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Abstract-In this paper, through numerical studies, we explore a new methodology for chaos syn- 
chronization via a hybrid (generalized plus identical) synchronization. An arbitrary signal, generated 
by an unknown dynamical system, can be synchronized by the hybrid chaotic system. The signal can 
then be stored for future application such as password and message identification. Each finite-length 
signal can, in principle, be labelled and stored by a unique number, provided that the key hybrid sys- 
tem parameter used for the purpose is suitably chosen within a one-to-one mapping range. The new 
methodology enables us to encode an arbitrary signal accurately and efficiently. Sufficient numerical 
simulations are shown to verify the proposed design. Potential applications of the developed hybrid 
chaos synchronization system include information storage, message identification, and certain types 
of secure signal and image communication. @ 2001 Elsevier Science Ltd. All rights reserved. 

Keywords-Chms synchronization, Dynamical system, Information processing, Generalized syn- 

chronization. 

1. INTRODUCTION 

There are many ways to encode and represent a finite-length signal or a piece of information 

about the output of an unknown dynamical system. Within the context of chaos synchroniza- 

tion for information processing, it is worth mentioning that Pecora and Carroll [1,2] proposed a 

chaos synchronization scheme based on two identical chaotic systems, called identical synchro- 

nization (IS). Rulkov et al. [3] put forward the concept of generalized synchronization (GS) for 

two different chaotic systems. Ever since then, there have been a large number of publications 

devoted to this research topic and its potential applications in information processing such as 

secure communication ([4-lo] and references therein). 

Since IS can considered as a special case of GS, we first review the concept of GS. Consider 

two unidirectionally coupled systems 

i = T(2), 9 = S(Y, s) = S(Y, h(z)), (1.1) 

where x E R”, y E R”, s E Rk, h E Rk, and s(t) = (sl(t), . . . ,sk(t)) with q(t) = hj(s(t,zo)) 
being the coupling signal. Systems in the form of (1.1) are said to possess the characteristic of GS 
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between x and y if for a continuous (and nontrivial) transformation, H : Rn + Rm, there are a 
manifold A4 = {(z, y) : y = H(z)) an d a subset B = B, x B, c R” x Rm with M c B, such that 
all trajectories of the coupled systems, with initial conditions in B, approach the manifold M 

as time goes to infinity. In particular, if H = I (I is the identify transformation), then this GS 

reduces to the IS. 

2. THE HYBRID CHAOS SYNCHRONIZATION SYSTEM 

It has been observed that IS and GS for chaos synchronization are studied separately, and they 

are not put together in both theoretic and practical studies. In this paper, we integrate them in 

an appropriate way, with the attempt of enhancing the information processing capability of the 

existing chaos synchronization based techniques. More specifically, we explore a simple hybrid 

chaos synchronization system (HCSS) which can be used to encode and represent various kinds 

onf finite-length signals. 

The term HCSS used in this paper means that both IS and GS are used in a system. The main 

idea of using GS in HCSS is the primary advantage of robustness of GS, which can make HCSS 

synchronize with an arbitrary input signal (under certain amplitude). The idea of using IS in 

HCSS is due to the exact synchronization of IS which can estimate the parameters of HCSS. 

2.1. Structure of the Proposed HCSS 

The block diagram of the proposed HCSS is shown in Figure 1. 
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Figure 1. Block diagram of the proposed hybrid chaos synchronization system. 
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Hybrid Chaos Synchronization System 

In this study, the Rossler chaotic oscillator is used in the HCSS. The equations of this HCSS 

are as follows: 
fl = 2 +X1(22 - 4) 

L-& = -21 - x3 

i 

first chaotic system, 

i3 = 22 - 23 + s + i 

Ij1=2+y1(Yz-P) 

ti2 = -Y1 - Y3 second chaotic system, (2.1) 

e3 = y2 - y3 + s + (Y 1 

b = -91(y3 - 23) 

p = -92(Y2 -x2) 1 
adaptive control, 

where IC = (~1, x2, x3) are the variables of the first chaotic system; y = (~1, ~2, ys) are the variables 

of the second chaotic system; i(t) is the input signal (to be encoded) from the unknown dynamical 

system; s(t) is the drive variable from the first chaotic system (i.e., the coupling variable between 
the two chaotic systems); a(t) is the parameter function used to trace the input signal i(t); P(t) 

is the parametric function to be estimated; g1 and g2 are the control functions (which will be 
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discussed in detail later). In this study, we chose s(t) = 1.423, where the magnitude is chosen 

due to the coefficient 0.4 of the term 23 is the Rossler system. This coupling approach is also 

called active-passive-decomposition (APD) in [ll]. When i(t), P(t), and o(t) are considered 

as state variables of the augmented system (2.1), the whole system is autonomous (of higher 

dimensionality). Substituting s(t) in (2.1) with s(t) = 1.423, we obtain 

first chaotic system, 

second chaotic system, (2.2) 

d! = -91(y3 - 23) 

p = -92CY2 - x2) > 
adaptive control. 

The HCSS shown in Figure 1 works as follows. The signal to be encoded is generated by the 

unknown system and is input to the first chaotic system. GS will occur between the unknown 

system and the first chaotic system [12]. GS is used here because the underlying system that 

generated the signal is unknown. Then, IS occurs between the first and the second chaotic 

systems. IS is used here because parameter identification is needed to achieve. When exact 

synchronization occurs, the parameter value of P of the second chaotic system can be determined 

(estimated) via an adaptive parameter control algorithm [13-151. Due to the GS between the 

unknown system and the first chaotic system, the attractor of the first chaotic system is a 

nonlinear image of the input signal. This nonlinear transformation should be carefully designed 

so that the resulting parameter is a single valued function of the input signal in the monotone 

region of the parameter P. After the parameter of the nonlinear image has been estimated, 

this parameter effectively “encodes” (represents) the input signal uniquely [6]. Details will be 

provided throughout the paper. 

2.2. Stability Analysis of the HCSS 

Stability is the first concern before this HCSS is put in use. To analyze the stability 

HCSS, we define the error variables as 

ei = YI -a, e2 = ~2 -22, e3 = ~3 -x3, e4 = (Y - i, e5 = P-4. 

of the 

(2.3) 

The synchronization error system between the first and second chaotic systems is obtained as 

kl = YlY2 - 51x2 - PYl + 4x1, e2 = -ei - e3, 

63 = e2 - e3 + (a -i), k4 = (a - i)’ = -gl(es), (2.4) 

k5 = (P - 4)’ = -gz(ez). 

From the fifth equation of (2.4), we know that we should choose the control function g2 such that 

an equilibrium state, P - 4 = C, can be achieved; that is, P = 4 + C, where C is a constant. To 

find the equilibrium state of (2.4), we rewrite its first equation as follows and equate it to zero, 

11 = YlY2 - x152 - PYl + 4x1 = -x122 - YlX2 + YlX2 + y1y2 + 4x1 - (4 + c)yi 

= (Yi - x1)52 + yl(y2 - x2) - 4(y1 - XI> - Cyl = elx2 + e2yl - 4el - Cyl 

= (x2 - 4)el + (e2 - C)yl = 0. 

Because z2 - 4 # 0 and yi # 0, system (2.4) must have the following equilibrium states: 

el = 0, e2 = C. 
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Demanding that all of the other equations of system (2.4) are zero, we get the following. First, 

el = -es, and so es = 0. Then, by letting 

i3 = e2 - e3 + (a - i) = 0, 

we have ez + ((1: - i) = 0, that is, es = -e4. Moreover, it follows from (2.3) that e4 = a - i = 

-ez = -C, SO that 64 = 0, and i = Q + C. By letting 

f&j = (P - 4)’ = 0, 

we have 

es=P-4=C1, 

where C1 is a constant. When the synchronization error system is in its equilibrium state, 

e1 = y1 - z1 = 0, that is, 21 = 31, and so ?1 = 01. Therefore, from the HCSS (2.2), the following 

equation can be introduced: 

2+21(z2-4)=2+&2-P). 

This gives 

X2 - 4 = Y2 - p, 

that is, 

Since 

and 

yz-xz=P-4. 

yz - x2 = ez = C 

P-4=es, 

we have 

es = es = C. 

In summary, the synchronization error system has the following equilibrium state: 

el b 
e2 C 

e* = eg = III 1 0 7 

e4 -C 

e5 C 

(2.5) 

where C is a constant. 

Therefore, if the hybrid chaos synchronization takes place when t -+ m, then the result we can 

expect is 

Yl(t) = a(t), yz(t)-C = x2(t), y3(t) = x3(% i(t)-C = c%(t), P-C = 4. (2.6) 

Strictly speaking, this is not an IS between the first and the second chaotic systems because only 

VI(t) = xl(t) and ys(t) = x3(t), but yz(t) # x2(t), i(t) # a(t), and P # 4. This phenomenon is 

not phase synchronization nor is it orbital synchronization [1,2,16]. It is considered as a particular 

GS with constant offsets in this study. 
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2.3. Adaptive Control of the HCSS 

For the expected hybrid chaos synchronization to take place, we need to control the error 

synchronization system (2.4) to reach its equilibrium state. For this purpose, we use two unimodal 

control functions, g1 (.) and g2 (.), respectively, 

and 

gl(e3) = Ice3 
1 + (e3/e0114 

92(e2) = 
=2 

i, 1 + (e2/e02j6 ’ 

(2.7) 

(2.8) 

where k = g:(O) and E = g;(O) are constants, called the stiffness of the controller. Th‘& con- 

stants eel and eo2, and the powers of (e3/eol) and (ez/eoz) in (2.7) and (2.8) are determined 

based on our design consideration, as further explained. 

Figure 2 shows these two functions, with gl(0) = 0, g2(0) = 0, and gz(e2) -+ 0 when e2 -+ foe. 

Figure 2. Unimodal function used as control functions gl(es) and gz(e2). 

This kind of unimodal function can supply three possible equilibrium states for the synchro- 

nization error system (2.4), that is, e3 (or ez) = 0 and e3 (or e2) + foe. 

The unimodal function g1 supplies one possible equilibrium state for the negative feedback 

control 

64 = -gl(e3) -+ 0, 

The unimodal function g2 supplies two possible 

control 

65 = -g2(e2) --+ 0, 

as e3 + 0. 

equilibrium states for the negative feedback 

as e2 -+ foe. 

The equilibrium state of the synchronization error can be explained as follows. From (2.%), we 

know that the equilibrium state has the synchronization error e3 = 0. So, the equilibrium state 

must fall to the point gl(e3) + 0, when e3 -+ 0 on the unimodal function 91. 

Since i(t) is an arbitrary input signal, a(t) tracks i(t) via adaptive control which usually has 

a nonzero residue, i.e., es(t) = a(t) - i(t) is usually nonzero. Once lea(t)1 > A/2, that is, 

lez(t)l > A/2, the equilibrium state of the error system (2.4) will jump over the unimodal peak 

of the control function g2 from 92(O) = 0 and converge to the region of le2(t)l > A/2, it will lead 

to ga(e2) -) 0, when e2 ---) foe. 

Consequently, &5 = -g2(e2) -+ 0, namely 
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which is the equilibrium state of the synchronization error system. This means that the HCSS will 
stay in the state where both yr tracks x1 exactly, and ys tracks x3 exactly, but yz tracks x2 with a 
constant offset, ez(t) = C, which has an opposite sign to the difference e*(t). And the parametric 
function P(t) traces the value 4.0 by a constant offset, es(t) -+ C, since 6s = -gz(ez) + 0. This 
proves that if ]ez(t)] > A/2, the HCSS is in its stable equilibrium state. Thus, the parametric 
function P(t) converges to a constant value, C + 4. 

3. NUMERICAL EXPERIMENTS AND DISCUSSIONS 

To verify the design of the HCSS, we have performed a large number of numerical experiments, 
some of which are reported in this section. Since our numerical experiments are computer-based, 
a signal is actually a time series with discrete values in double precision. This is a difference 
from the “typical” or “theoretical” master-slave synchronization, in which one might think of the 
master as an oscillator creating the drive signal at the same time as the slave’s response. 

3.1. Various Input Signals 

To experimentally verify the capability of the HCSS, we tested many finite-length signals 
sampled from handwritten numerals (input using a writing-tablet), chaotic trajectories, constant 
numbers, sine and cosine curves, and impulse signals, etc. We have selected some of these signals 
to be representative of “common” types of functions “in practice”. 

For standardization, we first normalize all input signals to the range [-0.5,0.5]. Figures 3-5 
show the finite-length normalized time series which we use in our numerical experiments. 

i(t, 1 

Figure 3. The input signals sampled from the x coordinates of handwritten numeral 
“2” after normalization. 

We also include an example of a chaotic trajectory as the input signal in our numerical exper- 
iments, which was generated by Chua’s circuit, as shown in Figure 4. 

For our final example, we have chosen the impulse signal shown in Figure 5 as input to the 
HCSS. 

3.2. HCSS in Practice 

To encode a signal by using the designed HCSS, equation (2.1), the length of the input signal 
must be determined as a reference. This is because the convergent P is also relative to the 
length of the input signal. After we encode and store the input signals by means of keeping their 
corresponding parameter values P, the HCSS is readily used for future input signal matching 
(or identification). When a new signal is input to the HCSS for identification or recognition, the 
same length of this signal must be used. We call this total number of signal points the “critical 
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Figure 4. The r coordinate of the input chaotic trajectory of Chua’s circuit. 
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Figure 5. The input impulse signal with amplitude 1.0 and width five time units, 

(a) one enlarged impulse, (b) three impulses in 1000 points. 

length” of the encoding. Since the encoding process is by chaos synchronization, which includes 

a transient period, the critical length of the input signals in application should be chosen longer 

than that of the transient period, in order to ensure convergence of the parametric function P. 

The initial setup of our numerical experiments was such that it can ensure the parameter P 
to converge within (less than) 1000 point units, that is, 1000 integration steps. On the other 

hand, the input signals used in the numerical experiments are also less than or equal to 1000 

points long (see Figures 3-5). So, we chose the critical length input signals to be 1000 points. 

For an input signal that is shorter than the critical length, we augment it with appended zeros, 

but when longer, we put it into another class of signals, with a longer critical length. 

In the following numerical experiments, the first chaotic system has initial conditions: 

Zr(0) = 0.5, Q,(O) = 0.5, Q(O) = 0.7, (3.1) 

and the second has 

Yl(O) = 0.1, 3/2(O) = 0.2, Y3@) = 0.3, a(0) = 3.0, P(0) = 5.0. (3.2) 

All of these numerical experiments were performed using the fourth-order Runge-Kutta integra- 

tion algorithm with integration step of 0.05. 
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Figure 6. The 2 coordinates of the extended signal sampled from the handwritten 
numeral “2”. 

t 
0 5 10 15 20 25 30 35 40 45 50 

Figure 7. Trajectories 21 (t) (dotted line) and yr (t) (solid line) synchronize identically 
in the HCSS when the input signal sampled from the handwritten numeral “2” is 
encoded (integration step of 0.05 is used). Likewise, es(t) = y3(t) - 23(t) + 0, not 

shown. 

x2 (f> J Yz(O 
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Figure 8. Trajectories x2(t) (dotted line) and 92(t) (solid line) of the HCSS when 
the input signal sampled from the handwritten numeral “2" is encoded (integration 
step of 0.05 is used). 
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3.2.1. Encoding the handwritten numeral “2” 

We now discuss the example of an input signal sampled from the handwritten numeral “2” 

shown in Figure 3. We must append zeros to augment to a total of 1000 points, shown in Figure 6, 

before it is input to the HCSS. 

Figures 7 and 8 show the synchronization process, the trajectories ~1 and 91, 22 and ~2, (and 

likewise for x3 and ys not shown), in the HCSS, respectively, when the extended signal sampled 

from the handwritten numeral “2” is encoded. 

Figure 8 shows the diagrams of the input signal i(t), its trace. Figure 9 shows the diagrams of 

three error states cl(t), es(t), es(t) and the resulting parameter P. 

0 5 10 15 20 25 30 35 40 45 50 

Figure 9. Input signal i(t) (dotted line) and a(t) (solid line) in the HCSS, when the 
input signal sampled from the handwritten numeral “2” is encoded (integration step 

-2 - ii 
:: 

-3 - 

-4 - 

-5 - 
-6 . . . . . . . . . . . . . . . . . ..t 

0 5 10 15 20 25 30 35 40 45 50 

(a) 

7.5 - 

7.0 - 

, 
6.5 - 

6.0 

5.5 

5.0 .I. I .1.I.I.I.,,,,,,- t 
0 5 10 15 20 25 30 35 40 45 50 

(b) 

Figure 10. (a) Errors cl(t) = yl(t) - zl(t) (dotted line), ez(t) = 2/2(t) -12(t) (solid 
line), and es(t) = us(t) - 23(t) (dashed line), (b) the resulting parameter P of the 
HCSS, when the input signal sampled from the handwritten numeral “2” is encoded 
(integration step of 0.05 is used). 

From these phase diagrams, one can see that the first chaotic system exactly synchronizes 

with the second chaotic system in trajectories q and ~1, (and x3 to ~3, not shown), that is, 

cl(t) = 91(t) - zl(t) + 0, es(t) = 93(t) - x3(t) -+ 0, but trajectories 22 and y2 synchronize 
with a constant offset, ez(t) = y2(t) - m(t) + C (constant), which determines the resulting 
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parameter P. Also, cd(t) = a(t) - i(t) + -C (constant), so that P = 4 - cd(t) -+ 4 + C. All of 
these are consistent with the theoretical analysis given in Section 2. 

It is very interesting to see the phenomenon that the two Rossler attractors run synchronously 
but are separated by a constant offset forever, even if the input signal is taken away after synchro- 

nization, as shown in Figure 11. This special property of the designed HCSS may have potential 
for new information processing and memory applications-a topic for future investigation else- 
where. 

Figure 11. Two Kessler attractors (of the first and the second chaotic systems) in 
the HCSS run separately forever with a constant distance depending on the input 
signal, even if the input signal is taken away after synchronization. 

3.2.2. Encoding a chaotic trajectory of Chua’s circuit 

As the next example, we now input into the HCSS the 1000 point chaotic trajectory of Chua’s 
circuit, shown in Figure 4. 

Figures 12-15 show the synchronization process. 

t 
0 5 10 15 20 25 30 35 40 45 50 

Figure 12. Trajectories xl(t) (dotted line) and yr(t) (solid line) in the HCSS, when 
a chaotic trajectory of Chua’s circuit is encoded (integration step of 0.05 is used). 

3.2.4. Encoding an impulse signal 

The 1000 point impulse input signal used for this next numerical experiment is shown in 
Figure 5. Figures 16-19 show the resulting synchronization process. 
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0 5 10 15 20 25 30 35 40 45 5. 

Figure 13. Trajectories q(t) (dotted line) and us(t) (solid line) of the HCSS, when 
a chaotic trajectory of Chua’s circuit is encoded (integration step of 0.05 is used). 
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Figure 14. Input signal i(t) (dotted line) and a(t) (solid line) in the HCSS, when a 
chaotic trajectory of Chua’s circuit is encoded (integration step of 0.05 is used). 

0 5 10 15 20 25 30 35 40 45 50 

P 

5.0 ’ a a ” s 3 ” ” ” ” . ’ . 
0 5 10 15 20 25 30 35 40 45 50 

(4 @I 
Figure 15. (a) Errors cl(t) = VI(t) - 11(t) (dotted line) and ez(t) = vz(t) - 12(t) 
(solid line) and es(t) = ya(t) -Is(t) (dashed line), (b) the resulting parameter P in 
the HCSS, when a chaotic trajectory of Chua’s circuit is encoded (integration step 
of 0.05 is used). 
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0 5 10 15 20 25 36 35 40 45 50 

Figure 16. Trajectories zi(t) (dotted line) and yi(t) (solid line) in the HCSS, when 
the impulse signal is encoded (integration step of 0.05 is used). 

Figure 17. (a) Trajectories x2(t) (dotted line) and ys(t) (solid line), (b) error diagram 
in the HCSS, when the impulse signal is encoded (integration step of 0.05 is used). 
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Figure 18. Input signal i(t) (dotted line) and a(t) (solid line) in the HCSS, when the 
impulse signal is encoded (integration step of 0.05 is used). 
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Figure 19. (a) Errors cl(t) = yl(t) - xl(t) (dotted line) and ez(t) = r/z(t) - %2(t) 

(solid line) and es(t) = pa(t) - 23(t) (dashed line), (b) the resulting parameter P 
d@ram in the HCSS, when the impulse signal is encoded (integration step of 0.05 
is used). 

3.2.5. A brief summary 

We draw the following conclusions from the above numerical experiments of the hybrid chaos 

synchronization processes in encoding different input signals. 

First, each of these experiments is consistent with the theoretical analysis given in Section 2. 

Second, under the initial conditions (3.1) and (3.2), chaos synchronization of the HCSS passes 

through its transient period within a time period less than the critical length (1000 points in 

this study). Therefore, HCSS can be considered to have a transient phase and then a steady 

phase. The transient phase of the HCSS mainly determines the first several digits of the resulting 

parameter value P, and the steady phase affects the high-precision digits of this parameter. 

Third, concerning the unimodal control function gs(es) (see Figure 2), if the stable equilibrium 

point falls into the range of es = 2.0 N 3.0, then the precision of the resulting parameter P 
obtained is approximately 10e5 N lo-? (further discussion will be given later). The convergence 

of the resulting parameter P can be adjusted by changing the shape of the unimodal control 

function. Thii means that the higher the power of (ez/ecz) is, the faster the resulting parameter P 

converges, so that the later digital points in the input signal have less effect on the resulting 

parameter value P. 

Finally, the initial value o(t) has a close relationship to the transient time of chaos synchroniza- 

tion of the HCSS according to our numerical experiments. If the input is normalized to be within 

the range [-0.5,0.5] and if the initial value a(0) is 3.0, then the transient time of the HCSS will 

be less than two hundred time units out of 1000 points for most of input signals simulated. If the 

initial value o(0) is chosen to be 5.0, the transient time will be less than 400 time units. That 

is, adjusting the initial values from o(0) = 3.0 to o(O) = 5.0 will prolong the transient phase. 

In general, the longer the transient phase, the longer the input signal the HCSS can encode. In 

practice, this property can be used for encoding different lengths of different input signals. 

3.3. Resulting Parameters P from Different Input Signals 

For the signals used in the above numerical experiments, the resulting parameters P and the 

changes corresponding to variations of the second or the last digital of different input signals are 

shown in Tables l-3. The first column of each table shows the digital index number of an input 

signal. The second column shows the normalized values of every point of the input signal. The 

third column shows the point value, which is the same as that of the second column except the 
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Table 1. Encoding the signal of handwritten numeral “2”. 

Sample Sample Value Change the 2”d Sample Change Last Sample 

1 -0.22316 -0.22316 -0.22316 

2 1 -0.22029 I -0.22028 1 -0.22029 

. . . I 

137 1 0.49809 I 0.49809 0.49809 

138 1 0.50000 0.50000 0.50001 

139 1 0.00000 I 0.00000 0.00000 

140 I 0.00000 0.00000 0.00000 
. . . . 

1000 I 0.00000 0.00000 0.00000 

P 1 5.92134767725156 1 5.92135419545282 1 5.92134767531791 

Table 2. Encoding a chaotic orbit of Chua’s circuit. 

Sample Sample Value Change the 2”d Sample Change Last Sample 

1 1 0.083475 0.083475 0.083475 

2 1 0.108855 0.108854 0.108855 

. . . . 

998 1 0.208520 I 0.208520 I 0.208520 

999 1 0.205635 0.205635 0.205645 

1000 1 0.203150 0.203150 0.203150 

P ( 6.63184318818670 1 6.63184285487491 1 6.63184318818671 

Table 3. Encoding an impulse signal. 

Sample Sample Value Change the 201st Sample Change the 956th Sample 

1 0.00000 0.00000 0.00000 

. . 

199 I 0.00000 0.00000 0.00000 

200 I 0.05000 0.05000 0.05000 

201 I 1.05000 ! 1.05001 1.05000 

202 1 .ooooo 1.00000 1.00000 

203 1 .ooooo 1.00000 1.00000 

204 1 .ooooo 1 .ooooo 1 .ooooo 

205 0.95000 0.95000 0.95000 

206 -0.05000 -0.05000 -0.05000 

207 0.00000 0.00000 0.00000 

. . 

949 o.ooooo 0.00000 0.00000 

950 0.05000 0.05000 0.05000 

951 1.05000 1.05000 1.05000 

952 1 .ooooo 1 .oooOO 1.00000 

953 1 .ooooo 1.00000 1.00000 

954 1 .OOooo 1.00000 1.00000 

955 I 0.95000 I 0.95000 I 0.95000 

956 -0.05000 -0.05000 -0.05001 

957 0.00000 0.00000 0.00000 

. . 

999 0.00000 0.00000 0.00000 

1000 0.00000 0.00000 0.00000 

P 6.09405030372185 6.09399622554569 6.09405030372003 
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fifth digit (which has a change in the hundred-thousandth precision indicated in bold font). The 
last column shows the same point values as that of the second column except that the last point 
value has a change in the hundred-thousandth precision (in bold font). The last row of each table 
shows the resulting parameter P estimated by the HCSS from the input signal located in the 
same column. The bold fonts in parameter P tell their differences from the original parameter 
value of P. 

Considering Tables 1-3, we observe the following. First, the parameter P is sensitive to small 
changes in the input signal. So, it can be used to encode (represent) this signal distinguishably, 
and these representations are unique within the monotone region of the parameter P (we will 
discuss this issue further). 

Second, in general, the beginning points in column two of each table are more~significant than 
the later points, in the sense that they have greater effects on the final value of the resulting 
parameter P. This reflects the sensitivity to the changes of its initial conditions of chaotic 
dynamical systems. Therefore, the output trajectory will be increasingly effected as time evolves. 

3.4. Control Functions in the HCSS 

In all of the numerical experiments described above, we used the control functions 

gl(e3) = lce3 
l+ (e3/e01J4 

and 

92(e2) = 
Ee2 

1 + (e2le02T 

to force the HCSS to converge quickly to its stable equilibrium state. As pointed out earlier, 
the power of (es/ecs) in the control function g2 will affect the precision of convergence of the 
parameter P, which was chosen carefully based on trial-and-error. Besides, large stiffness k 
and c values of the unimodal control functions gi and gs should be chosen, and the constant 
parameter ea2 (or esi) determines the desired A of the unimodal control functions. For all 
numerical experiments reported above, k = 211, E = 51, e 01 = 0.2, and ees = 0.2 were used, 
again, on the basis of trial-and-error. 

Figure 20 shows the convergence segments in a small scale for the stable equilibrium state of 
the HCSS when the parameter P is within the range (6, 71 (that is, es is in the range [2, 31, since 

g, W 
2.50E-4 I I I I I a 8 a a 8 1 r . 8 , 

2.25E-4 - 

1.5OE-4 - 

1.25E-4 - 

1 .OOE-4 - 

7.50E-5 - 

ZSOE-5 - 

2.00 2.25 2.50 2.75 3.00 

g,W 
2.20E-6- a , , , , , , , 

1 .l DE-6 - 

S.80E-7 - 

4.40E-7 - 

2.20E-7 - 

O.OOEO . ’ ’ . ’ . 
2.00 2.25 2.50 2.75 3.00 

(4 (b) 
Figure 20. A segment of unimodal function (a) with the sixth power, (b) with the 
eighth power of (ez/eoz) used as control function gz(e2). 
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P = e2 +4). In this case, the feedback control function gn(ez) has about 10e5 or 10m7 in precision 

for the sixth power or the eighth power of (ez/esz), respectively, as can be seen in Figure 20. 

4. OBSERVATIONS AND DISCUSSIONS 

The methodology explored in this paper enables us to encode an arbitrary signal accurately 

and efficiently. The crucial condition for the success of this method is a noise-free environment for 

the precise representations of different signals. Therefore, potential applications of the designed 

HCSS are likely to be in information encoding and storage, and certain security systems such 

as password check and key identification, rather than noisy signal communication and pattern 

recognition. This HCSS has some useful properties: 

(1) a unique parameter value for each input signal within a monotone region, 

(2) continuity of the parameter with respect to the amplitude of the input signals, and 

(3) sensitivity of the parameter with respect to the time shift of the input signals, etc. 

4.1. Continuity of the Parametric Function P to the Amplitude of the Input Sign& 

Since an input signal i(t) has a continuous GS with the first chaotic system, the output v(t) 

of the first chaotic system must be a continuous image of i(t). Similarly, the w(t) has IS with the 

second chaotic system, so the output parametric function P must also be continuous. Therefore, 

the resulting one-dimensional output parameter P, with respect to the one-dimensional input 

signal i(t) of the HCSS, is determined by some continuous mapping. That is, the parameter P 
must have a (small) defining domain with respect to very small changes of the amplitude of the 

input signal i(t). This means, that if the amplitude of the input signal increases or decreases 

within a very small range, then the resulting parameter P will vary monotonously, also within a 

very small domain. 

The following numerical experimental results, with a small variation of the amplitude of the 

input signal sampled from the handwritten numeral “O”, agree that the resulting parameter P in- 

deed changes slightly and monotonously. These numerical experiments use initial conditions (3.1) 

and (3.2), a critical length of 1000 points, and the fourth-order Runge-Kutta integration algo 

rithm with integration step size 0.1. The sixth power of (ez/esz) is used in the control function 

gz(ez). Other setups are the same as the numerical experiments reported above. Table 4 and 

Figure 21 show the experimental data, which agree with the continuity property of HCSS. It can 

be seen from Figure 21 that there is a large monotone domain (-0.015,0.005) within which there 

is a linear domain (-0.01,0.003). This is a useful region to be used for real applications, since it 

guarantees the uniqueness of the mapping i(t) + P. 

P 

6.83 
6.81 
6.79 
6.77 
6.75 
6.73 
6.71 
6.69 
6.67 
6.65 
6.63 
6.61 - 
6.59 - 
6.57 - 
_.__ 

-0.03 -0.02 -0.01 0.00 0.01 0.02 0.03 

Figure 21. Continuity of the resulting parameter P vs. small amplitude changes d of 
the input signal for handwritten numeral “0”. 
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Table 4. Continuity of the resulting parameter P vs. small changes 6 of the amplitude 
of the input signal, handwritten numeral “0”. 
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Changes b of Amplitude Parameter Changes 6 of Amplitude Parameter 

of Input Signal P of Input Signal P 

+0 6.77418287166439 -0 6.77418287166439 

+0.00001 6.77432310165669 -0.00001 6.77404250139414 

+0.00002 1 6.77446319010803 1 -0.00002 1 6.77390199211087 

+0.00003 1 6.77460313575773 1 -0.00003 i 6.77376134508150 

. . 

+0.00010 1 6.77557865151863 1 -0.00010 1 6.77277306571141 

+0.00020 1 6.77695915637546 1 -0.00020 1 6.77135050347900 

+0.00030 1 6.77832317811666 1 -0.00030 1 6.76991645819652 

. . . . 

+0.00100 1 6.78732810978530 i -0.00100 1 6.75965825142054 

+0.00200 6.79855498498728 1 -0.00200 1 6.74482639857012 

+0.00300 1 6.81020751576172 1 -0.00300 1 6.73027901435812 

I . . . I . . . I . I I 
+0.01000 1 6.80340083107163 1 -0.01000 1 6.63345935170303 

+0.02000 1 6.78345089962921 1 -0.02000 1 6.60426930043395 

I -t-0.03000 1 6.70932426282247 1 -0.03000 1 6.71172291891259 1 

Here, we outline proof of the property that the resulting parameter P has a unique value for 

each input signal within its monotone region. 

REMARK 4.1. Given a chaotic dynamical system jc = f(x), which satisfies the hypothesis of the 
existence and uniqueness theorem (see, e.g., [17]) for all time t, and given two sets of initial 

conditions {x(to),x(tl), . . . ,x(&J} and {x’(to), x’(tl), . . . ,x’(L)}, where tj > tj-1, 1 2 j I n, 
the phase trajectories starting from these two initial condition sets will coincide if and only 

if {x(t~),x(h)~. . * ,x(L)) = {x’(to),x’(h), * f. 9 x’(tn)}. This statement follows by considering 

two initial conditions x(tj) # x’(tj) at time t = tj. Since the overall system is autonomous, 

phase trajectories starting from these two initial conditions never intersect, and since the sys- 

tem is chaotic, the two trajectories are expected to diverge at approximately the rate of the 

largest positive Lyapunov exponent of the system. Therefore, the two trajectories cannot co- 

incide. Conversely, if two phase trajectories of system starting from these two initial condition 

sets coincide, then by uniqueness of solutions, these two trajectories must, be identical. Hence, 

{x(to), x(Q, * . . 7 x(L)) = {x’(to),x’(h), . . * , x’(k)}. 

REMARK 4.2. For the HCSS shown in Figure 1, input two signals, {i(to),i(tl), . . . ,i(t,)} and 

{i’@o), i’(h), . . . 7 i’(L)}, where tj > $_I, 1 5 j I n. Then, the corresponding paramet- 

ric functions P(t) and P’(t) of the HCSS are identical if and only if {i(to), i(tl), . . . ,i(tn)) 

= {i’(to>, i’(t&. . . , i’(&)}. This follows from the fact that the HCSS in Figure 1 is an aug- 

mented autonomous system, in which i(t), v(t), P(t), and a(t) are (new) state variables. By 
Remark 4.1, the corresponding parametric functions P(t) and P’(t) of the HCSS are identical if 

and only if {i(to),i(tl), . . . , i(tn)} = {i’(to), i’(tl), . . . ,i’(t,)}. 

4.2. Sensitivity of the Parameter P to Time Shifts of Input Signals 

To verify the property of sensitivity of the parameter P with respect to the time shifts of the 

input signals, input a rectangular signal i(tn), beginning at the time t, = 700 with height 0.5 
and width 50, is shifted on the time axis from the left to the right, or tice versa. There is no 

amplitude change throughout the process, as shown in Figure 22. As is clear, the resulting value 
of the parameter P is changed dramatically by these time shifts. 
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i(t, >A 
0.5 _-____- 
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0.5 --___---__ 
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P=1.13641416166326 
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A t ” 

0.5 --___---___ 
P=O.56336936758437 
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t 

A 
” 
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P=1.25308577014743 ______-______ 
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701 751 t, 

Figure 22. Rectangular input signal i(t), with height 0.5 and width 50, arrives at 
time tegs, tegg, t~oo, and t7~11, respectively, and the corresponding parameters P. 

5. CONCLUSIONS 

Through sufficient numerical studies, this paper explores a new methodolom for chaos synchro- 
nization via a hybrid (generalized plus identical) synchronization. An arbitrary signal, generated 
by an unknown dynamical system, is synchronized by the hybrid chaotic system and then stored 
for recognition or identification. Each finite-length signal can in principle be labelled and stored 
by a unique number, provided that the key hybrid system parameter used for this labelling is 
suitably chosen within a one-to-one mapping range. The new methodology enables us to encode 
an arbitrary signal accurately and efficiently. The Rossler chaotic oscillator is used as the plat- 
form for the designed hybrid chaos synchronization system. In addition to some basic theoretical 
analysis, many numerical simulations have been tested which verify the proposed design. A basic 
requirement for this hybrid chaos synchronization system is a noise-free environment. Therefore, 
potential applications of the system is in exact information processing such as message storage 
and password recognition, as well as high-accuracy secure systems. 
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