.28 the
lack of closure axioms for the algebraic operations makes it very difficult to do any
type of analysis to elucidate the general behavior of H with respect to algebraic
combinations of variables.

The difficulty in analysis of algebraic combinations of variables is very different

from the discrete case. Shannon entropy is subadditive in the sense that

HX+Y)<HX)+H(Y).
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This subadditivity property is shared by power functions, norms, and concave func-
tions, and is a widely used and powerful property in analysis. For differential entropy
the inequality could point in either direction depending on the choice of X and Y.
There has been some work on establishing bounds on the differential entropy of sums,
but the take-home message is that working with the differential entropy of a sum is
very difficult. For instance, Cover and Zhang [26] obtain results using the assump-
tion that the log of the pdfs of the random variables be concave. Madiman and

Kontoyiannis [76] show that if X and Y are independent then

<2 (2.31)

meaning that the change in H(X) that results from adding Y to X is of the same
magnitude, up to a factor of 2, as the change that results from subtracting Y. Entropy

power inequalities such as Shannon’s

2H X+ 4X0) > Z€2H(Xj) (2.32)
j=1

can be used to provide a lower bound on H(X +Y) when X and Y are independent

HX+Y)<HX+Y), (2.33)

where X and Y are independent multivariate normally distributed variables chosen
such that H(X) = H(X)and H(Y) = H(Y) [31]. Inequality (2.32) relates the squares
of the geometric means as defined in Eq. (2.16). A lower bound for independent

variables which is simpler to state, but perhaps not very strong is

H(X+Y) > H(X). (2.34)
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The point is that even though addition and subtraction are perhaps the simplest
algebraic operations used to produce new variables from old (arguably simpler than
multiplication in this context, since Lebesgue measure is in some sense uniform with
respect to the additive group of the range space), exact analysis is difficult, and even
bounding the entropy from above and below is a subject of current research, and may
require additional assumptions such as independence.

Another challenge lies in interpreting the meaning of Shannon’s continuity axiom
for probability distributions on R?. The version of H as defined in Eq. is
not necessarily continuous. For instance, in a 2016 article in IEEE Transactions on
Information Theory, Polyanskiy and Wu demonstrate that in the topology generated
by Kullback-Leibler distances, differential entropy is not continuous on the space
of absolutely continuous distributions [94]. They show that differential entropy is
continuous with respect to Wasserstein distance, but only if one restricts to a subset
of absolutely continuous distributions defined by a regularity condition. In 2017
in IEEE Communications Letters, Ghourchian et al. demonstrate that differential
entropy can be viewed as continuous with respect to the total variation distance if
one restricts to a different subset of absolutely continuous distributions [42].

Despite these problems and challenges with interpreting Eq. as an extension
of Shannon entropy, Eq. has the mathematical form that is expected of an
entropy, and is widely used as a measure of entropy of continuous variables. However,
because it should not be interpreted as a measure of information or surprise, because
it does not satisfy the Shannon axioms, and because it does not extend to variables
which have both discrete and continuous components, it is important not to use the
same name. A commonly adopted convention is that the term Shannon entropy should
only be used in conjunction with discrete random variables, and the quantity

should be called “differential entropy.” The use of the term differential entropy implies
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that the variable under consideration is absolutely continuous with respect to the
Lebesgue measure on the range space. Often, the notation A is used for differential
entropy to distinguish it from Shannon Entropy. In this thesis the notation H is used
for both types of entropy, but the context (discrete or continuous) will indicate which

entropy is intended.

2.4 Absolute continuity, Kullback-Leibler divergence,
and united framework for Shannon and differ-
ential entropies

This section presents an alternative viewpoint on Shannon entropy and differential
entropy in which the primary focus is the relationship of absolute continuity between
measures and the Kullback-Leibler divergence associated with this relationship. Al-
though there is some folklore suggesting that such a unification might be possible, it
is unclear whether the details have been worked out previously. The unification is
based on a definition of Kullback-Leibler divergence that is different from the classical
definition used in communications theory. The definition in this section focuses on an
absolute continuity relationship and the workhorse behind the proofs of the ensuing
theorems is the Radon-Nikodym theorem (see Appendix .

The first outcome of this approach to differential entropy is a unified approach
to Shannon and differential entropy that rescues differential entropy from some of
the problems associated with picturing it as extending Shannon entropy as described
in Sec. 2.3} Despite the problems and challenges presented in Sec. [2.3] differential
entropy has many positive characteristics and uses. For example, Shannon Entropy

and differential entropy share the properties in Table which are not marked by a
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“¢’ " More importantly, though, differential entropy plays a key role in a number of

important mathematical theorems, such as the maximum entropy characterization of
the normal distribution. In addition, differential entropy plays an important role in
physics, for instance by generalizing the classical Heisenberg uncertainty principle [8,
12]. It is shown in this section that these positive results about differential entropy
follow as a natural outgrowth of the framework of absolute continuity and the Radon-
Nikodym theorem. The classical statements and proofs of these theorems can be
found in [25], where they are proved separately for discrete and continuous random
variables.

The second outcome of this section is the generalization of Shannon and differential
entropy. Section presents this generalization and discusses some applications to
topological groups with a Haar measure and to measures supported on a strange

attractor.

2.4.1 Shannon Entropy and differential entropy as Kullback-

Leibler divergence

The properties that Shannon Entropy shares with differential entropy follow from a
unifying description as Kullback-Leibler (KL) divergence. The KL divergence quanti-
fies the dissimilarity between two measures which are related via absolute continuity.
It is based on the Radon-Nikodym theorem, which, given two measures v < u, guar-

antees the existence of a Radon-Nikodym derivative, Z—Z (see Appendix [1| for details).

Definition 2.4.1 (Kullback-Leibler divergence / relative entropy). Let v and p be
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o-finite measuresﬂ on a measurable space (¥, .4) such that
<L . (2.35)

Then the Kullback-Leibler divergence of y with respect to v is

d
D (u||v) = / tog L, (2.36)
o 1%

where ‘;—‘: is the Radon-Nikodym derivative of p with respect to v.

The quantity D (u || v) is also called the relative entropy of p with respect to v.

Note that asymmetry in the definition of D (u|| ) reflects the asymmetry in the
relationship p < v that it quantifies.

The reason for naming the measure space ¥ in Def. instead of €2 is that the
o-finite measures v and p in the definition for KL divergence are often taken to be
the push-forward measures (probability distributions) of P under different choices of
random variables where (£2,P) is a probability space that models the system being

studied, as described in Appendix |1l Therefore, the notation

D(X||v), (2.37)
or

D(X||Y), (2.38)

will be used to indicate D (ux || ) or D (ux || py), appropriately, where px and puy

are the probability distributions induced by X and Y.

°The o-finite condition (see Radon-Nikodym theorem in Appendix [1)) is satisfied automatically
by probability measures.
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If it is understood that there is a measure that dominates all other measures, then
the Radon-Nikodym derivatives with respect to this measure will often be used in

place of v or pu, yielding notation such as

D(fx||fy)- (2.39)

The following Lemma shows that testing whether X < Y is relatively easy.

Lemma 2.4.1. Let X and Y be V-valued random variables with probability distribu-

tions px and py, that are both dominated by a measure £. In other words,

px < & and py < €. (2.40)

Then the following two conditions are equivalent:
L opx < py

2. supp px C supp py-.

Proof. The proof is left as an exercise. O

The generality of Def. permits a unified treatment of Shannon and differential
entropy. It can be shown that both Shannon entropy and differential entropy are

examples of KL divergences, up to a sign change.

Example 2.4.1 (Shannon entropy is a KL divergence). Assume that X is a random
variable taking values in a measure space, (X, Z(X), £) where X is finite or countably
infinite, and ¢ is counting measure (that is £(A) = |A]). Since & is at most countably
infinite, p is o-finite.

Let v be the probability distribution of X on X. Note that £(A) = 0 if and only

if A = g, so that every measure on X, including v, is absolutely continuous. By the
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Radon-Nikodym theorem, there is a functlon : X = R such that for all g : X — R,

[ s@vta) = [ ot >j§< )de (). (2.41)

Since £ is counting measure, the integral is a discrete sum,

/X =) g(x (2.42)

reX

so that ‘;—Z is recognized as a probability mass function,

p(x) = d—g(x) (2.43)

Using the probability mass function, p(x), Def. can be simplified:

-Dv|¢) = /logj—é_du (2.44)
=— Zp ) log p(z (2.45)
= H(X), (2.46)

where H(X) is the Shannon entropy of X.

Example 2.4.2 (Differential entropy is a KL divergence). Assume that X as an R¢-
valued random variable. Let A denote Lebesgue measure on R? and let v denote the

probability distribution of X on RY. If

v A (2.47)
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then there is a probability density function of X, f : R? — R, defined by
(2.48)

meaning that for any v-measurable g : R — R,

/R gl du(a) = / o) () da (2.49)

(X is o-finite because a countable collection of unit cubes would cover R?.) Therefore,

substitution into Def. yields

(vl /f )log f(x (2.50)
=H(X

= (2.51)

The unification of Shannon entropy and differential entropy by Kullback Leibler
divergence makes it clear why many of the properties listed in Table are shared
by Shannon entropy and differential entropy. For instance, the chain rule can be seen
as a consequence for the chain rule for relative entropy. Since the chain rule implies
the additivity property, both of these properties can be seen as following from the
chain rule for relative entropy.

In order to state the chain rule a conditional entropy suitable for differential
entropy must be defined. Note that in Def.[2.2.3] H(X|Y) is defined to be the expected

value over p;;. This motivates the definition of conditional differential entropy.

Definition 2.4.2 (Conditional differential entropy). Let (X,Y’) have a distribution,

v, which is absolutely continuous with respect to Lebesgue measure on R?. Then the
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conditional entropy of Y given X is defined by

HY|X) = | HEIX =) dvz), (2.52)

where the expectation is with respect to the distribution of the variable X.

Theorem 2.4.2 (Chain rule for KL divergence). Let X and Y be random variables

taking values in a o-finite measure space (V,&) such that

pxy < & XE, (2.53)

where pxy s the distribution of (X,Y). Then

D (pxy 1€ % €) = D (px |1€) + Epy [D (Pyix=: 1)), (2.54)

where puxy and px are the distributions of (X,Y') and X, respectively.

Proof. The absolute continuity of (X,Y") with respect to p implies that X, and the
variables P(Y'|X = x), are absolutely continuous with respect to 4 (See Appendix [1).
Let fxy, fx, and fy|x—, be the Radon-Nikodym derivatives of these variables with

respect to u. Also, define py and py to be the probability distributions of X and Y
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d
(so, for example, fx = —:X) Then
m

D (pxy |[€ x €) z/logd’;%dux,y (2.55)
=log fx,y(z,y) duxy(7,y) (2.56)
— [ [ e (o) lost (0 i) (o)) (2.57)
= [[ et og fla) dea)dely) (2.58)

+ / Frix—e (9) fx (2) 10g fypx—a(y) d€(2)dE (y) (2.59)
_ / log /() / Fev () dé(y) dé(2) (2.60)
n / fx(@) / Frix—s(y) 108 fyix—o(y) d(y) de(x)  (2.61)

=D (:uX || g) + EMX [D (MY\X=96 || g)]’ (2'62)

where Eq. (2.61) holds by Fubini’s Theorem. O

The chain rule for KL divergence immediately yields the corresponding chain rules
for Shannon and differential entropy by letting £ be counting measure or Lebesgue

measure.

Corollary 2.4.2.1 (Chain rule for Shannon and differential entropy). Let (X,Y)
either be a discrete joint variable or let (X,Y") be absolutely continuous with respect

to Lebesque measure on R2. Then
HX,)Y)=H(X)+ H(Y|X). (2.63)

Note that if X and Y are independent then H(Y|X) = H(Y'), which gives the
additivity property for both Shannon and differential entropy as an additional corol-

lary.
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The proof that conditioning reduces entropy is also due to the fact that Shannon
and differential entropies are Kullback-Leibler divergences, but the proof is best left

until after the introduction of mutual information in Sec. 2.5l

2.4.2 Applications of differential entropy

As outlined in Sec. 2.3 there are dangers to interpreting differential entropy as a
direct extension of Shannon Entropy. On the other hand, differential entropy is used
to state some important and beautiful results in mathematics and physics. These
results seem to be a result of differential entropy’s status as a KL-divergence. A
common theme to these results is that in each case differential entropy is used to
compare probability distributions. The following theorem is used to demonstrate
each of these results. Separate proofs for the discrete and continuous cases can be
found in the textbook of Cover and Thomas [25]. The continuous version is based on
two dominating relationships, p < € and v < £. By focusing on the chain p < v < £
the following proof unites the discrete and continuous case and avoids having to deal

with special cases involving division by 0.

Theorem 2.4.3 (Nonnegativity of KL divergence). Suppose that v is a probability

measure, (1 and & are o-finite measures, and

< <LE. (2.64)

Then

D(ullv) >0 (2.65)

with equality if and only if p = v.
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Proof. By the chain rule for the Radon-Nikodym derivative,

dy _ dpdv
dE ~ dvde

On the support of v > 0 &-almost everywhere, so that

’dé‘

d_/L d,u dv
dv 5 f

36

(2.66)

(2.67)

By Lemma [2.4.1 supp p C supp v, so that Eq. (2.67) holds on supp p. Using this

fact,

I
—
3
=
/\\

B
\\/

SE
\_/

S

=

g e

(2.68)
(2.69)
(2.70)

(2.71)

Note that x — —log(x) is a convex function. Also note that the expected value of

the argument of — log is finite:

o (/) = L, e ) i
df supp u df d€ 5

o

= v(supp p)

<1

I

(2.72)
(2.73)

(2.74)

(2.75)
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because v is a probability measure. Therefore Jensen’s inequality implies that

dv Jdu\ d
Dullv) > —1og | (d—f d’g) ey (2.76)
supp p
— log v(supp w) (2.77)
> 0. (2.78)

If v = u then Z—‘Ij =1, and D (n||v) = [log(1) dp = 0. Conversely, since —log is
strictly convex, an equality in Eq. would imply that there exists a constant ¢
such that d” = c‘é’g a.e., which, together with the fact that v and p are probability
dlstributlons, implies that v = p. O

This theorem leads to maximum entropy characterizations of many important

probability distributions.

Definition 2.4.3 (Density function of multivariate normal distribution). An R%-
valued variable is said to be multivariate normal if there exists a positive definite

d x d matrix ¥ and a vector y such that the pdf of the variable is

- ~1/2
f(z) = (det(2nX) exp ((z — p) 'Sz — p))) 2 (2.79)
The notation X ~ N (u, X) means that X has this density function and X is said to

be normally distributed with mean p and covariance matrix .

The following derivation of the entropy of a multivariate normally distributed
variable is similar to the derivation found in the textbook by Cover and Thomas [25]

but avoids reliance on manipulation of indices.

Lemma 2.4.4 (Entropy of multivariate normally distributed variable). If X is an
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Re-valued variable such that X ~ N(u,Y), then its differential entropy is
1
H(X)= 5 log(det(2meY)),
Proof.

() = B o ((der(2) exp (06— )£ 0x = ) ™)

(log(det(27X)) + E [(X — p)"S71(X — p)]) .

N | —
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(2.80)

(2.81)

(2.82)

If it can be shown that E [(X — p)"S71(X — )] = d then the proof is complete

because d = log(e?), which can be absorbed into the other logarithm in (2.82)).

But (X — p)TY7Y(X — u) is an Rl-valued variable (it is the composition of X

with a quadratic form), and its expectation may not be immediately apparent. This

situation is remedied by converting the expectation into a trace of the expected value

of an R%valued variable that is easier to compute.

(2.83)
(2.84)
(2.85)
(2.86)
(2.87)
(2.88)

(2.89)

Steps (2.84)), (2.86)), and (2.87]) follow from the linearity of trace and the expectation
operator, and step (2.85) is because trace acts on the product of two matrices in a
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commutative fashion. O

The following is a characterization of the multivariate normal distribution. The
proof is similar to the proof in the textbook by Cover and Thomas [25], but makes

use of the generalized form of the Kullback-Leibler divergence as stated in this thesis.

Theorem 2.4.5 (Maximum entropy characterization of multivariate normal distri-
bution). The density function of the multivariate normal distribution is the unique
density that mazimizes differential entropy among all densities with a specified mean,
1, and variance, . In other words, if X andY are absolutely continuous with respect
to Lebesgue measure, and X ~ N'(u, %), where E[Y] = p and E[(Y —p)(Y —p)*] = %,

then

H(Y) < H(X) (2.90)

with equality if an only if Y ~ N (p, 2).

Proof. If Y and X have the same distribution then H(Y) = H(X). The remainder of
the proof considers the case when Y and X do not have the same distribution. The
aim is to prove that H(Y) < H(X).

The goal is to apply Theorem on the nonnegativity of KL divergence. Let m
be the distribution of Y, v be the distribution of X, and A be Lebesgue measure. It
is given that 7 < X\ and v < \. Since suppX = R, it follows that suppY C suppX

so that

TV (2.91)

Furthermore, v is a probability measure, so that the conditions of Theorem [2.4.3| are

fulfilled. Let g be the density of Y and f be the density of X. Then, noting that
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KL-divergence is 0 only when the distributions are the same,

0<D(xl|lv) (2.92)

d
= /Rd log d—z dr. (2.93)

By the chain rule for Radon-Nikodym and because Z—K > 0 on R,

dm

s (2.94)
Therefore,
9
0< /}Rdglog 7 dx (2.95)
0=-H(Y) - / glog f dx (2.96)
Rd
HY) < —/ glog f dx. (2.97)
Rd

So if — [puglog fdx = H(X) = — [p flog fdx then H(Y) < H(X). It seems that
the proof is almost certain to fail, because g could be different from f. On the other
hand, the entropy of the normal distribution is a function of ¥. It might be possible
that — [ glog f dz also only depends on the covariance of Y, which is constrained by

assumption to be Y. It is with this hope that we continue:

— /glogfda: = — E,[log f] (2.98)

(log(det(27%)) + Ex [(X — )" (X — p)]). (2.99)

N | —

This equation is recognizable as Eq.(2.82)), except that the expectation is with respect

to Y. But by Eqgs. [2.8342.86, we see that this term is a function of the covariance
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matrix, so that it is the same for X and Y. Therefore, — [ glog f dx = H(X), which

proves
H(Y) < H(X). (2.100)

]

Theorem [2.4.3| can be used to characterize a number of important distributions as
the unique distributions that maximize differential entropy for a set of constraints and
a specific domain. Some examples are the uniform and the exponential distribution.
The proofs of the maximum entropy characterizations are omitted, as they are similar
to the proof of Theorem [2.4.5] and can be found in the textbook by Cover and
Thomas [25].

Definition 2.4.4 (Uniform distribution). Let [a, b] be an interval in R, and let A|f
be Lebesgue measure restricted to [a,b]. A [a,b]-valued variable X is said to be

uniformly distributed, written X ~ U(a, b) if its probability distribution is

— Al 2.101
v =3 Ay (2.101)

which is easily seen to satisfy v < Ao and have density

fx(x) = : (2.102)

Alternatively, one could consider such a variable to be R-valued, absolutely continuous
with respect to A, with density X, /(b — a).

More generally, let W be a topological space with a Regular measure, u, and let
A C ¥ have positive measure, p(A) > 0. Then uls < p and pla/p(A) could be

called a uniform distribution relative to u. However, it seems to make more sense to
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call a distribution uniform when the topology and the measure does not differ from
place to place. This is certainly true when W is a locally compact topological group

and p is a Haar measure, which generalizes R? with Lebesgue measure.

Theorem 2.4.6 (Characterization of uniform distribution as maximum entropy dis-

tribution). Suppose X ~ U(a,b). Then

H(X) = log(b— a). (2.103)

If'Y is any other [a, b]-valued variable which is absolutely continuous with respect to

Lebesgue measure, then

H(Y) < H(X), (2.104)

with equality if and only if Y ~ U(a,b).

Definition 2.4.5 (Exponential distribution). A (0, co)-valued variable, X, is said to
have an exponential distribution with rate parameter A > 0, denoted X ~ Exzp(\) if

it is absolutely continuous with respect to Lebesgue measure and has pdf

fx(x) = xe™. (2.105)

Theorem 2.4.7 (Maximum entropy characterization of exponential distribution).

Suppose X ~ Exp(\). Then E[X] =1/\ and

H(X) =1 log()\). (2.106)

If Y is any other (0, 0c0)-valued random variable which is absolutely continuous with



CHAPTER 2. NETWORKS OF CAUSAL RELATIONSHIPS 43

respect to Lebesque measure and E[Y] = 1/\, then

H(Y) < H(X), (2.107)

with equality if and only if Y ~ Exp(\).

It is important to note that the normal, uniform, and exponential distributions
are defined here by explicitly stating their distributions. It is only then that the
actual characterization can be stated, which are then proved by ansatz. This is not
good mathematical practice. In general, the characterization should be stated first
followed by the derivation of the functional form. In this case deriving the density of
the multivariate normal reduces to an optimization, with constraints, over the space
of absolutely continuous distributions. It can be checked that the space of absolutely
continuous distributions is convexﬁ, which gives some hope that such a derivation is
possible. Unfortunately such a derivation is outside of the scope of this thesis.

Recently KL divergence has found a number of uses related to dynamical systems.
As an example, KL divergence describes the ability of models to make predictions [65].
For instance, by varying the initial conditions, climatological models produce distri-
butions of predictions for a given time ¢ in the future. KL divergence can be used
to compare this distribution to other distributions, such as the background historical
distribution. A high divergence means that the model is useful because it conveys in-
formation beyond what would be known from background conditions. Under certain

assumptions, over time the utility decreases to 0.

6Assume p < A, v < A, and A(A) = 0. Then for a € (0,1), (ap+ (1 — a)v)(A) = apu(A) + (1 —
a)v(4) =0
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2.4.3 Generalization

The definition of differential entropy in terms of Kullback-Leibler divergence provides
a unified definition for discrete variables and variables defined on R? absolutely con-
tinuous with respect to Lebesgue measure. It is actually much more general than

that.
Definition 2.4.6 (Differential entropy (general)). Let v be a probability measure on
a o-finite measure space (¥, ¢) such that

v < £ (2.108)
Then the differential entropy of v with respect to £ is

He(v) = ~D (v]|€). (2.100)

The use of the word differential is justified even in this abstract setting. The
Kullback-Leibler divergence is the expectation of the log of a Radon-Nikodym deriva-
tive. Even though there are examples where the underlying spaces or measures do not
appear to be very continuous, the absolute continuity relationship with another mea-
sure permits the definition of the Radon-Nikodym derivative, which allows differential

entropy to be computed.

Example 2.4.3 (Differential entropy on an attractor). Consider a dynamical system,

i = f(x), (2.110)

in RY. Assume that this dynamical system has an attractor, &/ with an invariant

ergodic measure v. As examples, &/ could be a limit cycle, or a strange attractor.



CHAPTER 2. NETWORKS OF CAUSAL RELATIONSHIPS 45

In these examples, ¥ may not be absolutely continuous with respect to Lebesgue
measure, and therefore not have a differential entropy in the traditional sense. But,
it is possible to have another measure, £, supported on .« such that v < £. In the
latter case v would have a differential entropy with respect to £ defined by —D (v || €)
so that many of the tools of information theory could be used.

It might be possible to construct such a dominating measure, £, in a natural way
from the dynamical system, Eq. . Imagine replacing the right hand side by
a unit speed velocity, f(z)/||f(z)||, so that trajectories follow the same attractor,
but at a constant speed. This is analogous to an adaptive numerical solver that,
under ideal circumstances, would speed up or slow down in exactly the right manner
to ensure that the simulated points end up equidistant along trajectories. Such a
measure might be thought of as a “uniform” measure on the attractor, and, assuming
v < &, the quanity H¢(v) would describe how much dissimilarity from ¢ is introduced
by allowing the evolution to occur at the natural speed defined by the dynamical

system.

Example 2.4.4 (Haar measure). A locally compact group, G, admits a Haar mea-
sure, p, which is uniform under translations by the group operation. An example of
a Haar measure is Lebesgue measure on (R? +). But one could also define a Haar
measure, /u([a,b]) = log(b/a), on the set (0,00) with the operation multiplication.
Another example is the space of invertible d x d matrices with the matrix product, or
the space of unitary matrices, U(n), again with the matrix product. See, for instance,
the discussion section of Madiman and Kontoyiannis (2010) [76].

There are many times when G-valued random variables are useful. For instance, if
one wants to “randomly select” a unitary matrix, then they might be thinking about
a (U(n), -)-valued random variable whose probability distribution is normalized Haar

measure.
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There may be another U(n)-valued variable, X, that does not have the same
distribution. For instance, the distribution of X might be highly concentrated in
a neighborhood of the identity. If X is absolutely continuous with respect to Haar
measure, §, then the generalized version of Differential Entropy, H¢(X), describes

how different the two distributions are.

These examples suggest an interpretation of the generalized differential entropy
as a quantification of the asymmetry of a measure with respect to the symmetries of
another measure. This interpretation extends nicely to Shannon Entropy, in which
case the underlying measure is counting measure, which is symmetric with respect to
the group of permutations. The uniform measure has the same group of symmetries,
so that it seems correct under this interpretation that the Shannon entropy of the
uniform measure is 0.

Under this interpretation, maximum entropy distributions (See Theorems [2.4.5]

[2.4.6, and [2.4.7]) might be described as the distributions that are the closest to having

the symmetries of the underlying measure given a set of constraints. The symmetries
do not necessarily form a group. For instance, the Lebesgue measure on (0, 00) has a
semigroup of symmetries consisting of right translations. The exponential distribution
with a fixed mean has the same semi-group of symmetries (up to a normalization to

match the constraint [ vy = 1) described by the “memorylessness” property:

PX>z)=PX>z+y| X >y). (2.111)

It would be interesting to see if the characterization of differential entropy as a quan-
tification of asymmetry can be directly related to properties of groups, semigroups,
and other forms of symmetry.

Absolute continuity establishes a preorder on the space of measures on a measur-
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able space in which counting measure is a maximal element, and the zero measure
is a minimal element. KL divergence and entropy in effect quantify the qualitative
relationship of absolute continuity. It would be interesting to see more generally how

KL divergence and entropy behave with respect to the preordering. For instance, if

<y <E (2.112)

are o-finite, then what is the relationship between H,(u), He(v), and He(p)?

The framework of absolute continuity and Kullback-Leibler divergence does not
solve all of the problems described in Sec. that arise when one tries to extend
Shannon entropy to spaces of continuous and mixed variables. It does offer a new

perspective that might be used to view some of these problems in a new light.

2.5 Mutual information

Although KL divergence can be used to quantify how different two distributions are,
it does not say anything about the dependence of the random variables that created
them. For instance, if X; ~ N(0,1), 7 = 1,...,3, then D (X; || X2) = D (X1 || X3),
even though it might be that X; 1L X, whereas X3 = X;. Nothing can be learned
about dependence by applying KL divergence directly to the random variables.

KL divergence can be used to define a score for dependence between random
variables. The key is that the dependence between the X; above shows up in their
joint distributions. Let p;, 7 = 1,...,3 be the distributions of X;, and y; ; the joint
distribution of (X;, X;). Then because X; 1L Xy, p112 = 1 X p2, but 3 would
be concentrated along the diagonal X; = X3. Thus, a good measure of dependence

might measure how far the joint distribution of two variables are from the product
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distribution of two variables with the same measure. One such measure is defined by
mutual information. It will be demonstrated in Theorem that X; and Xy are
independent when their mutual information is 0. Unfortunately, the mutual informa-
tion of X; and X3 cannot be defined in this manner, indicating possible limitations of
mutual information. See the textbook of Cover and Thomas for a more classical treat-
ment of mutual information [25]. The statements in this thesis are measure-theoretic

in nature and aimed at highlighting the important role of absolute continuity.

Definition 2.5.1 (Mutual information). Let X be a W;-valued random variable with
distribution px, let Y be a Wo-valued random variable with distribution py, let pxy
be the distribution of (X,Y") on ¥y x Wy, and let pux X puy be the product measure

on ¥y x Wy, If pxy < px X py then the mutual information between X and Y is

defined by

I(X5Y) =D (px,y || x X py ). (2.113)

The following proposition shows that if the joint distribution is absolutely con-
tinuous with respect to a o-finite measure on the product space then the mutual

information exists.

Proposition 2.5.1. Let (U, F1,&) and (W, Fa, &) be o-finite measure spaces. Sup-
pose X is a Wi-valued random variable with distribution px, Y 1s a Vy-valued random

variable with distribution wy, and pxy is the distribution of (X,Y) on Wy x Wy, If

pxy < &1 X &, (2.114)

where & X & is the product measure of & and & on Wy x Wy, then the following

statements hold.
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1. px < &,
2. py < &,
3. pxy < pix X fly,
4. px X py <K & X &,
The third statement implies that 1(X;Y") is well-defined.

Proof. 1. Let A C Wy be such that {(A) = 0. Then & x & (A x ¥y) = 0, so that by

the assumption of absolute continuity of the joint distribution, pxy (A X ¥s) =

0. But pux(A) = puxy(A x Uy), so that ux < & is proven.
2. Same reasoning as 1.

3. This statement follows from statement 4 and Lemma because supp(ux,y) C

supp(px X fy).

4. Tt seems logical that the product measure of two absolutely continuous distri-
butions would be absolutely continuous. To check this, let & x &(A) = 0, and,
following the notation in Halmos’ textbook on measure theory [51], for each

y € ¥y define the section

AV ={z eV, : (z,y) € A} (2.115)

Then, by Appendix [1]

& x &(A) = §1(AY) déa(y) = 0, (2.116)

Wy



CHAPTER 2. NETWORKS OF CAUSAL RELATIONSHIPS 50

so that & (AY) = 0 &-as. Since puy < &, this implies px(AY) = 0 &-aus.

Therefore,

i X piy (A) = / e (AY) dpay () (2.117)
_ / 2 uX<Ay>Cg‘T’2’ dés(y), (2.118)

which is 0 because the integrand is 0 almost surely with respect to the integrat-

ing measure.

]

An important property of mutual information, as suggested by the motivation,
is that the mutual information is 0 exactly when the variables are independent, and

positive otherwise.

Theorem 2.5.2. Let X and Y be random variables on o-finite measure spaces such

that (X,Y) is absolutely continuous on the product measure space. Then

I[(X;Y) >0, (2.119)

and

XY < I(X;Y)=0. (2.120)

Proof. If jux, pt, and px y are the distributions of X, Y, and (X,Y’), where X and Y

are (Uy,&) and (Wq, &)-valued variables respectively, then by Prop [2.5.1

HXY L px X py <K 51 X 52. (2121)
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Therefore, by Theorem

D (pxy || px x py) 20, (2.122)

with equality if and only if uxy = pux X py, which occurs if and only if X 1l Y (see
App. . n

It is called mutual information because it can be envisioned as the amount of
entropy that is shared by the variables. In particular, the venn diagram in Fig[2.1{(a)
provides a “geometric” analogy for the relationship of mutual information and en-
tropy. If the entropy of X is represented by the left circle, and the entropy of Y
is represented by the right circle, then the mutual information of X and Y is the
overlap. These types of visualizations should only be taken as analogies, however,
because these entropies can take negative values, for instance, when the reference
space is (R, \), and A is Lebesgue measure. The diagrams can be qualitatively use-
ful, however. For instance, Fig [2.1[a) is suggestive of the following decomposition

theorem.

Theorem 2.5.3 (Decomposition of mutual information). Let X and Y be random
variables on o-finite measure spaces such that (X,Y") is absolutely continuous on the
product measure space. As shown in Prop. X and'Y are absolutely continuous
with respect to the marginal measure spaces, and so H(X) and H(Y') are well-defined.

Then

I[(X;Y)=H(X)+ H(Y) - H(X;Y). (2.123)

Proof. Assume X takes values on (U, F1, &) and Y takes values on (Usy, Fa,&s). Let
Ux, fy, pxy be the distributions of X, Y, and (X,Y). Prop. shows that
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px K &1, py K &, and px X py < & x &,

1) // ufiyy dpxy (2.124)
_ duxy d(ux X py)
- // o (d& < d&/ de % ds ) dpixy (2.125)
X X py)
// ( déy x d&, > dpxy + D (pxy [[€) . (2.126)

The second term is —H (X,Y). The argument of the logarithm in the first term can

be written

d(px X py) _ dpx dpy (2.127)
dfl X dgg dfl dfg

See Appendix [I] for a discussion of this fact. Therefore, by applying Fubini’s theorem,

the first term can be simplified,

= [ e (et iy = [ [ vow (B2 @) ) dr (o

(2.128)

_ / log (%(w)) / %(%y) 4> (y)dé, ()

(2.129)

. / log (‘%”@)) / %@,m 46 (2)d(y)

(2.130)

- [ @) @ ia@

- f1os (%)) %) ) (2132)

—H(X)+ H(Y). (2.133)
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(a) (b)
H(X) ___ H(Y)[HX) g (Y)

Figure 2.1: Entropy and mutual information as visualized by Venn diagrams. The
Venn diagram for entropies should be interpreted with the caution that certain “areas”
could be negative.

]

If the variables are discrete, then the mutual information of a variable with itself

is simply its Shannon information.

Theorem 2.5.4. If X s a discrete random variable then

I(X:X) = H(X). (2.134)

Proof. Note that the hypothesis of Prop is trivially satisfied because if ¢ is
counting measure on ¥ (where X is a W-valued random variable), then £ X is counting
measure on ¥ x ¥, and all measures, including i x x, are absolutely continuous with
respect to counting measure. Therefore I(X; X)) is well defined.

Let px and px x be the Radon-Nikodym derivatives (i.e. the probability mass

functions) for X and (X, X) respectively. The theorem follows easily from plugging
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in the formula

px,x(%l/) =
0 T #y

to find that H (X, X) = H(X), so that by the decomposition theorem

I(X;X) = H(X)+ H(X) — H(X, X)

— H(X).

54

(2.135)

(2.136)

(2.137)

]

Theorem does not necessarily hold when the o-finite measures is not counting

measure on a discrete set. For instance, I(X; X) is not even defined when I and H

are interpreted as KL-divergences with respect to Lebesgue measure.

Theorem 2.5.5 (Chain rule for mutual information).

I(X;Y)=H(X) - HX|Y).

Theorem 2.5.6 (Conditioning reduces entropy).

H(X|Y) < H(X)

Proof. By the chain rule,

H(X)— H(X|Y) = I(X;Y)

> 0.

(2.138)

(2.139)

(2.140)

(2.141)
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Therefore H(X|Y) < H(X). O

Conditional mutual information describes the dependence between X and Y that
is not already accounted for by a third variable, Z. In Figure [2.1(b), this quantity is

depicted as the purple region in the overlap of H(X) and H(Y), but outside of H(Z).

Definition 2.5.2 (Conditional mutual information). Let X, Y, and Z be random
variables taking values in o-finite measure spaces Wy, Uy, and V. Assume that for
each z € Wy it holds that the conditional distributions pxy|z—. = P((X,Y)|Z = 2),

px|z=- = P(X|Z = z), and py|z—. = P(Y|Z = z) satisfy the relationship

Pxy|z=2 K Px|z=2 X Hy|z=z- (2.142)

Then the conditional mutual information of X and Y given 7 is defined by

I(X,Y|Z) = /D (M(X,Y)\Z:z || pex|z=- X uy|zzz) duz(2), (2.143)

2.6 Transfer Entropy

Mutual information quantifies the information shared by two variables, possible con-
ditioned on the presence of a third variable. If the mutual information is positive,
then it can be inferred that the variables are related in some manner, but there is no
inherent direction to this relationship, since mutual information is symmetric in its
arguments.

If the variables under study are stochastic processes, then time can be used to
define the direction of the relationship. Let X and Y be stochastic processes that
will be sampled in time, so that the samples can be written (X, Xs,...,X,), and

(Y1,Ys,...,Y,), where (X, Y;) is measured before (X1, Y;11). Given the observation
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that the cause should precede the effect (see Sec. , a relationship of the form
X — Y would be indicated if in general, X; and Y;,; shared information.

It is important, though, that the shared information was not already available
to process Y. For instance, if the evolution of X is defined by an update rule that
depends on Y, but the update rule for Y does not depend on X, then I(Xy; Y1)
might be positive even though knowledge of the state of X; does not help predict
Y;. In order to exclude information already present in Y, it is necessary to condition
on the previous state, or states, of Y. This conditional mutual information is called

Transfer Entropy [108§].

Definition 2.6.1 (Transfer Entropy). Let X and Y be stochastic processes, and let
samples of these processes, indexed by time, be written {X;}};, and {Y;}}_;. Then

the Transfer Entropy from X to Y is defined by

Tx_y = I(Yig1; X¢|Yi-), (2.144)

where ¢~ is meant to indicate that any set of variables of the form (Y, Y;_1,...,Y; &)
could be used as the conditioning set, allowing the flexibility to more aggressively

remove any information Y;,; might share with its past.

Furthermore, X; could be replaced by X;- since the sharing of information could
be delayed. Eq. is called Transfer Entropy because it is intended to quantify the
amount of entropy that is transfered from X to Y because of dependencies created by
the evolution of the dynamical process (X;, Y;). It is also referred to as an information
flow. A positive Tx_,y indicates that the process Y does not just depend on Y, but
also on X.

Transfer Entropy has been used extensively in scientific applications. For in-

stance, transfer entropy analysis is used in the study of collective animal motion
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to infer leader-follower relationships among flying bats from video data [87], and to
understand communications between spatially nearby soldier crabs |126]. Transfer
Entropy is also used in neuroscience to discover connectivity between different parts
of the brain [133]. Other researchers have investigated information transfer between
variables descriptive of solar activity to explain the number of sun spots that are
present on the surface of the sun at a given time [139]. Refs. [18] and [17] contain
a nice exposition on the use of Transfer Entropy to describe the sharing of bits by

symbolized versions of dynamical systems during a transition to a synchronized state.

2.7 Causation Entropy

In a networked dynamical systems environment there will generally be more than two
variables, which presents problems with interpreting Transfer Entropy as an edge, or
a causal relationship. Figure depicts two scenarios in which the transfer entropy
between X and Y might be positive even though the two nodes are not directly
coupled. In Fig. [2.2(a), X only interacts with Y through a set of intermediaries, and
in Fig. 2.2(b), a third variable @ drives both X and Y, perhaps with a delay in the
driving of Y. Both of these examples set up a statistical relationship between X; and
Y., for some 7 > 0 that cannot be accounted for by conditioning on the past of Y.

The use of Transfer Entropy, therefore, cannot distinguish between direct and
indirect edges. It has recently been shown that more generally, any pairwise method,
no matter how high its fidelity, will tend to overestimate the number of links in an
interaction network, typically resulting in a significant number of false positives that
cannot be resolved even with unlimited data [121] 124].

In order to account for these indirect effects, in 2014 Sun and Bollt [121] introduced

Causation Entropy (CSE) (20, |64} 73], 121} {123 |124].
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Figure 2.2: Two ways that I(X®,Y#7)|Y®) could be positive without an edge
between X and Y. (a) The variables Z; (or even a subgraph of {Z;}I" ) serve as an
intermediary between X and Y. (b) The states of X and Y are strongly influenced
by a third source, (). The “...” indicate that there might be other nodes on the path
from () to Y to induce the time lag 7.

Definition 2.7.1 (Causation Entropy). Let V = {X7 : j = 1,...,m} be a set of
stochastic processes. If Z = {X% ... X%} is an arbitrary subset of the processes in

V then the Causation Entropy from X' to X7 conditioned on Z is
Cxixijz = I(X5 XX, X0) (2.145)

A positive CSE indicates that X7 depends on X* in a way that cannot be accounted
for by the processes in Z. Letting Z = X7 in Def. recovers Transfer Entropy

(Def. [2.6.1)) as a special case.

Example 2.7.1. The following example is one of many examples used in the 2014
article by Sun and Bollt to illustrate the differences between Transfer Entropy and

CSE. The example concerns a small network of the form
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The network is defined by the evolution equations

Xt = f(X)) (2.146)
€

Xt = FOX) + 59(X0, X7) (2.147)
€

X = (X)) + 59(X7, X7), (2.148)

where f(z) = ax(1 — ) is a logistic map, g(x,y) = f(x) — f(y) is a coupling term,
and € € [0,1] is a coupling strength. By simulating this system for many time
steps the authors are able to estimate the probability density functions associated
with each variable and calculate T'x1_,xs, and Cx1_,x3s{x2 x3}3. They find that for
any coupling strength, T'x1_,xs > 0. This makes sense because information is being
transferred from X to X3 indirectly through X5. On the other hand, Cx1_, x3{x2 x3)
is numerically 0 for all coupling strengths, indicating that all of the information flow

from X, to X3 occurred indirectly through the node X?2.

Given a set of nodes, V = {X', ..., X™} there is a corresponding set of edges

consisting of direct information flows as determined by CSE. In particular,

OXZ'_>X]'|V\{X'L} >0 (2149)

indicates that X7 depends on X' in a way that cannot be accounted for by any of
the other variables, including the past state of X7. This relationship can be taken as
definitive of an edge representing a causal relationship in the CSE sense. It is causal in
the sense that it indicates a relationship between two variables that is directed in time
and cannot be accounted for by other variables in V. Furthermore, the information
in X* can be used to improve predictions of X7. There is, of course, the possibility

that non-measured variables outside of V are influencing X* and X7 much like the
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variables Z; and () in Fig. If X* — X7 is an edge in the CSE sense then X* will
be called a parent of X7 and X7 will be called a child of X*.

It should be noted that there is a TE graph consisting of information flows as
determined by TE. As example illustrates, a graph generated in this manner
will include the CSE graph as a subgraph, but will also include additional edges which
do not correspond to direct interactions between components. TE graphs tend to be
much more dense than their corresponding CSE graphsﬂ. See Refs. [121] [124] for

further discussion.

2.8 The optimal Causation Entropy algorithm

Given a set of nodes, V = {X' ..., X™}, one approach to determining the CSE
network of causal edges is to iterate over each pair, (X, X7), and determine whether
Cxisxip\qxiy > 0. This approach would not be practical for even small sizes of
V), partly because there are m? ordered pairs of nodes in V, but also because of the
dimension of the distribution of the joint variable that would need to be calculated.
If each node was an R%valued random variable, then the joint density involved in
the definition of Cxi_, xjj\(xi} would be defined on R4+~ Ags described in Ch. 3,
the curse of dimensionality can greatly impair the ability to use data to estimate a
quantity.

The optimal Causation Entropy algorithm (oCSE) addresses the need for a more
practical method of discovering edges [124]. For a given node, X?, the algorithm
begins with an empty set X C V of parents of X*. On each step the algorithm
finds the j that maximizes Cx,_, x|k, and if that value is greater than 0, adds j to K,

stopping if the maximum is qﬂ The set K is now a superset of the parents of X* [124].

Talthough Example illustrates a rare occasion in which the TE graph is too sparse
8The set K can be initiated to always contain X
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The oCSE algorithm then goes through each member of L and removes an element
if Cxisxik\{xiy = 0 because this would indicated that the dependence between X7
and X is already accounted for in the other variables in K. The remaining elements
of K are the causal parents of X*[124].

In terms of the number of Causation Entropies that need to be computed, the
oCSE algorithm does not exceed the brute force approach by much. It is clear that
at least m? calculations must be performed because for each of the m nodes the first
step is to compute all m values Cx;_, xiz. As a worst case scenario, there may be a
node for which all other m — 1 nodes must be added to K. Therefore, if f(m) is the
number of CSE computations performed, then m? < f(m) < m3.

Whether f(m) is closer to m? or m® depends on the graph. For instance, in a

graph in which a node connects to all other nodes, f(m) = m?

. But in a regular
graph, or a graph in which the maximum in and out degrees are k < m, the search is
likely to find the causal parents in not much more than km? steps. The reason is that
indirect influences on nodes are set up through direct influences, so that the number
of possible ways to set up indirect influences is limited by the maximum degree of
the target node and its parents. If one considers the class of all CSE graphs with
maximum in and out degree k, then as m — oo the limit on the ability to create
indirect influences does not seem to vary with m, so that f(m) = O(m?).

In a more general scenario, one might define a family of graphs by a sparsity
constraint. Then there might be a bound on the number of indirect influences whose
CSE toward a given node is larger than the CSE of the direct nodes as a function of
m. Or, it might be that there is an average bound given some weighting of graphs in
the family of size m. In either case, the number of steps might be written as K (m)m?,

where 1 < K(m) < m. In certain examples, such as discrete time linear stochastic

processes with Gaussian distributions [124], K (m) does not seem to depend on the
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size of the graph.

These considerations suggest that the number of steps might not be much larger
than that of a brute force search. The greatest computational difference between
oCSE and the brute force search, however, is the reduced dimensions of the condi-
tioning sets. As Chapter 3 demonstrates, the dimension of the underlying distribution
greatly impacts the precision of estimates of quantities associated with the distribu-
tions.

An important property of oCSE is that for a broad class of discrete time stochastic
processes 0CSE exactly recovers the CSE network, and the CSE network is equivalent
to the structural network defined by Eq. [124]. This class of stochastic processes
includes those that have stationary distribution (Def. and satisfy a set of Markov
conditions. Let X = (X', X% ..., X™) be an ordered set consisting of stochastic
processes in which the index set is discrete (for example 7' = Z, or T = N). The
conditions that ensure that the CSE network is the same as the structural network

and that the CSE network is recovered by the oCSE algorithm are

e Temporally Markov:

P(Xt | Xt—l = Tt—1, Xt—? = Tt—2,- - ) = P(Xt | Xt—l = th_l) (2150)

for all choices of (z4_1,x_a,...). Colloquially, temporally Markov means that
the value of X at time ¢ depends only on the value at time ¢ — 1. This would

be in contrast to a system with memory or time delays.

e Spatially Markov: If {X“ ..., X%} C V consists of the structural parents of
node X’ then

P(X] | Xer = 2e1) = P(X] | Xphy = oty Xy = apty). (2.151)
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for all choices of x;_;.

e Faithfully Markov: Fix X?. Let K, L C {1,...,m} and let X* = {X*: k € K},
XL ={X':1e L} Let N;C {1,...,m} be the indices of the causal parents of

X% If KNN; # LN N; then

P(X} | thil = 355—1) # P(X] | XtL—l = xtL—1>- (2.152)

on a non-measure 0 subset of the state space.

The significance of the faithfully Markov assumption is best illustrated by an
example in which the CSE network is equivalent to the structural network, but the

oCSE network fails to find the CSE network.

Example 2.8.1 (oCSE does not find CSE graph). This example is introduced by
Sun, Taylor and Bollt in 2015 in Ref. [124].

Let U = {0,1} and let {Y;}ten and {Z; hen be W-valued stochastic processes such
that Y; and Z; are independent and identically distributed for all ¢ with distribution
V({0}) = 1/2, v({1}) = 1/2.

Define the stochastic process { X, }iez, by

X =Y 16 Zi, (2.153)

Where @ denotes the exclusive or operation that returns a 1 if and only if Y; | # Z; 4
and a 0 otherwise. The structural graph defined by (2.153)) has edges Y — X and
Z = X.
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It can be checked that X; ~ v, and that X; 1L Y;_; and X; 1L Z; ;. Since the
variables Y; 1, Z; 1, and X, are pairwise independent, and because TE only detects
pairwise relationships, the TE graph has no edges, and is therefore too sparseﬂ

The CSE graph, on the other hand, is identical to the structural graph because
CSE is able to look beyond purely dyadic relationships. By doing the proper con-
ditioning, Causation Entropy is able to detect that there are interactions which are
dependent on other variables. Put in another way, although the variables are pairwise
independent, they are not jointly independent, and Causation Entropy detects this
dependence by conditioning on the presence of the other variables. It is easy to check

from the definition of CSE that
o Cy_x|x,z =log(2) >0
o CZ—>X|X,Y = log(2) >0

and that all other Causation Entropies are 0.
The oCSE algorithm, however, does not find the CSE graph because on the first
round all of the transfer entropies are 0 so no extra nodes are added to the conditioning

set. The reason is that the faithfully Markov property does not hold because

P(Xt ’ }/t—l = Cl) =V = P(Xt ’ Zt—l == CQ) (2154)

for any c1,co € W. If this symmetry is broken by setting 1y to be slightly different
from vz then at least one of the TE’s to X will be positive, so that one node will
be added, and then, since the CSE conditioning on both nodes is positive, the other
node will be added in the second step. Neither node would be removed from the set

of parents during the removal phase since both Causation Entropies are positive. It

9As described in Sec. in practice the TE graphs are typically too dense
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is likely that the examples which violate the faithfully Markov property are in some

sense non-generic.

Another important result that is proved in Ref. [124] using the same three Markov
conditions is the optimatl Causation Entropy principle that states that the set of
causal parents of a node X" is the minimal set, X C V, of nodes that maximize the

Causation Entropy Ci_, x:.

2.9 Interpretation of the value of CSE as a real
number

Although much has been said in this thesis about the interpretation of positive Cau-
sation Entropy conditioned on the remaining nodes as definitive of a CSE edge, not
much has been said about the interpretation and use of the numerical value of Cy_, xz.
The motivation for studying TE and CSE is the notion of an “information flow.” The
term “information flow” is used colloquially in the literature, and it might be tempt-
ing to take the analogy further and say that the information flows have the properties
of physical flows like liquid running through pipes connecting reservoirs. In this anal-
ogy the values of TE or CSE might be used to define weights on the edges describing
how much “information” is flowing through the edge.

One problem with this interpretation is that differential entropy does not have
the same meaning as a measure of “information,” as Shannon entropy (see Sec. .
As described in Sec. differential entropy can be thought of as a “divergence” from
a reference measure. But to think of a portion of a “divergence” as “flowing” from
one node to another is a bit abstract, and should not be expected to behave as a

physical flow. Even in the discrete case, the characterization of Shannon entropy
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as “information” is equivalent to its characterizations in terms of “uncertainty” or
“surprise,” which do not have as much of a physical connotation as “information.”
Whether the variables are discrete or continuous, entropy is an abstract quantity
which does not necessarily behave like a physical object.

Another problem with such an interpretation is that physical flows are gener-
ally defined by a conservation law. The rate at which a substance enters the reservoir
should equal the rate at which it leaves plus whatever rate the reservoir might be gain-
ing in volume. In terms of information flows this would imply that the information
flow on an edge pointing to a node should be accounted for by either information leav-
ing on outgoing edges or in the information rate of the node. In general, there no such
guarantees with CSE or TE, and a quick look at an information diagram reveal
that there will be areas in the venn diagram that are either not counted (or counted
multiple times in the case of TE). In 2016 James, Barnett, and Crutchfield [59] wrote
an article for Physical Review Letters in which they strongly caution against such an
interpretation for a different reason. They state that any definition of an information
flow should require that the information be “localizable” to a source, meaning that
the information arriving at a target node is “solely attributable” to a source node.
They are worried that scientists wanting to apply TE or CSE might misinterpret these
quantities as satisfying the localization criterion because of the colloquial use of the
term “information flow” in the literature. They use Ex. [2.8.1] and a similar example
to illustrate the troubles that can arise from this misinterpretation. In particular,
in Ex. , H(X;) = log(2), but, Cy_,x|x,z = Czx|x,y = log(2). This obviously
violates the conservation notion of flow, but they show that the problem arises from
a lack of “localizability”. They explain that the Causation Entropies Cy_ x|x z and
Cz_x|x,y describe information that is transferred as the result of a “synergy” be-

tween Y and Z, that cannot be divided between the sources separately. The authors
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say that any formula that is expressable as a conditional mutual information of nodes
will fail to be an information flow in the sense of “localizability.”

Instead of discarding the hope of a physical interpretation of information flow,
James, Barnett, and Crutchfield suggest, it may be possible to further divide the
information shared by the variables into different types of information including in-
formation that is unique to each variable, information that is redundant between the
variables, and information that arises out of a synergistic effect between variables as
described in Refs. |137, [138]. Another possibility that they suggest is to use hyper-
graphs instead of directed graphs to model the interactions of complex systems. A
hypergraph could be written as a triple (V,Z, ). The set V has the same interpre-
tation as in the directed graph case — it is the nodes, which, in this thesis, are the
stochastic processes. The set Z could be called the set of interactions. The set &
consists of edges (ordered pairs) of the form (v,%), or (i,v), where v € V and i € Z.
Since multiple v can connect to an interaction, the interactions represent polyadic (as
opposed to dyadic) relationships. By the variability of its conditioning set, CSE de-
scribes aspects of polyadic relationships. It would be interesting to see if CSE would
be useful in determining interactions and the information transferred in a polyadic

interaction in a complex system as described by a hypergraph.



Chapter 3

Data based inference of causal

relationships

An important feature of CSE, which makes it applicable to complex systems research,
is that it can be estimated from observational data. As discussed in the introduction,
this feature distinguishes it from notions of causality that require intervention [93],
as well as methods that require access to the underlying mathematical model that
produced the data [71].

The framework for estimation presented here is somewhat unique in that it uses
a measure-theoretic presentation to give a unified theoretical background to both
parametric and nonparametric statistics. Of particular interest is the organization
of much of the theory under the umbrella of the three “strategies” of Sec. [3.1.2
Much of the notation and some of the presentation is taken from Shao’s textbook on
mathematical statistics [111]. Some of the notation is borrowed from Lehmann and
Casella’s textbook on point estimation [70]. The presentation is not meant to be a
comprehensive introduction to estimation, and some important topics have been left

out in order to focus more on the nonparametric estimation of differential entropy

68
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and mutual information. The chapter concludes with the presentation of geometric
k-nearest neighbors methods given in Warren M Lord, Jie Sun, and Erik M Bollt, “Ge-
ometric k-nearest neighbor estimation of entropy and mutual information,” Chaos:

An Interdisciplinary Journal of Nonlinear Science 28.3 (2018).

3.1 Background

Scientists often need to estimate statistics that describe the distributions of variables
that they study. For example, a scientist might need to know the probability of a
magnitude 7 earthquake in Los Angeles during a year. Or, they might want to know
the mean or median time that a teenager spends on homework during a school week.
They might want to know the variance in the circumferences of maple trees in New
York. Or they could be interested in the differential entropy of the position of an
insect measured periodically in time.

What makes this a challenging problem is that the estimate is made based on
a sample consisting of a finite set measurements of the variable. For instance, the
scientist interested in the variance of the circumferences of maple trees might make
the estimate based on measurements of 100 trees. It seems an understatement to say
that values in the sample represent imperfect knowledge about the statistic, or that
the sample contains little information. If the underlying distribution of circumfer-
ences is absolutely continuous and real valued then the sample can be thought of as
representing a measure 0 outcome. It is just one point out of an uncountable number
of possible outcomes, and the probability of measuring those exact sample values is
0. In this sense the sample is very unrepresentative of the distribution.

The resolution to this problem is to not think of the sample in terms of the

single set of data that might emerge, but to think of the sample as a random variable.
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This imparts measurable structure to the potentially uncountable sample space. This
measurable structure can be used to define what it means for an estimator to perform

well on average across all possible samples that could occur.

3.1.1 The estimation problem as optimization of risk

Let Y be a W-valued random variable where (¥, Fy) is a measurable space. In the
above examples, Y might be earthquake size or homework time, for instance. Denote

the distribution of Y by v.

Definition 3.1.1 (Sample). Given a U-valued random variable Y with distribution

v, and a sample size, n € Z,, a sample of size n is a ¥"-valued random variable,

X:(Xl,XQ,...,Xn), (31)

where the distribution of X is v".

The quantity that is being estimated will be denoted g(v), or sometimes g(Y"), and
is called the estimand. For simplicity we will assume here that g(v) is real-valued,
however, g could take values in a more general measure space. The estimand is de-
fined in terms of a function, g, because the same statistic makes sense for different
distributions, and therefore g can be thought of as assigning a value to each distribu-
tion. Because most statistics will not make sense for all distributions, v, and because
specific problems call for distributions with specific characteristics, the domain of ¢
will be taken to be a set §, which is a subset of the space of distributions. Additional

structure will be assigned to § as necessary.

Definition 3.1.2 (Estimand). Given a set of distributions, §, any real valued function

with domain § is an estimand on §.
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Example 3.1.1 (Some typical estimands). If § consists of random variables with

finite second moments then the variance,

9(V) =E[Y —E[])], (3:2)

is an estimand. If § is a subset of absolutely continuous variables, the differential

entropy,

g(v) = H(v) (3-3)

could be an estimand. Of most importance to the application of CSE is the case when
Y is assumed to be composed of three random variables whose joint distribution is

absolutely continuous,

Y = (YL Y2 Y?). (3.4)

In this case § would be a subset of a space of absolutely continuous distributions on

a joint space. Then Causation Entropy,

g(Y) = Cylg)y2|y3, (35)

is an estimand.

An estimator of g(r) is a measurable function, T, that assigns real numbers to

samples.

Definition 3.1.3 (Estimator and estimate). Let (W, Fy) be a measurable space.
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Then T is an estimator if T is a measurable real-valued function on W":

T:0" R, (3.6)

If X is a sample, as in Def. [3.1.1] then T'(X) is an R-valued random variable called
an estimate. If T is an estimator for a particular estimand g, then T will often be
written ¢ in order to clarify which estimator the estimand is intended to estimate.
Furthermore, if X = (X3, Xs,...,X,,) is a sample for Y, which is distributed as v,

——

then the estimate will often be written §(Y), §(v), g(Y), or g(v) for convenience.

Note that the definition of an estimator does not depend on g and v. This means
that most estimators of g(v) are not “useful.” The theory of estimation concerns
the problem of finding ways to measure the performance of estimators and designing
estimators that perform well with respect to these measures.

The performance of a specific estimate can be measured by a loss function, L(v, T'(X)),

where L depends on g, that quantifies the consequences of making a wrong estimate.

Definition 3.1.4 (Loss function). A nonnegative function L : § x R — R for which
L(v,-) : R — R is measurable for any fixed v is called a loss function for g if for all

vegFanddeR,
1. L(v,d) >0
2. L(v,g(v)) = 0.
Typical examples of loss functions include

L(v,d) = |g(v) — d|P, and (3.7)

L(v,d) = X0y (l9(v) — d]), (3-8)
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where p,c > 0 are fixed constants.

Sampling a particular estimate, T(X), for d in L(v,d) does not tell the whole
story about the estimator, because the data set that the sampling produces might be
nonrepresentative of 7'(X). Since L(v,-) is measurable and real-valued, it is possible
to find the average loss for a specific v. The average loss over all possible samples is

called the risk of the estimator.

Definition 3.1.5 (The risk of an estimator given a loss function). The risk of using

an estimator 7" when the distribution is v is defined by
R(v,T) = E[L(v,T(X))], (3.9)
if the expectation exists. This expectation should be interpreted

R(v,T) = /n L(v,T(x))dv(z). (3.10)

It should be noted that R(v,T") may not exist because the integral may not be
finite. This problem can sometimes be addressed by changing § or restricting the
class of estimators.

If v # /' then generally the risk of using T to estimate g(v) will be different from
the risk of using 7' to estimate g(¢’). Unless g happens to be a constant function,
there will be no estimator T" that gives the lowest risk for every DE| Thus, the goal of
developing estimators that uniformly minimize risk over § is fruitless. There are three
general strategies: constraining §, weakening the requirement that 7" minimize risk
for all v, and restricting consideration to a set of estimators with desirable properties.

Usually, more than one of these strategies are combined in order to find a suitable

IFor instance, Ty = g(1) has 0 loss by Def. |3.1.4} and therefore minimizes risk for v, but would
have a higher risk for other v € §.
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estimator.

3.1.2 Strategies
Strategy 1: Constrain §

Every v in § can be thought of as a constraint, because R(v, T') should be smaller than
R(v,T") for any other estimator. Thus, decreasing the size of § makes the problem
more tractable. As an example, one may only care that the T" be a minimizer for v
that are absolutely continuous with respect to a measure, £. The space of absolutely
continuous measures with respect to &, is still likely to be large since it can be identified

with a set of positive L'(£) functions that integrate to 1.

Example 3.1.2 (Parametric families). Historically much of the theory of estimation
has focused on parametric families of distributions. In this case, § is indexed by a

parameter 0 = [0y, ...,0,,]7 from a collection ©, and can be written

§=1{w:0col (3.11)

This § seems much smaller than the space of absolutely continuous distributions,
since it is in some sense locally finite dimensional. In writing expressions involving v
when § is a parametrized family, it is traditional to replace v by the parameter 6. For

instance, the estimand is written g(#) and the loss function is written L(0,T(X)).

Example 3.1.3 (Location and Location-scale families). The measurement space W
sometimes has symmetries that can be reflected in, or even give rise to, a family of

distributions on ¥. In particular, if G is a group of automorphisms of ¥, then G acts
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on the space of measures of ¥ by

gv(A) = v(gA), (3.12)

where the inverse of g is used so that if Y ~ v then gv is the distribution of gY.

If § is closed under the action of g, then § is called a group family.

The notion of a group family generalizes location, scale, and location-scale families
when ¥ = R?% Some parametric examples are families of normal distributions, dou-
ble exponential distributions, Cauchy distributions, logistic distributions, exponential

distributions, and the family of uniform distributions of the form U (a — g, a+ %) [70].

Strategy 2: Weaken condition that 7" is minimizer for all v € §

Unless ¢ is a constant or § is extremely small, there will likely not be a 7' that
minimizes R(v,T) for all v € §. There are many ways to weaken this condition in

order to obtain a more useful description of the performance of an acceptable T'.

Example 3.1.4 (Minimax). One approach is to try to minimize the risk of the worst-
case scenario. This is the approach taken by minimax methods, which try to find a

T that minimizes

sup R(v, T). (3.13)

VEF

Example 3.1.5 (Bayes risk). Another approach is to put weights on the various
parts of § according to how important it is to get the estimate correct when v is in

that portion of §. A little more formally, the Bayesian approach assigns a o-algebra
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to §, Fz, and a probability measure, 7 to §, and tries to minimize

/@R(V, T)dr(v). (3.14)

In the parametric case, i.e. when § = {vp : 0 € O}, the Bayesian approach is
equivalent to thinking of © as a measurable space, 6 as a ©-valued random variable,

and T as the minimizer of

/ R(0,T) dr(6). (3.15)

If there exists a T that minimizes Eq. (3.14]), then T is called a Bayes estimator.
In practice, 7 is often given a prior distribution which has maximal entropy on ©,

and a data set sampled from X is used to update .

Strategy 3: Constrain the set of allowable estimators

It is possible that the estimator that does the best job of minimizing risk brings
along with it undesirable properties that one would not expect of a useful estimator.
Therefore, one strategy is to demand up front that 7" belong to a set ¥, which is a

subset of the Fy-measureable real valued functions on W”.

Example 3.1.6 (Equivariance). Suppose two scientists observe the same phenomenon
in different coordinate systems. If the scientists are estimating the same quantity us-
ing the same estimator then it might be important that they get the same results, or
at least that they be able to translate the results between coordinate systems [57]. As
a simple example, one scientist might measure temperature in Fahrenheit, and the
other in Kelvins. The sample mean is a desirable estimator of the mean in this regard

because it commutes with the change of variables, so that estimates in one coordinate
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system can be easily translated into estimates in the other coordinate system. This

)

property goes by the name “frame invariance,” or also by “equivariance.”

A little more precisely, let G be a group of automorphisms of ¥. Suppose that
§ is invariant under G in the sense that for each v € §, the measure hv defined by
hv(A) = v(h™tA) is also in §.

The estimation problem would satisfy an equivariance condition if there was a

group G acting on R, such that for any h € G there is a h € G such that

L(v,d) = L(hv, hd). (3.16)

In this case an estimator is called equivariant (or simply invariant) if

WTv) =T(hv). (3.17)

Equivariant estimation is typically employed when § is a location-scale family

(See Ex. [3.1.3), and is typically used when g(6) = 6.

Example 3.1.7 (Robustness). The field of robust statistics was introduced by Tukey [129],
Huber [58], and Hampel [53] in the 1960’s and 1970’s.

Although the sample, X, is defined to be distributed as v™ in Def. [3.1.1] in real
world applications this is rarely a perfect model, and instead, the distribution of X is
close enough to v that there should be no problem in treating X as a sample of Y.
Perturbations from v™ are called contaminations of the sample. Examples are often

divided into two categories.

dispersed: Dispersed contaminations are spread across each of the components of X.
Examples include measurement error, truncation and rounding due to storage

on a digital device, and deviations from model assumptions, in particular, the
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choice of §.

gross: When n is large, a large perturbation to one component of X might still be a
small perturbation to X. Causes of gross contamination include the incorrect
transcription of data (such as the misplacement of a decimal point), the corrup-
tion of bits during data transmission and storage, power surges, and a graduate

student sneezing in a lab while a delicate experiment is in progress.

An estimator T' is robust if 7(X) only changes a small amount due to small con-
taminations of the data. To make this statement precise would require establishing a
topology on the space of measures on U™, and considering Gateaux derivatives [53].

Although robustness is generally valued, it is not necessary. For instance, the

sample mean,
1 n
T(x1, 29, ..., Tn) = sz (3.18)
j=1

is not robust to gross contamination. The sample median is a robust estimator of

central tendency [52].

Example 3.1.8 (Unbiased and efficient). A common approach is to require that the

estimator be unbiased:

Definition 3.1.6 (Bias). Given a distribution, v, the bias of an estimator 7" of g(v)

such that T'(X) has a finite first moment is
Bias, [T] = E[T(X)] — g(v). (3.19)

An estimator is called unbiased if Bias,[T] = 0 for all v € §.
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For example, the sample mean is unbiased because if g(Y) = E[Y] = p, then

E

- ixj] - Ly e (3.20)

= L. (3.21)

Another desirable property is that T'(X) and T(X’) are close together when X
and X’ are both samples of size n of the same variable. This property can be made

more formal in terms of the variance of an estimator.

Definition 3.1.7 (Variance of an estimator). Given a distribution v and an estimate

T(X) that has finite second moment, the variance of T'(X) is
Var, [T] = / (T(x) — BIT(X)])? dv"(z). (3.22)

Note that the variance of the variables T'(X) and T'(X’) will be the same if X
and X' are both distributed as v". Therefore, the notation Bias,[T] and Var,[T],
which omits X is valid, although it would also be correct to write Bias,[T(X)] or

Var, [T'(X)] for the same quantities.

Definition 3.1.8 (Efficient estimator). An estimator, T, for g(v) is called efficient if
Var, [T(X)] < Var,[T'(X)] (3.23)

for all other estimators, 77, and all v € §.

Both the bias and variance of an estimator are related to a commonly used loss

function called mean squared error.

Definition 3.1.9 (Mean Squared Error). When T'(X) has finite second moment, the

risk function corresponding to the quadratic loss in Eq. (3.7)) is called mean squared
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error:

MSE, [T] = E[((g(v) — T(X))?] (3.24)

The identity

MSE, [T] = Var,[T] + Bias, [T]?. (3.25)

can be derived from Eq. (3.24).
If Bias,[T] = 0 then MSE,[T] = Var,[T]. In this case, in order to spread the risk

over the largest set, it is sensible to search for an estimator 7" such that

Var,[T| < Var,[T"] (3.26)

for any other unbiased estimator, 7", and all v € §. Such an estimator is called a

uniformly minimum variance unbiased estimator (UMVUE).

Example 3.1.9 (Asymptotic statistics). Although some methods for deriving unbi-
ased or efficient estimators exist, they generally only apply to parametrized families
of distributions. Furthermore, even when a family can be parametrized, an unbiased
or efficient estimator might have other less desirable properties. A commonly used
way to weaken the requirements, but retain some of the benefits is by requiring that

the properties only hold asymptotically as n — oo.

Definition 3.1.10 (Asymptotically unbiased). A sequence of estimators for g(v),

T, : v — R, where n € Z, such that T}, has finite expectation for all n is called



CHAPTER 3. DATA BASED INFERENCE OF CAUSAL RELATIONSHIPS 81

asymptotically unbiased if

lim Bias,[T},] = 0, (3.27)

n—oo

As an example, if v has a uniform distribution on (0,6), then the estimator
T.(Xy,...,X,) = max(Xy,...,X,) is asymptotically unbiased. One strategy for
creating asymptotically unbiased estimators is to start with an asymptotically biased
estimator and either divide by its expected value in the limit as n — oo or subtract
the asymptotic bias.

As sample size increases the variance of T'(X) should decrease, and ideally vanish

as n — o0.

Definition 3.1.11 (Asymptotic variance). The asymptotic variance of a sequence of

estimators for g(v), T, : ¥ — R is defined to be lim,, ., Var,[T},] if the limit is finite.
Another criterion is consistency.

Definition 3.1.12 (Consistent estimator). Let T, : U — R, n € Z, be a sequence

of estimators of g(v) and let X(™ be a sequence of samples of size n of v. Then

{T,,}°, is consistent if T},(X™) converges in probability to g(v). In other words, T},

is consistent if

lim P(|T,,(X™) — g(v)| > €) = 0. (3.28)

n—oo

for all € > 0.
One way to check consistency is to verify that the asymptotic bias and variance

vanish as n — oo.

Theorem 3.1.1. A sequence of estimators for g(v), T,, : ¥" — R, n € Z,, is

consistent if the following two conditions hold.
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1. lim,, o Var, [T(Y1,...,Y,)] =0
2. {T}5°, is asymptotically unbiased for g(v).

Proof. By Markov’s Inequality (see Appendix) for any € > 0,

1

P (ITu(X™) —gw)| =€) < 5 T,(X™) —g()]*dv (3.29)
€ JHaewm|Tn(X (W) —g(v)|>e}
1
< 5MSE, [T, (3.30)
1 .
=3 (Var,[T,,] + Bias,[T,]) . (3.31)
Taking limits on both sides proves consistency. [

3.2 Nonparametric estimation of differential en-

tropy and mutual information

3.2.1 Estimation of differential Entropy

Since CSE is a conditional mutual information (CMI), the estimation of CSE can be
reduced to the problem of estimating CMI. Before estimating CMI, it is necessary to
be able to estimate mutual information (MI). The estimation of mutual information

can be reduced to the estimation of differential entropy by the formula
I(X;Y)=H(X)+ HY)-H(X;Y). (3.32)

Therefore, this section begins with a discussion of nonparametric methods for esti-
mating H(X). It turns out that the bias of the estimation of I(X;Y’) by plugging
estimates of H(X) into Eq. can be improved upon greatly by performing the

estimations in parallel. This method can be extended to CMI.
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In the previous section the sample was named X for convenience. Because this
section considers joint variables, it is more convenient to switch notation and use X,
Y, and Z for the variables whose entropy or mutual information will be estimated.
Subscripts on a variable, such as (X7, Xs,..., X,,) will indicate a sample of size n.
When there are more than three variables whose joint entropy or mutual information
will be estimated, they will sometimes be denoted XM, X® .

Since differential entropy is defined for absolutely continuous measures on RY, it

is natural to make the restriction

S={r:v< A, and — 00 < H,(v) < oo}, (3.33)

where \ is Lebesgue measure for the appropriate dimensional Euclidean space. It
should be noted that the invariant distributions associated with purely deterministic
dissipative dynamical systems are often singular continuous, and so not in §, but in
the real world situations that these systems model there are noise sources, so that
the resulting distribution might be modeled by an absolutely continuous distribution
which is in some sense close to the original singular invariant distribution. In short,
it is true that some of the distributions that scientists study may not be purely
absolutely continuous, but since differential entropy is only defined for absolutely
continuous distributions, it does not make sense to extend §.

There are many approaches to building nonparametric estimators of differential
entropy. Many are based on algorithms to partition the space based on the locations
of data points |28} |119]. Another approach is to estimate the pdf of the distribution,
and plug that into H(X) = — [ flog f. In one or two dimensions the estimation can
be accomplished by kernel density estimation [32, 79, /100] and numerical integration.

This approach becomes unfeasible in greater than 2 dimensions [60]. To avoid numer-
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ical integration, it is possible to perform binning by dividing ¥ into an array of equal
volume rectangular bins, and using the data to create a histogram that approximates
the pdf on each bin. This method also suffers the curse of dimensionality, requires
very large bins in order for the count of points in each bin to be large enough to
get an accurate estimate of f on the bin, creates disparity between the accuracies
of the estimates on each bin, and fluctuates with the width of the bins [38]. More
modern methods of partitioning the data space include projection pursuit density
estimation [38], which provides geometric information about the data, and adaptive
partitioning [28, |119], which is designed to be computationally efficient, having a
computational complexity of O(nlogn).

Many estimates of the density, f , are combined with a resubstitution estimator,
which is a nonparametric estimator that substitutes the sample into a discretized

version of the integral [9].

Definition 3.2.1 (Resubstitution). Given an estimate, f , of the density of a random
variable distributed as v, and a sample, X, the resubstitution estimator for H(v) is

defined by
T(X) = =5 > log(F(X,). (3:3)

It is called “resubstitution” because the sample is used to obtain estimate f , and
then the sample is used again, by substitution it for x in f (x).

A more geometric approach is based on k-nearest neighbor statistics. The k-
nearest neighbors (knn) estimators have received particular attention due to their
ease of implementation and efficiency in a multidimensional setting. By the form of
the resubstitution estimator in Eq. , it is only necessary to estimate the pdf at

the value of X;. If the data points are closely spaced near that point then the estimate
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should be large, and conversely, if the data points are sparse in that neighborhood
then the estimate should be low. One way to express this is that if V; is a volume
containing X;, where (X1,...,X,,) is a sample of (X,Y’) then

Vi )

f(Xz) =c (3.35)

where K;/n is fraction of the remaining data pointsﬂ contained in the volume and c

is a constant that can be chosen to ensure that f integrates to 1. If V; is the volume

pisidd

2
r'(4+1)

of a sphere, and v; = is the volume of a unit sphere, then

) (3.30)

where R; is the radius. If R; is the distance to the kth nearest neighbor, where K; = k

is a constant, then the density is approximately

5 k/n
X;) = , 3.37
f = (3.37)
which, when plugged into the resubstitution estimator yields
. d —
H(X) =log(n) — log(k) + log(va) + — > “log Ri. (3.38)
i=1

This estimator is biased. It can be made asymptotically unbiased by subtracting the

2The quantity K;/n is technically an estimator of the number of remaining data points. Oc-
casionally authors use K;/(n — 1) since X; is already accounted for and could not be one of the
remaining points.
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asymptotic bias, yielding the Kozachenko-Leonenko estimator [67]E|

R d <
Hic1(X) =log(n) — (k) +log(va) + — > log(Ry), (3.39)

i=1

where
(k)

k) = 3.40
¥lk) = £ (3.0
= Hk—l -7, (341)
is the digamma function, Hj is the kth harmonic number, and v = —(1) is the

Euler-Mascheroni constant.

The Kozachenko-Leonenko estimator is asymptotically unbiased and its variance
approaches 0 as n — oco. Together these properties imply that it is a consistent
estimator [112] (See Def. and Theorem [3.1.1)).

The Kozachenko-Leonenko estimator does not appear to be robust (See EX
for a definition). This is apparent from the log(R;) term. As n — oo, the variable
Raq) = Zegunn} R; will approach 0 almost surelyﬂ. Thus, for a large enough sample
size, the estimate involves the log of a number very close to 0. The slope of log(x)
is 1/x, so that a small change in the minimum R; could mean a large change in the

estimate. A dispersed contamination of the sample would likely change all of the

R;, and in particular the minimum R;, resulting in a large change to the estimator.

3Since K;/(n — 1) is sometimes used as an estimate in Eq. (3.3, a log(n — 1) will sometimes
appear in place of a log(n) in Eq. (3.39). Kozachenko and Leonenko used log(n — 1) in their 1987
paper [67]. Kraskov, Stogbauer, and Grassberger [68] use (n) which is much closer to log(n — 1)
than log(n). Other sources use log(n) [41} [112]. The difference is not considered important, since
log(n), log(n—1), and ¢ (n) are asymptotically equivalent and the convergence is very rapid, so that
for small sample sizes the difference is overshadowed by the variance of the estimator.

4Intuitively, there must be some compact ball, B(0, s), centered at the origin in R4 that contains
a nonzero fraction of the mass of v, so that for any w € Q (See Appendix , the Borel-Cantelli
lemmas imply that with probability 1 X, (w) will have a subsequence X,,;(w) in B(0,s). By the
compactness of the ball, X, (w) has a convergent subsequence, so that R(;y — 0 almost surely.
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Figure 3.1: The top rug plot shows a sample of size 100 from a uniform distribution
on (0,1). The bottom rug plot shows the same data but with one of the data points
perturbed slightly toward its nearest neighbor. The size of the perturbation is on the
order of 1073, The Kozachenko-Leonenko estimates for the entropy are H = —0.02
(top) and H = —1.03 (bottom).

Figure [3.1] shows that data sets that appear to the naked eye to be the same can
have radically different Kozachenko-Leonenko estimates. In this case the perturbed
estimate is below —1, which would be highly improbable if one sampled a uniform
distribution on (0,1), and yet the data is nearly identical to data sampled from a
uniform distribution. This is not proof of non-robustness. In terms of the definition,
one would need to start with a uniform distribution on an n-dimensional hypercube,
and look for small perturbations, perhaps near the hyperplanes X; = X, that would

cause the distribution of H(X) to change at a rapid rate.

3.2.2 Extension of differential entropy estimators to mutual

information

Most strategies for estimating mutual information are based on the formula
I(X;Y)=H(X)+ HY)—- H(X,Y). (3.42)

Assuming X and Y are R% and R?%-valued random variables, if _ﬁ;(, ﬁc; and

—

Hgy +ay are estimators for H(X), H(Y), and H(X,Y'), then an estimator for I(X;Y)
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is defined by
[(X:Y) = Hay (X) + Hay (V) = Hayray (X, 7). (3.43)

One method, which is called the copula method |21} 44], makes use of the fact
that mutual information is invariant under monotonic transformations of the marginal
variables. The distributions of variables in R% can be defined by their cumulative
density functions (cdf) (see Appendix [I). If Fx is a cdf of a variable X, then the
variable F'y(X) is uniformly distributed on (0,1). Therefore, H(Fx (X)) = 0 and,

by (3.42),
I(X;Y) = H(Fx(X),Fy(Y)). (3.44)

The importance of this way of writing the mutual information is that it moves all
of the dependence between X and Y into the joint distribution of a single variable,
(Fx(X), Fy(Y)), which has a compact domain. It is not clear, however, that this
approach improves the nonparametric estimation of mutual information, because it
breaks the estimation up into three estimates. Both F'y and Fy need to be estimated,
in addition to the joint variable H (Fx(X), Fy(Y)). It seems important to avoid using

the empirical cdf estimator for the marginal cdfs, defined by
R 1 —
i=1

because then F ((X1,...,Xy)) would consist of an equally spaced lattice of points,
which would be extremely unlikely given a uniformly distributed variable, and would
therefore have an entropy much less than 0. There are other estimators of cdfs [111],

however, once these estimates are performed, the estimation of the joint entropy can
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also be challenging (see Sec. , and there is the possibility of the error from the
first estimates feeding forward into the estimate of the joint entropy.

Another approach is to estimate each entropy in using the Kozachenko-
Leonenko estimator. The resulting estimator for I(X;Y) is called the 3KL estima-
tor |41]. The estimator is asymptotically unbiased since expectation is linear, and it is
also easy to check that the variances approach 0 as n — co. However, the variance for
a given n might be close to the sum of the variances of each Kozachenko-Leonenko es-
timator rendering this estimator somewhat impractical. Furthermore, the non-robust
terms do not fully cancel.

In 2004 Kraskov, Stogbauer, and Grassberger introduced an estimator based on
Eq. that cancels much of the bias incurred by making three separate estimates
of entropy. The estimator is commonly referred to as the KSG estimator, or just
KSG. Instead of calculating the estimates separately, KSG uses information obtained
during the calculation of the Kozachenko-Leonenko estimate of H(X,Y') to derive
the estimates of the differential entropies of the marginal distributions. In particular,
KSG records the radii, R;, of the spherical volumes in Eq. during the estimation
of the joint entropy. Instead of using Kozachenko-Leonenko to estimate the marginal
entropies, KSG fixes the radius of the volume of the sphere centered at the ith data
point to R;, and treats K; in Eq. as a random variable that depends on how
many data point in the marginal space lie inside this sphere. The non-robust terms
of the form %Z?:l log(R;) cancel out. A problem however, is that if Euclidean
spheres are used in the joint space, then spheres in the marginal space will tend
to be larger than they need to be to hold K; data points, introducing extra bias.
This problem is handled by using a max-norm sphere in the joint space. One of
the data points lies on the boundary, ensuring that its projection into the marginal

space lies on the boundary of the max-norm sphere projected into the marginal space.
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This choice of sphere ensures that in at least one of the marginal spaces R; is the
distance from 7(X;) to m(Xk,), where 7 is the appropriate projection. The authors
offer an alternative version of KSG in which the volume element in the joint space
is a hyper-rectangle defined so that the projection of the hyper-rectangle into each
marginal space produces a sphere in which the distance from 7(X;) to (X, ) is equal
to R;. The use of the hyper-rectangle offers a slight improvement on the bias over

the max-norm sphere. The max-norm estimator can be written

n

s = (k) + log(n) — - S (K +1) +0(Kyu +1), (3.46)

=1

where £ is the fixed number of neighbors used in the joint space and K,; and K ;
are random variables whose values are number of neighbors of 7, X; and 7, X; in the
respective volume elements of radii R;. Similarly the KSG estimator using hyper-

rectangles is

n

Fesor = 0(k) = 1 +log(n) =+ S W) +9(Kye). (34)

i=1
The KSG estimator generalizes to CMI [130], in which case the estimator is

n

1

[(X:;Y12) = o(k) - - Z(w(sz,i T+ (Kyy + 1) —0(K.i 1)), (348)

where K,.; and K,.; are the number of neighbors of the projections of the sample
into the marginal spaces spanned by the X and Z coordinate, and the Y and Z
coordinates.

Like adaptive partitioning methods [28, |119], KSG’s computational complexity
using k-d trees [11] is O(nlogn). However, in practice data sets have limited size,

and k-d trees suffer the curse of dimensionality [37]. In order to use K-d trees to
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cluster the data in a usable and efficient manner it should hold that 2¢ < n. If the
data is high dimensional and the sample size is limited then it is of no relevance that
the computation time scales asymptotically as O(nlogn). When data size is limited
and dimension is high it is more efficient to use an exhaustive search. In this case, the
computation time as n is varied near a maximum reasonable data size scales much
more like n?. The applications considered in this thesis generally fall into this later

category of high dimension and limited sample size.

3.3 A class of knn estimators that adapts to local
geometry

This section introduces a new class of nonparametric estimators for differential en-

tropy and mutual information recently introduced in Ref. [72].

3.3.1 Introduction

Under some smoothness conditions on the distributions of X and Y, the KSG esti-
mator is a consistent estimator [41]. However, for finite n, the estimator can be very
biased. In fact, as this section demonstrates, given a sequence of joint distributions
which are absolutely continuous with respect to Lebesgue measure, it is possible that
the bias of the KSG estimator increases unboundedly. In terms of a risk analysis,
given a reasonable standard loss function, the minimax of the risk over the space of
absolutely continuous distributions with finite entropy, §, is infinite. It is possible
that by weighting § appropriately, that is, treating the risk as a Bayes risk by assign-
ing a measure to §, one could make the expectation of the risk finite (See Ex. .

This section demonstrates that such a measure would have to give a small weight to
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areas of § in which distributions of variables that are of great importance in non-
linear dynamics and its applications are expected to lie. The findings apply to knn
estimation in general.

One of the most striking geometric features of attractors common to a wide class
of dynamical systems, including dissipative systems and dynamical systems with com-
peting time scales, is stretching and compression in transverse directions [88]. More
precisely, the local geometry is characterized by both positive Lyapunov exponents
corresponding to directions in which nearby points are separated over time and neg-
ative Lyapunov exponents corresponding to orthogonal directions in which nearby
points are compressed. When the evolution is deterministic the geometry can become
stretched to the point that the attractor occupies a measure 0 subset of Fuclidean
space. The probability distributions supported on this space are called singular, and
are not in §, but if a little bit of randomness is added to the system then an invari-
ant probability measure on the attractor might be in §, and have a local geometry
characterized by stretching and compression in transverse directions.

The p-sphere, max-norm, and hyper-rectangular volume elements used by most
knn methods are not suitable for capturing this type of local geometry. These volume
elements can be described as highly geometrically regular. This regularity serves
a purpose in that it minimizes the amount of data needed to define the volume
elements, and therefore allows the volume elements as local as possible. A drawback
in data-driven applications where sample size is fixed and often limited is that the
local volume elements might not be descriptive of the geometry of the underlying
probability measures, resulting in bias in the estimators. A simple example of this
problem is shown in Figure in which X and Y are normally distributed with
standard deviation 1 and correlation 1 — a.. By direct computation, the true mutual

information increases asymptotically as log(«), but for each k the KSG estimator
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applied to the raw data diverges quickly as o decreases. Figure illustrates the
cause of the problem, which may be due to local volume elements not being descriptive
of the geometry of the underlying measure. Improving on that issue is the major
stepping off point of this section. In particular, the KSG local volume elements mostly
resemble the green square (a max-norm sphere), whose volume greatly overestimates

the volume spanned by the data points it contains.
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Figure 3.2: (a) KSG estimates of mutual information using max-norm spheres for two
1d normally distributed variables with standard deviation 1 and correlation 1 — a.
For each v € {277 : j = 2,...,18} a sample of size N = 100 is drawn and the mutual
information estimated by KSG with £ = 1,...,6. The true mutual information,
TIiwe = I(X;Y) is plotted in black. (b) A sample of size 100 when o = .001. A
randomly chosen sample point is highlighted in red. A sphere in the maximum norm
is plotted in green and a sphere in the Euclidean norm is plotted in blue. The radius
of each sphere is equal to the distance to the 20th closest neighbor in the respective
norm.

This section introduces a new class of knn estimators, the g-knn estimators, which
use more irregular local volume elements that are more descriptive of the underlying
geometry at the smallest length scales represented in the data. The defining feature
of g-knn methods is a trade-off between the irregularity of the object, which requires
more local data to fit, and therefore less localization of the volume elements, and the

improvement in the approximation of the local geometry of the underlying measure.
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Because of this trade-off, the local volume element should be chosen to reflect the
geometric properties expected in the desired application. Motivated by the study of
dynamical systems, it is reasonable to model these properties on the local geometry
of attractors, which is characterized by stretching and compression in orthogonal
directions.

To test the idea behind the g-knn estimators, Sec. develops a particular
g-knn method that uses local volume elements to match the geometry of stretching
and compression in transverse directions. Ellipsoids are a good option for capturing
this geometric feature because they have a number of orthogonal axes with different
lengths. They are also fairly regular geometric objects: the only parameters that
require fitting are the center and one axis for each dimension. Such ellipsoids can be
fit very efficiently using the singular value decomposition (svd) of a matrix formed
from the local data [45].

The g-knn estimator is tested on four one-parameter families of joint random vari-
ables in which the parameter controls the stretching of the geometry of the underlying
measure. The estimates are compared with the KSG estimator as the local geometry
of the joint distribution becomes more stretched. Distributions can also appear to be
more stretched locally if local neighborhoods of data increase in size, which occurs
in knn methods when sample size is decreased. Therefore, the g-knn estimator and
KSG are also compared numerically in examples using small sample size.

Unlike the Kozachenko-Leonenko and KSG estimators, the g-knn method devel-
oped here has not been corrected for asymptotic bias, so that it should be expected
that KSG outperforms this particular g-knn method for large sample size. What is
surprising is that the g-knn estimator developed in Sec. outperforms KSG for
small sample sizes and thinly supported distributions despite lacking KSG’s bias can-

cellation scheme. Since KSG is considered to be state-of-the-art in the nonparametric
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estimation of mutual information, the result should hold for other methods that do
not account for local geometric effects.

There have been many attempts to resolve the bias of KSG. For instance, Zhu
et al. |144] improved on the bias of KSG by expanding the error in the estimate
of the expected amount of data that lies in a local volume element. Also, Wozniak
and Kruszewski [140] improved KSG by modeling deviations from local uniformity
using the distribution of local volumes as k is varied. These improvements do not
directly address the limitations of spheres to describe interesting features of the local
geometry.

The class of g-knn estimators can be thought of as generalizing the estimator of
mutual information described by Gao, Steeg, and Galstyan (GSG) in 2015 [40], which
uses a principle component analysis of the local data to fit a hyper-rectangle. The
svd-based g-knn estimator defined in Sec. improves on the GSG treatment of
local data. These improvements are highlighted in Sec. [3.3.2]

3.3.2 Method

This section defines a g-knn estimator of entropy that, in turn, yields an estimate of
mutual information when substituted in Eq. (3.42)). The g-knn estimator is based on

resubstitution (See Def. 3.2.1)).
Let X = (X1,...,X,) be a sample of an R%valued variable.

Svd estimation of volume elements

The elliptical local volume elements are estimated by singular value decomposition
(svd) of the local data. For any fixed i € {1,...,n}, denote the k nearest neighbors of
X; in R? by the random variables Xp,(0), for j =1,... k, where p;(i) is a {1,...,k}-

valued random variable defined so that X, (;(w) is the jth closest point to Xj(w) in
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the set {X,(w) : p # i}. The set {X,, 5 : j €0,...,k}, where X, ;) = X; will be
called the k-neighborhood of sample points of Xj;.

In order for the svd to indicate directions of maximal stretching it is first necessary
to center the data. Let Z = k—il Z?:o Xp,@i) be a random variable describing the
centroid of the k-neighborhood in R? and define the centered variables by Yij =

X

pi(i) = 2
In order for the svd, a matrix decomposition, to operate on the centered variables,
define Y to be a M1 4-valued variable, where in general, M, , denotes the p x ¢

real matrices, defined by

vi=| | (3.49)

Since Y;(w) € Mj41),q, it has an svd of the form Y; = U3 VI where U, is a
U(k + 1)-valued variable and U(p) denotes the unitary matrices of size p, 3; takes
values in the set of (k+1) xd real matrices which are zero with the possible exception of
the nonnegative diagonal components, and V; is a U(d)-valued variable. The columns
of U and V are R¥*! and R¢-valued random variables called the left and right singular
vectors, and since the left singular vectors do not play a role in this estimator, the
word “right” will be omitted when referring to the right singular vectors. The singular
vectors will be denoted V;(l). The diagonal components of ¥; are R-valued random
variables, which will be denoted S}, ..., S¢.

Since V is unitary, the singular vectors, V;' are of unit length and mutually or-
thogonal, meaning for any w € Q, V/'(w) L V/?(w). The first singular vector, V;'

points in the direction in which the data is stretched the most, and each subsequent
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singular vector points in the direction which is mutually orthogonal to all previous
singular vectors and that accounts for the most stretching.

The singular values are equal to the square root of the sum of squares of the
lengths of the projections of the Yij onto a singular vector.

The use of data centered variables is an important difference between the g-knn
estimator described here and the GSG estimator, in which the data is centered to
X; (see Footnote 2 in Ref. [40]). Centering the data at X; can bias the direction of
the singular vectors away from the directions implied by the underlying geometry. In
Fig. for instance, the underlying distribution from which the data is sampled can
be described as constant along lines parallel to the diagonal y = x and a bell curve in
the orthogonal direction, with a single ridge along the line y = x. If local data were
centered at the red data point then all vectors would have positive inner product with
the vector (—1,1), so that the first singular vector would be biased toward (—1,1).
The center of the local data, on the other hand, is near the top of the ridge, so that
the singular vectors of the centered data (in blue in the figure) estimate the directions

along and transverse to this ridge.

Translation and scaling of volume elements

Since the values of V! in R? are orthogonal, the vectors S!V} can be thought of as
the axes of an ellipsoid centered at the origin. The ellipsoid needs to be translated
to the k-neighborhood and scaled to fit the data. There are many ways to perform
this translation and rescaling, three of which are depicted in Fig. for a particular
w € (.

In Fig. there are two ellipsoids centered at the centroid of the k-neighborhood.
The larger ellipsoid is the smallest ellipsoid that contains or intersects all points in

the k-neighborhood. The problem with this approach is that these ellipsoids might
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Figure 3.3: A data set, X(w) = (x1,...,x,) sampled from a random variable with
one sample point, x;, highlighted in red at approximately (0.59,0.56), and its k = 20
nearest neighbors in Euclidean distance highlighted in green. The ellipsoid centered
at x; and drawn in red contains the volume used by the g-Knn estimator. The length
of the major axes is determined by the largest projection of one of the £ neighbors
onto the major axes, enclosing K;(w) = 3 points in its k-neighborhood, including
itself. Two other ellipsoids are centered at the centroid of the k£ 4+ 1 neighbors. The
larger one (magenta) has radii large enough to enclose all k + 1 data points. The
major axis of the smaller ellipsoid (blue) is determined by the largest projection of a
data point onto the major axis. All three ellipsoids have the same ratio of lengths of

axes, S1(w)/S2(w), where the S; are the singular values determined by the centered
k-neighborhood.
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contain data points which are not one of the k£ nearest neighbors of X;, as is seen in
Fig.[3.3] One solution to this problem is to include these data points in the calculation
of the proportion of the data that lies inside the volume defined by the ellipsoid. We
avoid this approach, however, both because it involves extra computational expense
in finding these points, and because the new neighborhood obtained by adjoining
these points is less localized.

An alternative approach is to decrease the size of the ellipsoid to exclude points not
in the k-neighborhood, as depicted by the smaller ellipsoid centered at the centroid,
Z. Such an ellipsoid could contain a proper subset of the k-neighborhood so that K,
the Z.-valued variable defined by the number of X; # X; inside the ellipsoid, may be
less than k. The problem with this approach, however, is that in higher dimensions,
the ellipsoid may contain no data points, introducing a log(0) into Equation ([3.34)).

Instead of centering at the centroid, however, the ellipsoid could be centered at X;.
If the length of the major axis is taken to be the Euclidean distance to the furthest
neighbor in the k-neighborhood, then the ellipsoid and its interior will only contain
data points in the k-neighborhood because the distance from X; to any point on the
ellipsoid is less than or equal to the distance to the furthest of the k neighbors (the
sphere in Fig. , which is less than or equal to the distance to any point not in the
k-neighborhood. This neighborhood will contain at least one data point. An example
of such an ellipsoid is shown in Fig. which includes K;(w) = 3 data points.

The GSG estimator [40] is centered at X;, but the lengths of the sides of the
hyper-rectangles seem to be determined by the largest projection of the local data
onto the axes, which destroys the ratio of singular vectors that describes the local
geometry. In addition, it is possible that the corners of the hyper-rectangles may
circumscribe more than the k£ neighbors of X;, even though a constant k& neighbors

are assumed in the estimate.
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3.3.3 The g-knn estimates for H(X) and I(X;Y)

In order to explicitly define the global estimate of entropy that results from this choice
of center, define the R-valued variable, €;(X;), to be the Euclidean distance from X;

to the kth closest data point, X, ;. Define

Rl =¢ (X»)ﬁ (3.50)
to be the lengths of the axes of the ellipsoid centered at X;, for [l = 1,...,d. Note
that R} = e,(X;), and
R+ gh
RE S

(3.51)

Letting vy be the volume of a unit ball in R%, the volume of this ellipsoid can be

determined from the formula

d
‘/i = 'UdHT'f; (352)
=1
gt
= vdek(Xi)dS—;. (3.53)

Substitution into Equations (3.34) and (3.35)) yields

~ n N n d 4
Hy_jnn(X) =log(n) 4 log(va) — %Z log(K;) + % Z log(er(X;)) + % Z Z log (%)

i=1 i=1 =1

(3.54)

The estimate for I(X;Y') is then obtained using Eq. (3.42). The term + SV S log (g—i)
is small when the local geometry is relatively flat, but, as is demonstrated in Sec-

tion [3.3.4] it can have a large impact on the estimate for more interesting local
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geometries.

3.3.4 Examples

This section compares KSG estimates of mutual information on simulated examples
with the estimates of the g-knn estimator defined in Sec [3.3.2l The examples are
designed so that the local stretching of the distribution is controlled by a single scalar
parameter, «. Plotting estimates against « suggests that the local stretching is a
source of bias for KSG, but that the g-knn estimator is not greatly affected by the
stretching.

The examples are divided into four one-parameter families of distributions in
which the parameter « affects local geometry. Each family is defined by a model,
consisting of the distributions of a set of variables and the equations that describe
how these variables are combined to create X and Y. The objective is to estimate
I(X;Y) directly from a sample of size n without any knowledge of the form of the

model.

The description of the families:

The first three families are designed to be simple enough that the mutual information
can be computed analytically. Families 1 and 2 are 2d examples with 1d marginals
built around the idea of sampling from a 1d manifold with noise in the transverse
direction. The third family is a 4d joint distribution with 2d marginals. The fourth
family is designed to be more typical of dynamical systems research and is defined
by a pair of coupled Hénon maps with dynamically added noise. As opposed to
the first three families, the fourth family is too complicated to find the true mutual

information so the qualitative behaviors of the estimators are compared.
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Family 1 : The model is

Y=X+aV (3.55)

X,V iid. U(0,1). (3.56)

The result is a support that is a thin parallelogram around the diagonal Y = X.
As o — 0 the distributions become more concentrated around the diagonal

Y = X. The mutual information of X and Y is

I(X;Y) = —log(a) + a — log(2). (3.57)

Family 2 : The second example is meant to capture the idea that noise usually has
some kind of tail behavior. In this example V' is a standard normal, so that the
noise term, aV’ is normally distributed with standard deviation . The model

is

Y =X+aV (3.58)
X ~U(0,1), (3.59)
V ~N(0,1), (3.60)

where X and V' are independent.

In this case the exact form of the mutual information is

]unq:—bg@+¢Qﬁ)—¢Giﬁ>—;%@my (3.61)

(0%

where ® is the cdf of the standard normal distribution.
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Family 3 : In the third example the joint variable is distributed as

(X,Y) ~N(0,%) (3.62)

Y= . (3.63)

-3 3 |-1 2+«

The first two coordinates of this variable belong to the variable X and the
third and fourth to the variable Y. Thus, the upper left 2 by 2 block is the
covariance matrix of X and the bottom 2 by 2 block is the covariance of Y. As
long as a > 0, ¥ is positive definite but if & = 0 then X is not of full rank,
and the distribution N (0,Y) is called degenerate, and is supported on a 3d
hyperplane. When « is positive but small, the distribution can be considered
to be concentrated near a 3d hyperplane. In this case the mutual information

of X and Y is

[(X:Y) = —% log (%) (3.64)

where | - | is the determinant.
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Family 4: The system is

Xin1=a—Xi, +bXapn+m (3.65)
Xont1 = X1+ 12 (3.66)
Vipir = a— (cX1,Y1i0+ (1 —0)Y7,) + Y2, (3.67)
Yont1 = Y1, (3.68)
m ~U(—a, ) (3.69)
e ~U(—a, ), (3.70)

where a = 1.2, b = 0.3, and the coupling coefficient is ¢ = 0.8. When a = 0 the
system is the same coupled Hénon map described in a number of studies [69]
except that a is reduced from the usual 1.4 to 1.2 so that noise can be added
without causing trajectories to leave the basin of attraction. In these studies it
is noted that a coupling coefficient of ¢ = 0.8 results in identical synchronization
so that in the limit of large n, X;, = Y7, and X5, = Ys,, implying that the
limit set is contained in a 2d manifold. Thus, in the long term, and as a — 0,

samples from this stochastic process should lie near a 2d submanifold of R*.

Families 1 through 3 are simple enough that, instead of using g-knn, one might
be able to guess the algebraic form of the model and perform preprocessing to isolate
noise and consequently remove much of the bias due to local geometry. For Families 1
and 2, for instance, if the algebraic form of the model Y = X + oV is known, one can
express the mutual information as I(X;Y) = H(Y) — H(aV) + I(X;aV), where the
term I(X; V) can be estimated by KSG after dividing by standard deviations (or, if
oV is thought to be independent noise, then it would be assumed that 1(X;aV) = 0).

This rearrangement of variables is in essence a global version of what the g-knn



CHAPTER 3. DATA BASED INFERENCE OF CAUSAL RELATIONSHIPS 105

estimator accomplishes locally using the svd.

A more complex example, which would likely resist efforts to preprocess the data
to counteract the effects of local geometry, is provided by a 4d system consisting
of coupled Hénon maps. In this system both X and Y are 2d and Y is coupled
to X, but not vice-versa, so that X can be thought of as driving Y. The purely
deterministic system approaches a measure 0 attractor so that I(X;Y") would not be
defined without the addition of noise, which is added to the X variable, and reaches
the Y variable through the coupling.

It is important to note that the noise in Family 4 is introduced dynamically, and
transformed by a nonlinear transformation on each time step. The samples lie near
the Hénon attractor embedded in the 2d submanifold. If one thinks of the data as
Hénon attractor plus noise, then the noise depends on X and Y in a nonlinear manner,

and produces heterogeneous local geometries near each data point.

Numerical Tests

There are two ways in which the k-neighborhoods in these examples can get stretched.
One way is that « gets small while n stays fixed. The other is that the local neigh-
borhoods determined by the k nearest neighbors get larger. This occurs when « is
small but fixed, and n is decreased, because the sample points become more spread

out.

Choice of parameter k: FEach of the g-knn estimates use a neighborhood size
of k = 20. The value £ = 20 was chosen because k should be small enough to
be considered a local estimate, but large enough that the svd of the (k 4+ 1) x d
matrix of centered data should give good estimates of the directions and proportions

of stretching. The value k£ = 20 is chosen because it seems to balance these criteria,
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but no attempt has been made at optimizing k. Furthermore, in principle £ should
depend on the dimension of the joint space because the number of axes of an ellipsoid
is equal to the dimension of the space. Therefore a better estimate might be obtained
by using a larger £ for Family 3 than the value of k used in Families 1 and 2.

For the KSG estimator, k is allowed to vary between 2 and 6. The value k£ = 1
is excluded because it is not used in practice due to its large variance. The most
common choices of k are between 4 and 8 [41]. In each numerical example in this
section, however, the KSG estimates become progressively worse as k increases, so

that we omit the larger values of k in order to better present the best estimates of

KSG.

Explanation of numerical results: Figures [3.4] and [3.5] show the results of KSG
and g-knn estimates on samples of each of the four types of joint variables corre-
sponding to the four families. In the figures on the left n is fixed at 10* and « varies.
In the figures on the right n is allowed to vary but « is fixed at 1/100. The top row of
Figure correspond to samples from Family 1, the middle row to Family 2, and the
bottom row to Family 3. Figure shows the results for Family 4. For each value of
a or n, one sample of size n of the joint random variable is created and used by both
estimators. In Fig. the true value of the mutual information is plotted as a solid
black line.

As thickness is varied: In each of Figs. , the true value of I(X;Y)
increases asymptotically as log(«) when o — 0 and in Fig. it increases as 3 log(a).
The KSG estimates do well for larger a but level off at a threshold that depends on
the family. Although a bias is indicated by an average, since all of the KSG estimates
beyond this threshold are less than the true value, it is safe to conclude that KSG

becomes biased beyond this threshold. If the estimates were unbiased then by chance
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around half of them would appear above the black line. The bias gets worse as «
decreases, indicating that local geometry is a likely cause of the bias. The g-knn
estimator, in contrast keeps increasing like log(a) as a gets smaller, suggesting that
the adaptations to traditional knn methods allow the g-knn method to adapt to the
changing local geometry. It should be noted that the g-knn estimates in also
show signs of bias below the threshold where KSG becomes biased. An important
difference, however, is that this bias does not seem to depend on a.

Figure |3.5a] compares the estimates given by the g-knn estimator and the KSG
estimator in Family 4 as « is decreased. The exact value of I(X;Y) is unknown,
but there are qualitative differences between the performance of the two estimators.
Qualitatively, it is expected that as a decreases the true value of I(X;Y’) increases
unboundedly. This behavior is captured by the g-knn estimator, which appears to
increase asymptotically at about the rate of 1.95log(c«). The qualitative behavior is
not captured by the KSG estimator, which appears asymptotically constant as o — 0.

In all four examples there is evidence that the variance may be relatively low
for both the KSG and g-knn estimator. Although estimating the variance of the
estimator would require many samples per value of «, the relative colinearity of the
estimates for each estimator might be taken as evidence of low variance. Intuitively,
a high variance would suggest that the estimates could go up or down a lot depending
on the sample, and would therefore not lie in a straight line.

It is also interesting that the threshold beyond which KSG performs poorly occurs
for larger values of « in Families 3 and 4 than in Families 1 and 2. The reason for
this can be explained by the fact that Families 3 and 4 have 4d joint distributions.
Colloquially speaking, there is a lot more space in higher dimensions, so the mismatch

between the volume element and the local geometry can be much greater.
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As sample size is varied: In each of Figs. |3.4b| [3.4d| [3.4f, and [3.5bl o = 10? is

fixed and n is allowed to vary. The true value is constant for all n since it is determined
by the distribution, which depends on « alone. For large n, KSG outperforms g-
knn since it is asymptotically unbiased [41]. In Fig. [3.4b] whereas KSG converges
relatively rapidly, and is visibly indistinguishable from the true value by n ~ 2 - 105,
the g-knn estimator seems to have slightly negative asymptotic bias. In Fig. the
convergence of KSG seems even faster, and yet the g-knn estimator seems slightly
negatively biased. In Fig. the convergence of KSG is much slower (perhaps
only linear for n < 10%), which is likely due to the fact that the family has a 4d
joint distribution. However, it does seem to have reached the true value by n = 106,
whereas the g-knn estimates appear positively biased at n = 10° and may not have
yet reached their asymptotic value. In Figure [3.5b] none of the estimators seem to
have leveled off by n = 106[]]

The slow convergence of KSG in Families 3 and 4 suggests that the asymptotic
convergence property may not be of much practical significance in application. Know-
ing that an estimator is asymptotically unbiased gives the hope that with a large data
set the estimate should be near the true value. If n = 10? is a relatively large data
set for a particular field of study, then Figs. [3.4f and suggest that the KSG
estimates could still be horribly biased. Furthermore, even if one could gather more
data, they are faced with the computational time limits of KSG, which is at best
O(nlogn). The examples suggest that increased dimension greatly slows down the
convergence. In fact, the bias of KSG is O(n~'/?), where d is the joint dimension [41].

As these examples demonstrate, even for d = 4, and using simple examples that are

5The number n = 10® was chosen based on the computation time of KSG — higher n would have
been unattainable in a reasonable amount of time. The g-knn computations are much faster than
the KSG computations because the entropies are computed separately, and do not require a “range
search” on each step.



CHAPTER 3. DATA BASED INFERENCE OF CAUSAL RELATIONSHIPS 109

defined by a simple set of equations, the estimator can be very biased. For more real-
istic and higher dimensional examples with as much local stretching and compression
as the examples in Families 3 and 4, the KSG estimates would likely be extremely
Inaccurate.

The bias in KSG can be explained by a mismatch between the geometry of the
local volume elements and the underlying measure. When n is small, the volume
elements must be large in order to contain &k elements. Such a volume element might
not overlap much with the area of concentration of the underlying measure. In higher
dimensions the volume element would have more volume which does not overlap the
location where the measure is concentrated, and so there would be more bias, as
indicated by Figs. and [3.5b] As n gets larger, the sample points become denser,
and in the limit of large n, perhaps even locally uniform. In this case, the KSG local
volume elements are a good match for the local geometry and no bias results.

By using volume elements that match the local geometry, the g-knn estimator
stays relatively constant under changes in n. For Families 1-3 the g-knn estimate
stays near the true value as n decreases, and in Family 4 the g-knn estimates are
stay relatively constant as compared to the KSG estimates. In Family 3 for low n,
there are points both above and below the true value, giving the impression of an
unbiased estimator. It is remarkable that in Families 1-3 the estimates stay relatively
unbiased with as few as 32 sample points. It is possible that this is partly due to the
linearity of the underlying measures (Families 1 and 2 lie close to a line and Family
3 lies close to a hyperplane). If the underlying measures were concentrated near a
nonlinear manifold, then the local volume elements might not match the underlying
measure as well. In particular, the major axis of the ellipsoid might behave like a
tangent line segment to the underlying manifold, so that portions of the ellipsoid

would not cover the manifold. This relates to the trade-off between having a less
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local volume element (higher k) in exchange for greater description of the geometry
of the underlying measure.

Although the bias remains relatively constant as n decreases, the variance seems
to increase, as is indicated by the more jagged lines for the g-knn estimates for
lower n in all four families. This might be expected because the ellipses are random
ellipses, determined by the placement of the sample, and therefore, perturbations to
the sample can alter the amount of overlap with the underlying probability measure.
In most of these families, smaller sample size implies more elongated ellipses, so that a
perturbation to the directions of the axes would have a larger effect. The effect could
be much more complicated, however, and more research would need to be done. That
said, in each of the first three families, the added variance of g-knn for small n seems

relatively acceptable as compared to the large bias of KSG.

3.3.5 Discussion

A common strategy in nonparametric (e.g., knn) estimation of differential entropy
and mutual information is to use local data to fit volume elements. The use of
geometrically regular volume elements requires minimal local data, so that the volume
elements remain as localized as possible. This section introduces the notion of a g-knn
estimator, which uses slightly more data points to fit local volume elements in order
to better model the local geometry of the underlying measure.

As an application, this section derives a g-knn estimator of mutual information,
inspired by a consideration of the local geometry of dynamical systems attractors. A
common feature of dissipative systems and systems with competing time scales is that
their limit sets lie in a lower dimensional attractor or manifold. Locally the geometry
is typically characterized by directions of maximal stretching and compression, which

are described quantitatively by the Lyapunov spectrum. Ellipsoids are used for local
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Figure 3.4: A comparison of the max-norm KSG estimator with the g-knn estimator
on samples from the three families of variables. The top row of figures correspond to
variables from family 1, the middle row to variables from family 2, and the bottom
row to variables from family 3. In Figs. (a), (c), and (e), the sample size n is fixed at
10* and the thickness parameter « of each family is varied. On the right the thickness
parameter of each family is fixed at o = .01 and n is allowed to vary. For each value
of a (left) or n (right) one sample of the joint random variable of size n is drawn and
both the KSG and g-knn estimates are performed on the same sample.
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Figure 3.5: A comparison of the max-norm KSG estimator with the g-knn estimator
for the stochastic coupled Hénon map described in Eqs.(3.65)) through (3.70)). In (a)
the sample size is fixed at 10* while « is allowed to vary. In (b), a is fixed at o = .01
and sample size varies.

volume elements because they capture the directions of stretching and compression
without requiring large amounts of local data to fit.

It is worth noting that the ellipsoids are simply spheres in the Mahalanobis dis-
tance determined by the local data [77]. The metric that is used to define the spheres
in the g-knn estimate, however, varies from neighborhood to neighborhood. This be-
havior is very different from many other knn estimators of pdfs where the spheres are
determined by a global metric (typically defined by a p-norm). In this perspective,
g-knn methods use data to learn both local metrics and volumes, and hence a local
geometry, justifying the use of the name g-knn.

The numerical examples suggest that when it is not possible to preprocess the
data to properly reflect the local geometry, the g-knn estimator outperforms KSG
as the underlying measure becomes more thinly supported. The results suggest that
the improvement to the bias might extend up to the boundary of § with the singular

distributions. The g-knn estimator also outperforms KSG as sample size decreases,
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a result that is particularly promising for applications in which the number of data
points is limited. However, unlike the Kozachenko-Leonenko estimator of differential
entropy and the KSG estimator of mutual information, the g-knn estimator as based
on ellipses developed in this section is not asymptotically unbiased. In our future
work we hope to eliminate this asymptotic bias in a manner analogous to Ref. [112]
to gain greater accuracy for both low and high values of n.

There are also other descriptions of local geometry that suggest alternative g-knn
methods. For instance, there are nonlinear partition algorithms such as OPTICS [4],
which are based on data clustering. Also, entropy is closely related to recurrence,
which is suggestive of alternative g-knn methods based on the detection of recurrence

structures [46].

3.4 Nonparametric Hypothesis Testing

In addition to the estimation of CSE from data, a key step in the algorithmic inference
(such as oCSE) of direct causal links from data is determining whether or not the
estimated CSE value C;};Z should be regarded as being strictly positive.

This is an example of a one-sided hypothesis test. Hypothesis tests are much like
estimators for estimands that can take only one of two values. Let g be an estimand
and suppose that {Ag, A1} is a measurable partition of R. Then g divides § into two

sets of distributions,

Hy={rvegF:gv) € Ay}, and (3.71)

H, = {V €F: g(V) € Al} (372)
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Define the loss function to be the 0-1 loss function [111],

L(l/, d) _ 0 Xa (g(y)) = Xa, (d) (373)

1 X, (9(v)) # Xa, (d).

Then the risk of using 7" when the distribution is v is

R T) P(T(X) € A;) v e H (374

P(T(X) S Ao) Vv E Hl.

Even in simple cases there are no optimal estimators [111]. The most common
approach, however, is to notice that the risk can be divided into two types of errors,
type I, and type II corresponding to the first and second lines of Eq. , and to
put priorities on avoiding each type of error. It is customary to place an upper limit
on the probability of making a type I error, «, and then do whatever is possible to
minimize type II errors.

In parametric situations one can often directly calculate the distribution of g(v)
under the assumption v € Hy. The distribution of g(v) can then be used to define
a rejection region as a subset of R that integrates to a under the null distribution.
This sets up a test under which if 7'(X) is in the rejection region then the hypothesis
v € Hy is rejected.

The nonparametric case is more tricky because instead of knowing the distribu-
tions for each v € Hy, one only has a single sample. To address this, we consider a
shuffle test for the null hypothesis of C;?\Z =0 |124] (also see Ref. [22, 131} |132]).

Let

((Xla}/lazl)a<X27}/2722)7"'a(Xn7Yn7Zn)) (375)
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be a sample (a W™@x+dv+dz)_yalued variable), where 1,. .., n serve as discretized time
indices. For any permutation, o, of {1,...,n}, define X, = (X;1), Xo@2),-- -, Xo@m))-
For a typical o there should be no pattern of dependence between X,; and Y;,;, so

that
Cx,-v|z = 0. (3.76)

There are also a large number of permutations, so that a single w € €2 can be used
to infer a distribution for the estimates, CZ_;‘ 7 by treating o as a random variable
sampled from a different probability space.

A reasonable test for Cx_,yz = 0 is C’;_,;Z < C’;_>\y| 7. A type I error would
occur when Cx_,y|z = 0, but the test finds Cx_,y|z > 0. Thus, an estimator with
a type I error of approximately «, is defined by rejecting Hj if C’;;Z > Cz_;| z
more than 1 — « times a set number of permutations that will be sampled.

Many hypothesis tests of the sort are executed during the oCSE algorithm. The
inclusion /exclusion of a link typically requires multiple testings that are not necessar-
ily independent, and as such, the « in a single significance test of CSE should not be
interpreted as the significance level of the directed links inferred by the entire oCSE
algorithm. The false positive rate for the entire algorithm is expected to be some-
what larger than . However, numerical tests suggest that for a class of multivariate
Gaussian distributions the false positive ratio is closely related to the a used in the

individual tests [124]. Exact correspondence between o and the significance level of

the inferred links in general remains an open challenge.



Chapter 4

Application to collective animal

motion

Both to demonstrate the types of information that can be gleaned from the direct in-
teraction networks inferred by the oCSE approach and to show that such networks are
computable for real empirical data sets that contain noise and other non-idealities, we
apply oCSE to empirical measurements of swarming insects. We have published the
results in an article entitled “Inference of causal information flow in collective animal
behavior” in IEEE Transactions on Molecular, Biological and Multi-Scale Communi-
cations |73|. Here, we briefly describe the experimental methodology, including the
insect husbandry procedures and data acquisition system, and then show the results
of the oCSE computation. These results enable us to compare and contrast spatially

nearest neighbors with direct causal neighbors.
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4.1 Background

Collectively interacting groups of social animals such as herds, schools, flocks, or
crowds go by many names depending on the specific animal species. In all cases, they
tend to display seemingly purposeful, coordinated group-level dynamics despite the
apparent absence of leaders or directors. These coordinated group behaviors appear
to emerge only from interactions between individuals, analogous to the manner in
which macroscopic observables are determined by microscopic interactions in statisti-
cal physics. Thus, collective behavior has captivated a broad spectrum of researchers
from many different disciplines |5} 6, 29, |43, |49, 54, [74} |80, 81} 186, |97} 101}, (113} |115]
116} [120] 122, |142} 143].

Making the analogy with statistical physics more concrete, it is reasonable to
suggest that a deep understanding of collective group motion may arise from three
parallel pursuits. We can perform a macroscopic analysis, focusing on the observed
group-level behavior such as the group morphology [91] or the material-like properties
[85, 186, |125]; we can perform a microscopic analysis, determining the nature of the
interactions between individuals |55} 61}, 74, |97]; and we can study how the microscopic
interactions scale up to give rise to the macroscopic properties [134].

The third of these goals—how the microscopic individual-to-individual interac-
tions determine the macroscopic group behavior—has arguably received the most sci-
entific attention to date, due to the availability of simple models of collective behavior
that are easy to simulate on computers, such as the classic Reynolds |102], Vicsek
[134], and Couzin [24] models. From these kinds of studies, a significant amount is
known about the nature of the emergence of macroscopic patterns and ordering in
active, collective systems [127]. But in arguing that such simple models accurately

describe real animal behavior, one must implicitly make the assumption that the in-
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teractions between individuals are correctly represented. Any model of interactions
has two key and distinct components: a specification of the mathematical form of
the interaction, and, more fundamentally, a choice as to which individuals interact.
Given that it is difficult to extract the appropriate social interaction network from
empirical measurements, models typically replace this hard-to-measure social network
with the simple-to-define proximity network [89]. Thus, it is assumed that individuals
interact only with other animals that are spatially nearby. No matter what species is
involved, the answer to the question of whether interactions are generally limited to
or dominated by spatial local neighbors has strong implications. Recently, for exam-
ple, scientists studying networks have shown that introducing even a small number
of long range interactions into a lattice can impart qualitative changes to the ob-
served macroscopic behavior [66, |135]. Consequently, the question of whether flocks
or swarms or herds also contain long range interactions between individuals may have
important implications for the understanding of collective motion.

Efforts to move past the simple framework of assuming that the local spatial
neighborhood of an individual dominates its behavior have been largely theoretical
[15, [16], as it is challenging to extract the underlying interaction network from mea-
sured data. Empirical methods have often relied upon various types of correlationa][]
(or other pairwise) time-series analysis [97], which by design only captures linear de-
pendence and fail to detect the nonlinear relationships that are typical in real-world
applications (See Chapter 2 for a more detailed analysis).

An alternative paradigm would be to use information theoretic methods that are
capable of detecting nonlinear dependence. Chapter 2 contains a more detailed de-

velopment of information theoretic methods. In this chapter we apply CSE and the

!Unless otherwise noted, throughout the chapter we use “correlation” to mean the commonly
adopted “Pearson linear correlation” in data analysis.
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oCSE algorithm. In the application of inferring interactions among animals, oCSE
requires knowledge only of the positions (or velocities or accelerations) of individuals
in a group and is thus directly computable from empirical data. Because we define
interactions via the information theoretic notion of the direct exchange of informa-
tion as detected by uncertainty reduction, we need not make any assumptions about
the spatial proximity of interacting individuals or the precise mathematical form of
interaction. To demonstrate the unique utility of this oCSE network inference al-
gorithm, we apply it to experimental measurements of the motion of individuals in
mating swarms of the non-biting midge Chironomus riparius. In addition to showing
the computability of the CSE in this data set, the oCSE approach clearly reveals
that spatial proximity and interaction are not synonymous, suggesting that a deep
understanding of collective behavior requires more subtle analysis of interactions than

simple position-based proximity metrics.

4.2 Experimental Methods

Many different species of insects in the order Diptera exhibit swarming as a part of
their mating ritual [33], and such swarms are a well studied, canonical example of
collective behavior. Swarms are also an excellent model system for testing the oCSE
algorithm: since swarms are internally disordered and show little overall pattern or
correlation [84], it is difficult to tell by eye which individuals, if any, are interacting.

Here, we apply the oCSE algorithm to data collected from the observation of
swarms of the non-biting midge Chironomus riparius under controlled laboratory
conditions. The laboratory group of Nicholas Ouellette at Stanford University main-
tained the colonies of Chironomus riparius and performed all aspects of data collec-

tion. Details of the insect husbandry procedures and experimental protocols have
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been reported in detail elsewhere [62, 96|, so we describe them only briefly here. The
breeding colony of midges is kept in a cubic enclosure measuring 91 cm on a side; tem-
perature and humidity are controlled via laboratory climate-control systems. Midge
larvae develop in 9 open tanks, each containing 7 L of oxygenated, dechlorinated wa-
ter and a cellulose substrate into which the larvae can burrow. Adult midges live in
the same enclosure, typically sitting on the floor or walls when they are not swarm-
ing. The entire enclosure is illuminated from above by a light source that provides 16
hours of light in each 24-hour period. When the light turns on and off, male midges
spontaneously form swarms. Swarm nucleation is encouraged and the position of the
swarm is controlled by the positioning of a “swarm marker” (here, a 32x32 c¢m piece
of black cloth) placed on the floor of the enclosure. The number of midges partici-
pating in each swarming event is uncontrolled; swarms consisting of as few as one or
two midges and as many as nearly 100 have been observed[98].

To quantify the kinematics of the midges’ flight patterns, the group reconstructs
the time-resolved trajectory of each individual midge via automated optical particle
tracking. The midge motion during swarming is recorded by three Point Grey Flea3
digital cameras, which capture 1 megapixel images at a rate of 100 frames per second
(fast enough to resolve even the acceleration of the midges [62]). The three cameras
are arranged in a horizontal plane outside the midge enclosure with angular sepa-
rations of roughly 45°. Bright light can disrupt the natural swarming behavior of
the midges; thus, the group illuminates them in the near infrared, which the midges
cannot see but that the cameras can detect. In each 2D image on each camera, midge
positions are determined by simple image segmentation followed by the computation
of intensity-weighted centroids. These 2D positions were then combined together into
3D world coordinates via stereomatching, using a pinhole model for each camera and

calibrating via Tsai’s method [128]. To match the individual 3D positions together
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into trajectories, the group used a fully automated predictive particle-tracking method
originally developed to study highly turbulent fluid flows [90]. Occasionally, tracks
will be broken into partial segments, due to mistakes in stereoimaging or ambiguities
in tracking; to join these segments together into long trajectories, the group used Xu’s
method of re-tracking in a six-dimensional position-velocity space [141]. After tracks
were constructed, accurate velocities and accelerations were computed by convolving
the trajectories with a smoothing and differentiating kernel [98]. The final data set
for each swarming event therefore consists of time series of the 3D position and its

time derivatives for each midge.

4.3 Inferring Insect Interactions using oCSE: Choice
of variables, parameters, and conditioning

After acquiring the experimental data, several decisions need to be made with respect
to the choice of variables, parameters, and conditioning in the oCSE algorithm, in
order to produce meaningful results that are interpretable.

The data sets used here contained empirical measurements from 126 distinct
swarming events with varying numbers of participating individuals. For each swarm,
time series of position, velocity, and acceleration were collected for each individual
insect. We narrowed down the data by considering the collection of long (> 1 second)
disjoint time intervals in which the corresponding data contains exactly the same
number (> 5) of insects in each such inteval. In other words we restricted our studies
to data sets where the same “actors” were at play throughout the window of study.

Since the datasets include the spatial trajectories, the available variables include
position, velocity, acceleration (all 3D), or any reasonable function of one or more of

these, for example functions that project onto individual coordinate axes. We used
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the 3D acceleration data as opposed to position or velocity, for two reasons. One is
that accelerations are often interpreted as “social forces” in the animal motion liter-
ature [96], and so seemed the most suited form of data for investigating interactions.
The other reason is that the acceleration showed less autocorrelation than either the
position or velocity data.

Next, given that the motion of the insects is not stationary, we expect the causal
influences to vary over time even within each experiment. For this reason, we apply
oCSE to infer causal networks from data defined in relatively small time windows
instead of the entire time span of each experiment. We choose the time window size
to be 1 second, corresponding to 100 data samples (at a sampling frequency of 100H z),
which seems to be the minimal window size that produce relatively continuous-in-time
causal networks.

In addition, we seek to infer causal influences from other midges beyond the influ-
ence of a midge to itself. To ensure that the self-influence is properly accounted for,
we modified the starting point of the oCSE algorithm as described in Sec. to be
Z ={Y} (for a given midge V), and always keep Y € Z in both the discovery and
removal phases.

Furthermore, the time-lag 7 is chosen to be 7 = 0.05 seconds (5 time steps)
based on biological considerations. In particular, we observed that [96] the midges
tend to travel in a straight line for (usually less or equal to) 0.1 seconds before
making a sudden acceleration over the next few frames, as if there were gathering and
processing information during their straight flight before reacting. Fourier analysis
reveals that the most important frequency for this acceleration is 1 acceleration per
0.1 seconds. Thus, the time lag should be smaller than 0.1 seconds in order to
capture these accelerations. However, making 7 too small reduces the amount of

useful information comparing against noise. The choice of 7 = 0.05 seconds achieves
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Figure 4.1: Information flow from the perspective of midge 1. Only information flows
into midge 1 (i.e., direct causal links to 1) are depicted, and are represented by the
solid lines. Each panel corresponds to an oCSE computation using 1 second (100
frames) of data. The positions of the midges are given by their initial positions,
to during the interval. The time lag—see the definition of CSE in Eq. (1.7.1)—is
7 = 0.05 seconds. The initial time ¢, = 0.01 of panel (a) is chosen to be the point
when insect 5 becomes observable.

a reasonable compromise.

Finally, the estimator of CSE (see Appendix A) requires a choice of the parameter
k. In this study we fixed k = 4 for all computations (too small of a k gives estimates
with high variance), noting that a number of papers offer heuristics for choosing & |75,
117] as a function of sample size. We chose hypothesis tests with significance level
a = 0.01 in both the forward (discovery) and backward (removal) phases of the oCSE
algorithm. In theory, o should control the sparsity of the desired graph but we were

unable to confirm this numerically. We typically ran 1000 trials per hypothesis test.
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Figure 4.2: Directed graphs of all inferred information flows corresponding to the first
two panels of Fig. Each edge represents a flow of information and takes on the
color of the information source. The parameters used in the oCSE algorithm are the
same as in Fig. f.I} 7 = 0.05, each computation uses 100 frames of data, and the
positions are determined by the first frame.
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4.4 Results

The most basic result of applying the oCSE algorithm is the determination of the
direct causal links between individuals in the swarm. Although the data contains
many suitable time series describing the motion of more than 30 swarming midges,
Figs. 4.1f and describe a small swarm of 5 midges for the purpose of illustrating
the application of oCSE to finding direct causal links. In Fig. [4.1] we show four
consecutive snapshots of these links from the perspective of a single insect (labelled
as “1”) over a period of 2 seconds. In the first snapshot, panel (a), midge 1 is identified
as being influenced by midges 2 and 4; that is, it is receiving information from them.
Notice that in the second snapshot, (b), the link from 2 to 1 has been lost, but 1 is
still receiving information from 4. Perhaps because it moved closer, 1 is also receiving
information from 3 in the second snapshot. By panel (c), 1 seems to have noticed 5,
but by the final snapshot this link has been lost.

Such transient interactions are reminiscent of those we described earlier using a
different (time-series-based) measure [97]. In that case, we had hypothesized that
the primary purpose of such interactions was for the registration of the gender of
other midges in the swarm, since the biological purpose of swarming in this species is
mating. A similar process may be at work here, and midge 1 may have, for example,
successfully identified midge 2 after the first snapshot so that further information
transfer was unnecessary.

In addition to studying only the information flows into a single insect, we can look
at the entire directed graph returned by the oCSE algorithm. In Fig. [£.2] we show
this full directed graph for the two initial conditions corresponding to frames (a) and
(b) of Fig. . The direction of an edge is given by its color, where the source of the

information flow determines the color.
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One easy set of statistics to read off of these graphs are the in and out degrees.
The in-degree of a node is the number of edges pointing to that node and the out-
degree is the number of edges with one end at the node but pointing to a different
node. In these plots, the out-degree of a node is the number of edges that are plotted
in the same color as the node and the in-degree is the number of edges with an end
at the node but which are plotted in a different color. So, for instance, in Fig. ),
the in-degree of midge 1 is 2 (verifying the computation used to create Fig. (4.1h)),
and the out-degree is 3.

The average in-degree (which is always equal to the average out-degree) is 12/5 =
2.4 in both (a) and (b) of Fig. [4.2] In general, we found that the average number of
causal neighbors per midge to be in between 2 and 3, and such number does not seem
to change as a function of the swarm/network size in our experiments. In fact, for
more than 95% of the cases over all analyzed swarming data (many of which contain
> 5 midges), the maximum number of causal neighbors is always less or equal to 5.
These findings suggest that a typical midge pays attention to a relatively constant
number of other midges at any particular time. This hypothesis is lent more credence
by noting that the in-degree of every individual midge is the same in (a) and (b).

The out-degrees are much more variable, however. Biologically speaking, out-
degrees may give information on which midges are the most important, in the sense
that if a midge has a high out-degree then others seem to be reacting to the motions
of this midge. In Fig. ), although the most spatially central node, midge 2, has
an out-degree of 3, so does midge 1, which is not as spatially central. Furthermore,
midge 4 has the largest out-degree with every other midge paying attention to 4.
So, although midge 2 is the most spatially central node, we say that midge 4 has
the highest “degree centrality”. A similar analysis can be carried out on panel (b)

showing that at ty; = 0.34, midge 4 is now the most spatially central, but node 1
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has the highest degree centrality. Some statistics that give more detailed information
about centrality are eigenvector centrality and betweenness centrality.

Rather than attempting to comprehensively apply all available graph analysis
methods, we give two simple observations and refer the reader to [83] for more on
the analysis of graphs. In Fig. ({.2h) the subset of midges {3,5} forms a “sink” for
information. Although 3 and 5 are gathering information from many midges, they
are apparently unable to send that information to any other midges than 3 and 5.
If one were to code edges in an “adjacency matrix” of 1’s representing edges and
0’s represent the lack of an edge, this feature corresponds to the adjacency matrix
being reducible. The set {3,5} generates the only non-trivial subgraph closed under
inclusion of all out-going edges. A less restrictive analysis that is similar in flavor
is community detection [83], but this type of analysis is usually reserved for larger
graphs.

Again in Fig. (4.2h), the edges linking {1,2,4} generate a triangle in which in-
formation can flow in both directions around the triangle. This is a special relation-
ship between three nodes called a 3-clique. It should be compared with {2,4,5} in
Fig. ) in which information flows only in one direction. In swarms with many
other midges it is conceivable that most randomly picked triplets {a, b, ¢} would have
no triangle between them. The density of different types of triangles in a set is quanti-
fied by the clustering coefficient. Social networks tend to have much higher clustering
as measured by clustering coefficients than technological networks and networks whose
edges are determined randomly [82].

Because both Figs. and show that the configuration of causal links can
and does change in time, it is reasonable to ask about the temporal variability and
stability of the oCSE results: if the links switch seemingly at random from time

step to time step, then the results would be unintelligibly unreliable. To check the
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Figure 4.3: Evolution of a causal neighborhood of a single midge over one second
following the trajectories of 5 midges. This figure gives a more (temporally) detailed
look at the information flows depicted in Fig. 4.1at the expense of spatial information.
Again, midge 1 is the target individual; that is, we are inferring causal links toward
midge 1. Edges from j to 1 are replaced by a point at (¢, ) for the appropriate
to. The inputs and parameters are the same as those used to create Fig. .1 Long
stretches of symbols or blank space demonstrate that the oCSE algorithm is robust
to changes in the spatial configuration and kinematics of the swarm.

stability and reliability of the oCSE results, we computed the causal links for sets of
overlapping time intervals, as shown in Fig. for a particular example. Although
there is occasionally some drop-out of links from one instant to the next, the overall
results of the algorithm are clearly stable and more-or-less continuous in time; and
we conjecture that the discontinuously dropped causal links could in fact be restored,
if necessary, by improving the tracking accuracy or by some post-processing step or
some combination of both.

Finally, as noted above, it is intriguing to note that midges connected via causal
links are not always the spatially closest to each other. Although a full characteri-
zation and complete understanding of the distinction between spatial proximity and
causal information flow is beyond the scope of the present paper, we can at least de-
scribe at a statistical and macroscopic level the difference between those by measuring
the probability density functions (pdfs) of the distance between nearest spatial neigh-
bors and nearest causal neighbors. These pdfs are plotted in Fig.[4.4)and show that as

compared to simply calculating minimum distances for given time slices from the raw
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Figure 4.4: Probability density functions for distance from a midge to its: nearest
spatial neighbor versus nearest causal neighbor. The distances used for constructing
these pdfs are obtained by selecting a single midge randomly at each time slice and
computing the minimal spatial distance to: other midges (spatial nearest neighbor
distance), or causal neighbors. Furthermore, to account for the potential errors from
statistical estimation and testing in causal inference, we also construct and plot the
“resampled” pdfs of spatial nearest distances, by replacing a fixed fraction (10% or
20%) of these distances with distances to randomly chosen other midges.

data, the restriction to causal neighbors by the oCSE algorithm significantly shifts
the typical distance between neighbors to larger values. Since choosing any neighbor
other than the spatial nearest neighbor will always shift the distribution to the right,
the nearest causal neighbor distribution should be compared to the distributions for
nearest spatial neighbor in which 10% or 20% of the neighbors are chosen randomly.
These distributions can be interpreted as the distribution of distances to neighbors
under weakened nearest neighbor assumptions. So for instance, the distribution for
distance to nearest spatial neighbor with 20% resampling is the distribution that
would occur if each insect followed a rule of 4 out of 5 times following their closest
neighbor and the remainder of times randomly following a random neighbor. The
distribution of distances to nearest causal neighbors seems unlikely even under this

loose interpretation of the nearest neighbor rule.



Chapter 5

Future directions

Understanding the behavior of complex systems, such as groups of animals and the
human brain, is a fundamental challenge for the 21st century. Of particular interest
is the notion of emergent behaviors. This thesis identifies interactions between com-
ponents as fundamentally important for the understanding of emergent phenomena.
The thesis focuses on the definition and inference of interactions in a complex system
environment.

One of the most important contributions of the thesis is the demonstration of
how CSE and oCSE expand the horizon of the types of scientific questions that are
answerable using state-of-the-art mathematics. As an example, Chapter 4 applied
oCSE to the question of whether the interactions between swarming insects of the
species Chironomus riparius were limited to spatial neighbors. Only a few years
ago, scientists might have called such a question mere “philosophical speculation,”
because there would presumably never be a way to provide an answer using the tools
of science. Section discusses ongoing work that uses CSE and oCSE to further
push the boundaries of what kinds of questions science can answer in an application

of great scientific and societal importance — the human brain.
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The scientific progress was made possible by the underlying mathematical ideas,
beginning with the foundations of CSE, but leading to additional contributions to
the math world. The primary examples are the exposition of the generalization of
Shannon and differential entropy in Ch. 2, the presentation of the theory of estimation
in Ch. 3, and the presentation of the g-knn class of estimators in Ch. 3. Section

suggests extensions of these ideas.

5.1 Application to brain function

Human cognition and brain function arises out of the coordination of many smaller
scale brain parts, without any top-down coordination. There are many questions
about this emergent behavior, such as what makes certain brains good at performing
math or verbal tasks, or more prone to addiction, what causes psychiatric disorders,
and how do brains regain functions after traumatic injuries, even when the injury has
destroyed a part of the brain thought responsible for the given function? In order
to answer these questions it is important to know which regions of the brain directly
interact or share information during particular tasks.

The advent of fMRI and EEG technologies has made it possible to look inside an
active living brain and observe areas of activity. A common use of these technologies
is to observing which areas of the brain are active during specific cognitive tasks.
The conclusions that can be drawn from this type of study are limited to observa-
tions that are somewhat static, such as “region A is used during cognitive task B.”
Focusing on interactions introduces a new dimension to the type of question that can
be asked. The new questions relate to the brain as a dynamic object as opposed to
static. Instead of simply asking “what” questions, the focus on interactions allows

the researcher to ask “how” questions.
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5.1.1 Background

There are a few possible meanings regarding connectivity between two or more brain
regions. Two regions might be considered connected if there are bundles of axons
linking the regions. This is a type of physical connectivity that can be determined
via dissection and staining of cells. This type of connectivity does not depend on the
task that the brain is performing at the macroscale and therefore its structure alone
cannot account for the ability to perform different tasks. Instead, neuroscientists are
interested in brain functional connectivity (BFC), which is very loosely defined as a
statistical relationship over time between activities at different sites in the brain |1,
2,134, |78, 95| 1103, [105].

The sites at which the activity is measured, which are the nodes in the BFC
network, are generally taken to be specific physical areas in the brain, which are de-
termined by the method used for collecting the data, but possibly aggregated to higher
scales depending on the method being used. The most widely used method for col-
lecting the data is functional Magnetic Resonance Imaging (fMRI), which measures a
proxy for neuronal activity known as the blood-oxygen-dependent signal (BOLD) [39].
The oxygen in the blood is a fuel for the neurons, so BOLD measures the rate at which
that fuel is being used. The fMRI divides the brain into about 20,000 spatial units
called voxels. The number of voxels varies between subjects. The time lag between
measurements is around two seconds. A less popular tool for discovering brain func-
tional networks is electroencephalography (EEG), which makes more measurements
in time but at the cost of spatial accuracy.

The nodes often consist of aggregations of voxels, often into anatomical regions.
The regions of the brain are determined by physiological structure. The number of
anatomical regions used in BFC studies has gradually increased over the years from

90 in the mid 2000’s [2, 34, [105] to as many as 268 in 2016 [103].
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The edges are typically defined in terms of correlations between activities at differ-
ent sites. Ref. [114] reviews the definitions of edges that are commonly used in BFC.
Some methods are as simple as a comparison of the correlation of activity at two
different sites to a threshold value [34] [103]. This approach produces an undirected
network, would only be able to detect linear relationships, and would not distinguish
between directed and undirected relationships. A related method that is used for
BFC is partial correlation [36, [105], which is similar to correlation with a threshold
except that it conditions on other nodes, so that the edges can be interpreted as direct
relationships (although still undirected).

Most of the results of these papers have focused on the large scale network struc-
ture. Some BFC networks have been found to be small world networks |1} 2], which
are networks in which distances between the furthest nodes (as number of edges that
need to be traversed to get from one node to the other) are low compared to the
number of edges in the network. Other BFC networks have been found to be scale-
free |2, 34], meaning that the degrees of the nodes (the number of neighbors a node
has) appears as if they were sampled from a distribution with heavy tails. Yet other
networks have been found to be modular [36], meaning that there exists communities
of nodes with high numbers of edges within the community relative to the number
of edges leaving the community. Directed edges have been defined using Granger

causality [10].

5.1.2 Causation Entropy and new data sets

Each of the definitions of edges that are in common use does not fully capture what
seems to be meant by a functional relationship. Most are not directional and the
Granger causality method is limited to discovering linear relationships. A better

definition of an edge is given by Causation Entropy (CSE) and the inference of the
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network by the optimal Causation Entropy algorithm (oCSE).

To apply CSE and oCSE to analyzing brain activity, we are currently working with
Paul Laurienti, a neuroscientist at Wake Forest, to apply CSE to fMRI data collected
from subjects in his lab. Participants in Dr. Laurienti’s research have been divided
into a number of conditions. Two conditions consist of elderly subjects. In one of the
conditions each subject performs a set of fMRI before and after undergoing a fitness
program, and the subjects in the other condition do not do the fitness training. In
the remaining groups of subjects the participants are asked to perform a number of
cognitive tasks for a few minutes inside the fMRI machine. The tasks include resting,
visualizing certain geometric objects, and an internet gambling task. In addition, Dr.
Laurienti has the ability to run new subjects under a wide variety of conditions.

The data sets consist of fMRI data (BOLD levels) for around n = 120 samples
in time and around 20,000 voxels depending on the subject. Each voxel is labeled
with an anatomical region. The anatomical atlas that we are currently using has 116
regions. To reduce the number of dimensions in order to be able to perform the oCSE
algorithm we are treating the nodes as average values of the BOLD level across each
of the voxels in a single anatomical region. For some subjects, due to motion inside
the machine, one of the smaller regions might not be recorded, so that each subject
might have either 115 or 116 nodes.

These data sets offer a unique opportunity not only to infer a network but also to
validate the use of CSE to define such networks. In particular, it should be possible
to determine which cognitive task is being performed merely by analyzing the CSE
network generated from the data. This can be thought of as a type of mind reading
task. Consider a subject who performs each of two cognitive tasks. If one could use
the data generated by each run to learn the CSE network associated with each task,

then on subsequent runs it might be possible to determine which cognitive task the
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subject was performing by using their fMRI data to produce a CSE network.

The fact that there will be error in the estimates of the CSE network (See the
loss function of an estimator in Ch. 3) introduces a new mathematical challenge. The
networks must be matched without knowing the exact networks. For this task it
might be possible to generate a number of networks under each condition and then,
given a new network, decide which group of networks it is most “similar to.” This
challenge can be thought of as a classification problem. One way to approach the
problem is to find an appropriate metric on the space of directed graphs. It is also
possible to think of the classification problem as a hypothesis test, since the networks
that are inferred by CSE are samples from a network-valued random variable defined
by the estimators. However one thinks of it, this classification problem might arise
frequently in analyzing the types of complex networks likely to be generated by fMRI

data from human brains.

5.2 Entropy and estimation

One of the goals of the chapter on estimation (Ch. 3) is to show that estimation is an
important and interesting area in mathematics, and yet, that certain areas, such as
nonparametric estimation remain relatively unexplored. This paucity of exploration
occurs in part because statistical estimation is a relatively new focus of serious math-
ematical inquiry, but also because, as the exposition demonstrates, it is inherently
very challenging. Chapter 3 provides a novel account of the theory of estimation,
presenting the theory as an ill-posed optimization problem in broad enough terms to
include nonparametric estimation, and focusing on three strategies for ameliorating
the ill-posed problem.

Chapter 3 shows that the strategy of weakening the Risk minimization condition
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from uniform minimization to other forms, such as minimax, or Bayes risk, has im-
portant implications for knn estimators of differential entropy and related quantities.
The chapter demonstrates that knn estimators have infinite minimax or Bayes risk
over the set of distributions with finite entropy.

The problem arises when one gets too “close” to the boundary with the singular
distributions. In the numerical examples, a parameter « is used to vary that “close-
ness.” But in order to extend numerical results to analytical findings, it would be
useful to make the notion of “closeness” precise by defining a topology on the space, §.
There are many metrics used for research on spaces of probability distributions [99],
and the goal would be to find the most suitable one for describing “closeness” as we
mean it — most likely in terms of the geometric aspects of the underlying measures.

As a further structural description of §, a Bayes risk requires a measure on §. In
Chapter 3 it is noted that the part of § near the boundary with the singular distri-
butions should be weighted strongly, because there are many examples of complex
systems that are believed to produce distributions near this boundary. It would be
desirable to define suitable Bayes risk, show that the Bayes risk of KSG and other
knn methods is infinite, and to try to determine whether the Bayes risk of a g-knn
estimator is finite.

Another strategy involves restriction to estimators with good properties. It is
noted in the chapter that the g-knn estimator based on ellipsoids is not necessarily
asymptotically unbiased. One strategy for removing any asymptotic bias is to directly
calculate the asymptotic bias, and subtract the bias from the estimator. This is ex-
actly how the Kozachenko-Leonenko estimator of differential entropy was created [67,
112]. Following these methods in parallel might actually be relatively straightforward
— the main difference seems to be that an integral over » > 0 would be replaced by

an iterated integral over ry,ro, ..., 1y
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Another asymptotic property that would be interesting to study is convergence
rates. The KSG convergence rate is O(n~'/?) [41], which means that increased di-
mension can greatly slow the rate of convergence, requiring more data to get a good
estimate. Working in parallel to the analytical results that have been found for spher-
ical volume elements might be a good place to start, but the convergence rate might
also be established by simulation.

Other properties that can be explored by running many simulations per value of
n include the bias and variance for small n. One issue not addressed by the numerical
tests in Chapter 3 is what would happen if the underlying distributions were close
to a curved manifold. Then it seems reasonable that there would be some bias as n
decreased. One possibility is that the ellipsoids’ major axes would act like a tangent
plane, so that the ellipsoid would circumscribe more space away from the manifold.
Another possibility is that near a sharp curve in the manifold, the ellipsoid would
start looking more like a sphere.

The g-knn method based on ellipsoids is defined with the assumption that the un-
derlying measure is close to a manifold. It would be interesting to see what happens
when that assumption is broken, and try to fix it. One possibility is that the underly-
ing “manifold” intersects itself. Near points of intersection the ellipsoids would look
more like spheres, and fail to capture the underlying geometry. It is possible that
a g-knn estimator that uses diffusion maps [23] to define the local volume elements
would better find the local geometry.

It is also unclear how well the g-knn method based on ellipsoids would model the
local geometry if the probability distribution were supported near a strange attractor.
Thinking about a Lorenz attractor, a typical cross-section is very reminiscent of a
Cantor set. With enough data sampled from a Lorenz attractor, one might hope that

ellipsoids would become more and more stretched out along the individual trajectories
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that form the Cantor set. But it is also possible that the addition of sample points
in the direction of stretching from a given point on the attractor is matched by the
addition of sample points in the transverse direction along the attractor. It would
be interesting to see how well the g-knn estimator based on ellipsoids would perform,
and if the ellipsoids do not describe the underlying geometry, then to derive a g-knn
estimator that describes fractal geometries. A related question is, to what extent
does a fractal plus a small amount of noise retain its fractal geometry, as opposed to
acting like a neighborhood of a manifold?

Chapter 2 worked out in detail a generalized form of differential entropy based
on a definition of KL-divergence which is different from the traditional definition
used in information theory, but grounded in notions of absolute continuity and the
Radon-Nikodym theorem. An interesting observation is that when the underlying dis-
tribution is highly symmetric, as is the case with a Haar measure, or the counting or
uniform measure on a discrete set, then it might be possible to interpret the general-
ized differential entropy as measuring the relative lack of symmetry of the probability
measure. This interpretation of entropy as measuring asymmetry is actually very
close to the interpretation as uncertainty, or disorder, and it would be desirable to be
able to make a definite connection between the purely measure-theoretic concept of
entropy and notions from abstract algebra. It would be worthwhile to work out some
examples to try to quantitatively connect differential entropy with properties of the
groups (or semigroups) of symmetries of the probability measure.

This thesis focused almost primarily on interactions between R?-valued variables,
but, the generality of the differential entropy defined in Chapter 2 makes it possible
to talk about interactions between other types of variables. For example, there are
collections of S*-valued random variables (often called oscillators), but the underlying

Haar measure on the circle is simply a restricted Lebesgue measure, so it is possible
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that the generalized entropy would not be needed. As Chapter 2 described, it is pos-
sible to define differential entropies with respect to a uniform measure on a strange
attractor. This approach might be used to study interactions between components
of dynamical systems that lie on measure 0 attractors. It is also possible to study
unitary matrix-valued (U(d)) random variables with respect to Haar measure. In
quantum information theory, for instance, there is the notion of a random quantum
gate [35], and it is possible that these gates interact to create an emergent behavior.
Unitary-valued random variables also show up in Chapter 3 in the definition of the
g-knn estimator. The sample is a random variable, which defines a set of unitary
and diagonal matrices (the svd), which are therefore also random variables, and the
g-knn estimate (which is also a random variable) can be expressed entirely in terms
of these unitary and diagonal matrices. In order to better understand the properties
of the estimator, it might be useful to take advantage of the unitary-valued random
variables. Since the estimator estimates entropy, it seems reasonable that the gen-
eralized differential entropy of the unitary-valued random variables could have some
import.

These ideas are just a few examples of ideas that have been generated from the
study and application of CSE and oCSE. They are indicative of a larger theme of
science and math pushing forward together, one foot followed by the other. Before
mathematical advancements such as CSE, many questions about the interactions
within a complex system were thought to be out of the realm of science. The math-
ematical notion of components interacting by sharing information, as embodied by
CSE, makes these questions more accessible, and it can be applied to swarming in-
sects, the human brain, and an unlimited number of other complex systems. The
act of pursuing these scientific advancements has lead to new exciting mathematical

questions that have inspired the generalized notions of communication and informa-
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tion described in Chapter 2, and the g-knn family of estimators in Chapter 3. Every
successful solution of a mathematical or scientific problem has the potential to lead
to exciting new problems, and it is hoped that the successes described in this thesis
are able to inspire others and to further the tradition of math and science advancing

together, step by step.
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Appendix A

Probability primer

This appendix defines random variables and distributions, and lists some of the con-
sequences of these definitions. The definitions and results can be found in Refs. |14}

30, 50, 1109, |145].

A.1 Random variables, distributions, and expec-
tation

The real world is full of complicated systems in which it is difficult to predict out-
comes. Even a system as simple as two dice bouncing across a table can be very
difficult to model. Probability shifts the focus to considering sets of observables, or

measurements, that can be performed.

Definition A.1.1 (Probability space and events). A probability space is a measure
space (€2, F,P) in which P(2) = 1. The elements of F are called events.

Unless otherwise noted, all measures in this appendix are assumed to be positive
measures. The measurable space (€2, F) should be thought of as large, since it repre-

sents all of the possible variations of the complex system under study. Therefore, it
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will be assumed that F is large enough to accommodate any definitions or structures
that are needed.

In the rest of this appendix it is assumed that there is an underlying probability
space, which is (2, F,P).

Definition A.1.2 (Random variable). Let (¥, A) be a measurable space. Any mea-

surable function

X:Q5 0 (A1)

is a U-valued random variable, sometimes called a (¥, A)-valued random variable for

clarity.

The space V is sometimes called the state space
Since (€2, F) can be large and unwieldy, it is desirable to use X to shift most of

the analysis into the state space.

Definition A.1.3 (Distribution). Given a (¥, .4)-valued random variable, its distri-

bution, v, is the pushforward measure of P onto W. In particular, for any A € A,

V(A) = P(X"L(A)). (A.2)

Probabilities of events in €2 such as P({w € Q : X(w) € A}), which is sometimes
written P(X € A), is easily translated to its equivalent form v(A).

Integrals permit the notion of averaging a random variable according to the weights
assigned to sets in F by P. For any statements involving integrals we will assume
that the random variables are real-valued functions. One possibility is that ¥ = R, so
that X is real-valued. A more general situation is that the integrand is a real valued

measurable function of V.
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Definition A.1.4 (Expected value). The expected value of X if it existsﬂ7 is

E[X] = /Q X (w) dP(w). (A.3)

If X has distribution v on (¥, A), then

E[X] :[pxdy(x). (A.4)

Let g be a measurable real-valued function g : ¥ — R. Note that ¢g(X) is then a

real-valued random variable on 2, and

menz/axmnmw> (A5)

Q

= Xp g(z) dv(x). (A.6)

Let £°(Q, F,P) be the spaceﬂ of R-valued random variables. It is an algebra
by pointwise operations (for instance (aX + bY)(w) = aX(w) 4+ bY (w)). Define
LY(Q, F,P) C LY, F,P) to be the R-valued random variables with finite expecta-
tion. Then L£'(Q, F,P) is a sub-vector space of £°(Q, F,P) and E is a real valued

linear functional on £'(Q, F,P).

Definition A.1.5 (Variance). The variance of a random variable, X € £!(Q, F,P),

with expected value pux is defined by
Var[X] = B[(X — ux )’ (A7)

when the integral is finite. Otherwise the variance is sometimes said to be infinite.

!The expected value might not exist if the integral is infinite
2A set for now, but it can be given some topological structure
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Note that finite variance implies finite expected value. Define $ = £2(Q, F,P) C
L1(Q, F,P) to be the space of variables with finite variance. The space $) has an

inner product defined by

(X,Y) = E[XY] (A.8)

and with this inner product $) is a Hilbert space. If E[XY]| = 0 then X and Y are
orthogonal. The quantity E[X Y] is well-defined on much of £}(Q, F,P) x £ (Q, F,P),
and can even be extended to all of £'(£2, F,P) by use of extended real values. In this
sense the inner product extends the notion of orthogonality on $ to £}(2, F,P).
Usually one is interested in the similarities between X and Y that is not due to
a constant term, and so the variables are often “centered” before applying the inner

product.

Definition A.1.6 (Covariance and correlation). Let X,Y € £Y(Q, F,P), with ex-

pectations px and py. Then their covariance is defined by

Cov[X, Y] = E[(X — pux)(Y — pv)], (A.9)

if the integral is finite. If the variables have finite variances then the Pearson corre-
lation of X and Y is defined by
Cov(X,Y)

Cor[X,Y] = Ve X [Vary] (A.10)

A.2 Sub-o-algebras, and product measures

Definition A.2.1 (Vector-valued random variables). If X is an R%valued random

variable (in other words, ¥ = RY where the o-algebra of ¥ is a Borel o algebra
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with respect to the standard topology on R?) then it is called a vector-valued random

variable.

The expectation can be extended to vector-valued random variables by applying

the univariate expectation component-wise, so that E is an R%valued functional,

E[X] = (E[X],...,E[X)). (A.11)

Definition A.2.2 (c-algebra generated by a random variable). Let X be a (W, A)-

valued random variable. Define the o-algebra generated by X to be

o(X) = {X1(A): A e A} (A.12)

The o-algebra o(X) is the smallest sub-o-algebra of F that makes X measurable.

Proposition A.2.1 (Vector-valued random variables are vectors of R-valued random
variables). The random variable X is an R%-valued random variable if and only if there

are R-valued random variables X', i = 1,...,d such that

X = (X' ... X%, (A.13)

The key to the proof is showing that o(X) is the smallest o-algebra that makes
all of the variables X% i =1,...,d measurable.
If X and Y are R%valued random variables, then the covariance can be defined

by treating X (w) and Y (w) as column vectors and defining

Cov[X,Y] = B[(X — pux)(Y — px)"]. (A.14)

where the expectation is computed component-wise on the d x d matrix as if it were
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a vector in RY.
Independence of X and Y is related to the distribution of the vector-valued random
variable (X,Y’). For this we must first introduce product measure. This treatment

of product measure is taken from Halmos’ textbook on measure theory [51].

Definition A.2.3 (Product c-algebra). Let (V;,.4;) and (V¥;3,. A3 be measurable
spaces. The product g-algebra, A; x A is the smallest o algebra on ¥, x W, containing

all sets of the form A; x A, for A; € A; and Ay € A,. That is,
.Al X AQ = U({Al X A2 : Al € .Al,AQ € ./42}) <A15)

Definition A.2.4 (Product measure). Let (¥, .4y,11) and (Vs, As, 12) be measure

spaces. Any measure vy X vy on (U x Wy, A; X Ajs) such that
v X I/Q(Al X Ag) = Vl(Al)VQ(A2> <A16)

for all A; € Ay and Ay € A, is called a product measure.

Existence and uniqueness of such a measure is due to Carathéodory’s extension

theorem. The uniqueness aspect requires that the measure space be o-finite.

Definition A.2.5 (Finite and o-finite). The measure space (U, A, v) is called finite
if (V) < oo. It is called o-finite if there exists a sequence {4, };cy of elements of A

such that

LW:U&

1€EN

2. v(A;) < 0.

The spaces R and R? are both o-finite. A probability space is finite.
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Theorem A.2.2 (Existence and uniqueness conditions for product measure). If
(U1, A1, 1) and (W, Ao, 1) are o-finite measure spaces then there exists a unique

product measure, vy X vy, on Ay X As.
This product measure can be written as an integral.

Definition A.2.6 (Sections). Let E C Wy x Wy. Let 2 € ¥ and y € W,. The section

determined by x is the subset of Y defined by

E,={y:(x,y) € E} CY. (A.17)
Likewise, the section determined by y is the subset of X defined by

EY={z:(x,y) € B} C X. (A.18)

Proposition A.2.3. Let (U, Ay, 1) and (U, Ay, 1) be o-finite measure spaces, and
V1 X vy be the product measure on Wy xWy. Then E, C As, EY C Ay, and the functions

f(z) = nra(E,) and g(y) = v1(EY) are measurable. Furthermore, for any E € A; x As,

v X 1o(E) = A vl ) = /m (B oy (A.19)

Note that if g : ¥; x U5 — R is a real-valued measurable function and X is a
U;-valued random variable and Y is a Wo-valued random variable then ¢g(X,Y’) is an

R-valued random variable and

Ely(X,Y)] = / alag) i x )z, (A.20)

Theorem A.2.4 (Fubini’s theorem). Let (U1, Ay, v1) and (Vq, As,12) be o-finite

measure spaces. If [, o |9(x,y)|d(v1 xv2)(x,y) < 0o orif g is nonnegative and mea-
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surable, then the functions g,(z) = f% g(z,y) dva(y) and go(y) = f\yl g(x,y) dvy(z)

are integrable and

/D gl dlon x ),y = / 01(2) din () = / Gy da(y).  (A21)

Independence relates to product measures.

Definition A.2.7 (Independence). Two sub-o-algebras G, H C F are independent if
P(GNH)=P(G)P(H) VYGegG, HEeMH. (A.22)

Two random variables, X and Y are independent if o(X) and o(Y’) are independent.

The independence of X and Y is denoted X L Y.

Proposition A.2.5 (Independence and factorization of distribution). Let X and Y
be Re-valued random variables with distributions vx and vy and joint distribution

vxy (onR*!). Then
XUY «— Vxy = Vx X Vy. (A23)

The proof uses the definition of the o algebra for the joint distribution and the
fact that 11 X v9(A; X Ay) = v1(Ar)ra(Ag).

If X,Y € £, F,P) then independence implies that the variables are uncorre-
lated: E[XY] = E[X]|E[Y]. It implies further that for any real-valued measurable
functions g; and g, that ¢1(X) 1L go(Y"). Hence, if X and Y are centered variables (0
expectation) then independence can be thought of as a strong form of orthogonality,

which perhaps justifies the use of the symbol L.
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A.3 Absolute continuity, Radon Nikodym, and con-
ditioning

There are potentially many measures defined on the range space (¥, .A). In fact every
random variable pushes forward a measure from (Q, F,P). Also, if £ is a measure in
(¥, A), then every measurable function g : ¥ — [0, 00| induces a measure on (¥, .A)

VQ(A):/Agd§. (A.24)

The notion of absolute continuity establishes some structure on the measures on W

and the Radon-Nikodym uses that structure to create a partial converse to Eq. (A.24)).

Definition A.3.1 (Absolute continuity). Let (¥, .A) be a measurable space and let
i and v be measures on (¥, A). Then p is absolutely continuous with respect to v,

written
n <L v, (A.25)
if for all A € A,
v(A)=0= pu(A) =0. (A.26)

Theorem A.3.1 (Radon-Nikodym theorem). Let 1 and v be o-finite measures on a

measurable space (U, A) such that

<L . (A.27)
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Then there is an A-measurable function g : W — [0, 00|, such that for all A € A,

M(A):/Agdy. (A.28)

The function g will be called the Radon-Nikodym derivative of p with respect to v and

18 denoted d—ﬂ
dv

See Sec. for more discussion and a proof of this important theorem.
In Prop. it is shown that independence implies that distributions factor into

product measures. This type of factorization extends to Radon-Nikodym derivatives.

Proposition A.3.2. Let (Vy,Ay,&) and (Vq, As, &) be o-finite measure spaces and
suppose vy L &1, and vy K &. Then
d(l/l X VQ)

ey (@1, 02) =

d(& X fz)

v
g

dVQ

(ﬂffl)d—52

(x2). (A.29)
The proposition can be proved by considering the sets in A; x Ay for which

dvy d
(1 x 12)(A) = /A (6 x &) (A.30)

Fubini’s theorem shows that this set includes all sets of the form A; x Ay. More
advance methods not covered in this appendix can be used to extend this class of
measurable sets to A; x As.

An important consequence of the Radon-Nikodym theorem is the existence of con-
ditional expectation. However, a slight generalization of the Radon-Nikodym theorem
as stated in Theorem is required. Although all other measures in the appendix
are assumed to be positive measures (functions from F to [0, 00]), Theorem
also holds even if p is a signed measure (takes values in [—o00, 0]) and ¢ in Eq.

is allowed to also take values in [—00, 00].
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Definition A.3.2 (Conditional Expectation). Let (€2, F,PP) be a probability space,
let X € £L1(Q, F,P), and let G be a sub-o-algebra of F. The variable Z is a conditional

expectation of X with respect to G, denoted Z = E[X|G] if
1. Z e LY, F,P).

2. 7 is G-measurable.

/Zd]P’:/XdIP’, VA €EG. (A.31)
A A

The terminology “a conditional expectation” is used because there could be many
such Z. It is not too hard to show that if Z and Z’ are both conditional expectations
of X given G then Z = Z" almost surely (they differ at most on a set of measure 0).

The existence of a conditional expectation can be established by the Radon-

Nikodym theorem because the signed measure on G defined by

- / X dP (A.32)
A

is absolutely continuous with respect to P, so that

/ —dP = u( (A.33)
= /A X dP, (A.34)

and the other two conditions on % follow from the construction.
In the Hilbert space EQ(Q,}", P) it is not too hard to show that the operator

X — E[X|J] is a projection. The subspace of G-measurable random variables is a
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linear subspace, closed under L?-norm, and E[X|F] is the projection of X onto this
subspace. It can be shown that this notion of conditioning as expectation extends into
the space £1(Q, F,P), and that E[X|G] is the closest G-measurable random variable

to X in an L%-norm sense.

Definition A.3.3 (Conditioning with respect to a variable). Let (2, F,P) be a prob-
ability space and let X, Y € £!(Q, F,P). Then the conditional expectation of X given
Y is defined by

E[X|Y] = E[X]|o(Y)). (A.35)

Definition A.3.4 (Conditional probability distribution). Let (2, F,P) be a prob-
ability space and let X be a (¥, A)-valued random variable, and let G C F be a
sub-g-algebra. A regular conditional probability distribution of X given G is a func-

tion Px g : F x ¥ — [0,1] such that
1. For a fixed A € F, Pxg(4,-) = E[X4X|G] almost surely.
2. For a fixed € ¥, Px|g(+, x) is a probability measure on (¥, A).

The regular conditional probability distribution of X given a variable Y is given by
substitution ¢(Y’) for G. In this case the probability measure in condition 2. will

sometimes be written P(Y|X = z).

Definition A.3.5 (Support of a measure). Let (¥, A, ) be a measure space such
that W has a topology 7 and A is a Borel measure, meaning 7 C A, then the support
of v is the set of all points, x, in ¥ such that every open set containing x has positive

measure:

supprv ={zeV:zelUecr=v{U) >0} (A.36)
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Definition A.3.6 (Probability density function). Let ¥ = R¢ with Lebesgue mea-

sure, A. If X is a R%valued random variable with probability distribution v, and
v A, (A.37)

then fy is the probability density function of X if

dv

= - (A.38)

fx

Definition A.3.7 (Cumulative distribution function). Let ¥ = R? with Lebesgue
measure, \. If X = (Xi,...,X,) is a R%valued random variable with probability
distribution v then the cumulative density function of X is a function Fx : R — [0, 1]

such that
Fx(Il,...,I‘d):P(Xl SIl,...,XdSJ,’d). <A39)

Theorem A.3.3. Let U = R? with Lebesque measure, A\, and let X be an R¥*-valued

random variable with probability distribution v, and
v (A.40)

Then the probability density function, fx and the cumulative distribution function,

Fx are related by

fx(@) = s——5—F(x). (A.41)
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A.4 Convergence of random variables

All variables in this section are assumed to be real-valued, but the definitions could

be extended to the case where the variables are W-valued and W is a metric space.
Definition A.4.1 (Converence in Probability). A sequence of random variables
{ X, }nen converges in probability to a random variable X if for all € > 0

lim P(|X,, — X| >¢€) =0. (A.42)

n—o0

Convergence in probability is denoted X,, 2 X.

A useful tool when proving statements about convergence in probability is Markov’s

inequality.

Theorem A.4.1 (Markov’s inequality). Let X be an R-valued random variable. Then

for any 0 < p < o0,

P(|X| > 1) < tlp/ X P dP. (A.43)

| X|>t

For a proof of Markov’s inequality see Ref.|118], which proves the general Cheby-
shev’s inequality. Markov’s inequality is a direct consequence of the general Cheby-
shev’s inequality. The classical Chebyshev’s inequality is a direct consequence of
Markov’s inequality.

For any Y € £2(Q, F,P), such that 4 = E[Y] and o = E[(Y — 1£)?], and any ¢ > 0,
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by letting p = 2 in Markov’s inequality,

]P’(|Y—M|Zt0)=IF’(‘Yt_M‘ZJ) (A.44)
1
<5 (Y — p)? dP (A.45)
[(Y —p)/t| =t
VarlY
_ Ve (a6)

which is the classical form of Chebyshev’s inequality.

Definition A.4.2 (Almost sure convergence). A sequence of random variables, { X, } nen

converges almost surely to X if

P(lim X, = X) = 1. (A.47)
n—oo
In other words,
P{w e Q2 li_}xn Xn(w) # X(w)}) =0. (A.48)

Lemma A.4.2 (Borel Cantelli lemmas). Let (2, F,P) be a probability space. Let

{A, }nen be a sequence in F.

1. If 57 | P(A,) < oo then the probability that infinitely many A, occur is 0.
That is

P(wEQ:wGﬁGAk):O. (A.49)

n=1k>n

2. If the A, are mutual independent and y ~  P(A,) = oo then the probability
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that infinitely many A,, occur is 1. That is,

P(wGQ:WEﬁGAk):L (A.50)

n=1k>n

Other types of convergence that are not used in this thesis include convergence in

mean and convergence in distribution.

A.5 Jensen’s Inequality

Theorem A.5.1 (Jensen’s inequality). Let X € LY(Q, F,P), let S be a in interval
in R (possibly infinite) that contains X(Q), and let ¢ : S — R be a convex function.

Then
E[p(X)] > ¢(E[X]). (A.51)
Furthermore, if X is not constant a.s. and if ¢ is strictly convex then
E[p(X)] > ¢(E[X]). (A.52)

Proof. The proof is included because the proof of the strict inequality is difficult to
find.

Because ¢ is convex, there is a linear function, [ : S — R such that

1. l(z) < ¢(x) Ve e s

where it is known that E[X] is in the domain of both [ and ¢, which is S, because

X(Q) C S and S is convex.
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Then

o(E[X]) = [(E[X]) (A.53)
— E[I(X)] (A.54)
< E[(X)], (A.55)

where the last inequality uses the first condition defining I(z).

It is clear that strict inequality cannot hold if X is a constant, that is if X = E[X]
as. If X # E[X] as. thenlet Ac ={z € S: 2 <E[X]},let A_={xr e S:z=
E[z]}, let Ax = {z € S : z > E[z]} and note that by the assumption P(X € A.) > 0
and P(A-) > 0.

If ¢ is strictly convex, then, I(z) > ¢(x) on A. and As and I(z) = ¢(x) on A_,

but since the push-forward measure of X on A. and A. is positive, it holds that

E[l(X)] > E[¢(X)], (A.56)
which strengthens inequality (A.55]). O

A.6 The Radon-Nikodym theorem

Theorem A.6.1 (Radon-Nikodym theorem). Let 1 and v be o-finite measures on a

measurable space (V, A) such that

L . (A.57)
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Then there is an A-measurable function g : W — [0, 00|, such that for all A € A,

M(A):/Agdy. (A.58)

The function g s called the Radon-Nikodym derivative of p with respect to v and is
d
denoted _,u
dv
Furthermore, any two Radon-Nikodym derivatives of u with respect to v are equiv-

alent up to a set of measure 0.

The fundamental importance of the Radon-Nikodym stems from the fact that o-
algebras and measures on o-algebras can be very difficult to work with due to large
cardinality. For instance, the Lebesgue measurable sets have the same cardinality as
Z(R). It is difficult to study arbitrary measures on o-algebras with such high car-
dinality because it could be impossible to approximate them by countable sequences
of measures. The Radon-Nikodym derivative, if it exists, contains all of the infor-
mation that the measure has, but, since it is a real-valued function, it is possible to
approximate the function by countable sequences of simpler functions.

The uniqueness follows from considering the function ¢ = g; — g2, where ¢g; and
g2 are Radon-Nikodym derivatives for p with respect to v.

If it has been shown that the Radon-Nikodym theorem holds for finite positive
measures then it is fairly straightforward to extend that result to o-finite measures
and signed measures. In particular, a o-finite space can be written as the disjoint
union of a countable sequence of measurable sets, {B;}°, such that u(B;) < co and
v(B;) < oco. By the Radon-Nikodym theorem for finite measures, for each n there is

a measurable g, : B,, — [0, 00| such that for all A € A,

w(A) = /AmB gn dv. (A.59)
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The function g : ¥ — [0, oo] be defined by ¢|z, = g, is the Radon-Nikodym derivative
of p with respect to v.
If 11 is a signed o-finite measure and v is a positive o-finite measure then there is

a Jordan decomposition |[104] of u into a positive and a negative part such that

p=pt—p (A.60)

By the result for positive o-finite measures there are corresponding Radon-Nikodym

derivatives h™ and h~, and the difference
h=h"—h" (A.61)

is the required Radon-Nikodym derivative.

The following proof of the theorem for finite measures follows the outline provided
in Exercise 59 of Section 18.4 in Real Analysis by Royden and Fitzpatrick [104]. The
proof employs the framework of functional analysis by representing the integral as
a linear functional on a Hilbert space of measurable functions. The integral is then

represented by a measurable function using the Riesz representation theorem.

Proposition A.6.2. Let p and v be finite measures on the measurable space (¥, A).

Then there is an A-measurable function g : W — [0, 00| such that for all A € A,

,u(A):/Agdy (A.62)

Proof. Let m = v + p so that v < 7 and p < 7. For any f € L%(V, ) define

T(f) = [B fdv. (A.63)
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Then T is a bounded linear functional on £?(¥, 7). The boundedness follows from

the finiteness of v. In particular, if f € £2(¥, ), then since

/deu+/f2du:/f2d7r<oo (A.64)

and [ f?,du > 0, it follows that [ f?dv < [ f?dr. Furthermore,

)? = (/ f-ldv)2 (A.65)
(L) [

=v(0) [ fPdv (A.67)
<v(¥) | fdr, (A.68)
so that
IT[| = sup{|T(A)] : 1 fll2 =1} (A.69)
< Vr(¥) (A.70)
< 0. (A.71)

Since T is a bounded linear functional, by the Riesz representation theorem, there is

an h € L£?(¥, ) such that

= [pf - hdr (A.72)

for all f € L2(U, ).

The required function g can be derived from h. Substitution the definitions for T'
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and 7 into Equation yields

[Dfdy:[Pf-hdqu[Pf-hdu. (A.73)

Letting f = X4 yields

V(A):/Ahdij/Ahdu:/Ahdw. (A.74)

Substituting A = {¢ € U : h < 0} reveals that h > 0 p and v-almost everywhere.
Therefore, 1/h is v, u, and m-measurable, and by Eq.

1 1
/AﬁdV:/AE'hdﬂ'Zﬂ'(A). (A.75)
Therefore,
1(A) = w(A) — v(A) (A.76)
1
= ’ P ldv. (A.77)

g=——1. (A.78)
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