REGULARITY OF COMMUTER FUNCTIONS FOR HOMEOMORPHIC DEFECT
MEASURE IN DYNAMICAL SYSTEMS MODEL COMPARISON
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AsstracT. In the field of dynamical system, conjugacy describes arnvatpnt relation between two dy-
namical systems. In our work, we are dealing with mostly agagy, which relates two dynamical systems
that are not necessarily conjugate. We generate a funditedc’commuter” based on a fixed point itera-
tion scheme. The resulting "commuter” is a nonhomeomorphange of coordinates translating between
two systems. And we can determine the amount of failing todrgugyacy, which we call homeomorphic
defect, by studying the properties of commuters.

We consider the function spad¢e’[0, 1], with 1 < p < oo, and the norm is given by the standdrtl
norm. We derive a contractive operator which will give a tipwint from the commuting relationship even
when applied to nonconjugate systems. We discuss the nadsigiyrof commuters. Specially, when study-
ing behaviors of commuters between full symmetric tent nragpshort symmetric tent map, we show that
the commuter is monotonely convergent to identity functserthe height is going to 1. At last, we also give
a computation error analysis for our computation methoddupcing commuters.

1. INTRODUCTION

In the field of dynamical systems, the concept conjugacyrdess an equivalent relation between
dynamical systems. More precisely, we have the followinfindeon,

Definition 1.1. Let X and Y be topological spaces, and letX — X and g : Y — Y. The dynamical
systems gand @ are conjugate if there exists a homeomorphisnxh— Y, such that

(1) 0u(¥) = (W™t o gz 0 h)(X)
forall x € X.

Topologically,h is a function which is continuous, 1-to-1, onto, inversetgarous. If we rewrite (1.1)
in a equivalent form

(2) (hog))(X) = (G20 M(¥)

We notice that (1.2) allow us to relax some conditions fordégnition of conjugacy. We will introduce
the concept of mostly conjugacy in the following definitiordiescribe a function which satisfies (1.2), but
not necessary a homeomorphism.

Definition 1.2. Let X and Y be topological spaces, and letdX - Xandg:Y - Y. Iff: X > Y
satisfies the commuting relationship (1.2), then we say fcisnamuter relating the dynamical system g
and @.
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Notice that this definition doesn't require the functiérto be continuous, 1-to-1, onto or inverse
continuous. Such commuters exit and computable. In pape&rgbuild a scheme to construct commuter
functions between the family of skew tent maps and the faofisymmetric tent maps. When generating
the sequence of the commuters in the scheme, we assume theutarsare in the spa@&[0, 1], R), the
set of all bounded functions from [Q] to the real numbers, which is a Banach space, with the norm
If]l = |Iflle := supgf(X)]. It is the purpose of this paper to discuss a more generalittomdor the
commuters function.

In section 2, we continue the example in paper[3], but cardite related functions ibP space, with
1 < p < . In section 3, we will prove that, if a skew tent map convergesfull tent map, the commuter
between this skew tent map and the full tent map convergéetioléntity function. In section 4, we show
that using our scheme to generate functions are all medsufdbe initial guess function is, and hence
the limit of the sequence, the commuter, is also measurabtgether with the assumption that all the
functions we are discussing are bounded, we should haveoti@dusion that the commuter is It?. In
section 5, we sketch the computation work of presenting dmnouter, and the error analysis for the
technique that we are using.

2. A ContrAcTION MAPPING FROM THE COMMUTATIVE RELATIONSHIP

In this section, we start with a simple but typical exampleyhich we see the exitance and uniqueness
of such commuter function, and how to construct this commute

Consider the family of skew tent maf§x) defined on [01], with:
(1) S(0)=0, S(1) =0;
(2) Peak of tent occurs &(a) = bwith 0 < a < 1;
(3) To ensure the map is locally expanding, requma{a, 1 —a) < b < 1.
Define this familyS,

Consider the subset of maps that are symmetric abeut/2, denote the subfamilyasr c S, 7, :=
S1/2v- First, the following lemma gives the existence of a confiyga

Lemma 2.1. Let S, be a particular member of S. Then there existg 8.z S is conjugate to Tvp) €
7. (So h(X) = ho T(X))

Secondly, we demand that the commuter function maps moasgments of the symmetric tent map

to monotone segments of the full tent map. Since ji[Q], the symmetric tent map B(X) = 2vpox. From
(1.2), we have

3) S o h(x) = h(2voX)

Notice thath maps the domain [@/2] of of S(X) to the domain [Qa] of T(x). i.e. h[0,1/2] =
[0, a]. SinceS(x) = b/ax, together with (2.3), we get,

@ 2h(9 = (2

Similarly, in (1/2, 1], we can get

® 2 (1 h(x) = h(2%(1- )

Therefore, the conjugacy functidiix) must satisfy:
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qh2vex), 0<x<1/2,

b
1- 1—;ah(Zvo(l— X)), 1/2<x<1.

h(x) =

And, a conjugacy should map turning points to turning poittitat is

(7) h(1/2) = a
Then atx = 1/2, we have

®) h(1/2) = a = 2hiv)
and
©) h(vo) = b

Since the conjugate functidi{x) satisfied:

gh(ZVOX), 0<x<1/2,

1- 1;bah(2vo(1 ~¥),  1/2<x<1.

h(x) =

Now use this equation as a guide, we create an operator whesepioint will satisfy (1.2).

Consider the spacB([0, 1], R) with norm|[f|| = ||f||.r := (fo’l] |f|pdx)%, 1 < p < o, whichis a
Banach space, complete. More precisely, we give the deirintit} theLP space in the following.
Definition 2.2 (Definition of LP Space) If E is a measurable subset of R and p satisfiesp < oo, then
LP(E) denotes the collection of measurable f for thgh]f(x)|pdx is finite, that is

LP(E) = {f : LIf(Xx)PldX< oo}, 1< p < co.
We shall write
Iflloe = (L1T(PAX?, 1< p < oo
thus, LP(E) is the class of measurable f for whithl|, e is finite.
From the closed subsgt c B([0, 1], R)
¥ = {f|f :[0,1] - [0, 1]}
Then given &, b) satisfyingmaxa, 1 — a) < b < 1 defined a one-parameter family of operators.
M,:F ->Fforl/2<v<l

a
b
1- 1%af(2v(l—x)), 1/2 < x< 1.

f(2vx), 0<x<1/2,
M E(X) =

Consider ora, b andv are required to ensurg is mapping into itself, also cause the operator to be a
contraction.

Lemma 2.3. M, is a uniform contraction o, where the contraction is with respect|to||,.
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Proof. Defined = max2, £2), then 0< 1 < 1,

IMofr = MoFallpjoy = ([ ML = M lPA)?
ForO< x<1/2

( ML= M, TIP3
[0,1/2]

= ( (f1(2VX) - f2(2VX)|de)

.1/2) D
= (] 1) - ko)A

[O 1]

If1(y) — fo(y)[Pdy)?

(2v) pb J0]

Similarly, for 1/2 < x < 1,

( ML= M, TPdX)?

[1/21]

([ AR - Lewrdd
21 b

< ﬁ‘( 110) ~ B)Pa):

[0.1]

20 100 - Le)Pdy)?
(2v)p [0.1]

ThUS,”val - Mv f2||p,[0,1] < /l” f1 - f2||p,[0,1]-
O

SoM s a contraction , with contraction constrain constarBecausel not depends ow, the constant
is uniform.
Lemma 2.4. There is a unique,fe ¥, so that
vav = fv
Moreover, for an arbitrary § € F, if we define the sequence of functions
fn+l = Mv fn
this sequence will converge to f
fy = iMoo fo

3. ConverGENCE Or CoMMUTER FuNcTION

In this section, we continuous the example in the last sechiot consider a more theoretical issue.
In Figure 1, we know that a full tent map is self-conjugateshese the identity function is a homeomor-
phism. But a symmetric tent map with lower height might notbajugate to the full tent map. We are



REGULARITY OF COMMUTER FUNCTIONS 5

going to check if we shift the height of the symmetric tent mabpat is going to happen to the commuter
function. Would the commuter converges to the identity fiom? Or even more, monotone converges?
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Ficure 1. (Color) Shift tent maps.(Left) A tent map with peak at § 1)(blue), and a tent
mapT, with peak at é Vp)(red). (Right) A full tent mags. HereT,, = S, so the commuter
between them is the identity functidnAs V,, going to 1, the commuter function between
Tn andS is going to the identity functioh under the nornfi - |01, 1< p < 0

Theorem 3.1.1f V, is a sequence going to 1, then the commuter from the symnettienap T, with
peak \; to the full symmetrictentmap S, is convergent to the idefutitction (x) under the nornii-||p 0,1

Proof. From section 2, it is easy to see the commuter function betWgandS satisfies the following

equations

%hn(zvnx), 0
hn(X) = 1
1~ Sha((1 - X)),

Note: Just take = % b = 1 at the original equations.
Also notice that, maps monotone segments of the grapi,pbnto monotone segments §f i.e. h,
maps segment on the interval [@] of T, onto the segment on the interval [@] of S. Also notice that

N
X
N

Nl
A
x
N

NI

=

the inverse function ob exists on each of these intervals.
First consider (< x < 3,

Iha = Hlpgo.3y = IS o hyo Ta =S o1 0 S0
< Ll o Ta =10 Sl

Since in this simple example, we are dealing with the sys$éxh = 2x. Thus it is easy to see that the
lipshitz for S~1(x) is % However, we will point out the fact in the next part that foora general systems
besideS(x) = 2x, the above idea of proof with still work.
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Thus,
1
” IHD[O 1] Ellh OT I OS”p’[O’%]
1 1
§||h o Tnh—hno S|y, g+ —||h oS-I oS||p[0;
1
= 5lhn o To = b o Sllpo 3y + (f INn(2X) — 2X/PdX)?

Let 2x = u, we can substitutz = 5 on the above equation because of its absolute contindity.[3
So,

1
1 1 (2 1
o = Hlago 1 < 3lia 0 Ta = ho 0 Sllypo + E(f Ihn(2%) — 2xPdx)
0
1 1t u, 1
(13) = 300 Ta=hoo Slho + 5( [ (w) - uPa)’

1 1
= E”hn oTh—hpo S”p,[o,%] + Enhn — Hlpo.1
On the other hand, fof < x < 1,

lhho Th—1o S”p,[%,l]

lIhn — |||p,[%,1] <L
< L||hn o Tn - hn o SHp,[%,l] + L”hn o S - I o S”p,[%,l]
1

1, 1
= S0 To = oo Sl + 5 Ihi2(2-9) - 22 XPag?

Again, let 2(1- X) = u, we can substitut& = 1 — 5 on the above equation because of its absolute
continuity.[3]
So,

[EEN

1t 1
lIh — |||p,[%,1] sllhho T —hyo S”p,[%,l] + E(ﬁ Iha(2(1 - X)) = 2(1 - X)[PdX)?
2

=N

1 0 U,z
= 5llhho To—hyo S”p,[l,l] + _(f Iha(u) = ulPd(1 - 5))»
27 o8 | 2

N

(14)

NI =

1t 1. 1
= St o Ty~ hyo Sllygs + 5 fo I(w) - uPZ )}
—LihoT.—h S LT
—§|| hO In—"Mho ||p,[%,1]+ﬂll h — ||p,[0,1]

Since 1< p < oo, by raisingp power on (13(2), we can get
1 = TP g 37 + 100 = 1P 4 < (= Vo33 + (1P = Hlpg3.29)°
1 1

< (Eth oTh—hyo SHp,[O,%] + E”hn - I||p,[0,1]

1 1
+ §||hn oTh—hpo SHp,[%,l] + E”hn - I||p,[0,l])IO
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So,
1 1 1
lIhn = Hlpjo.1y < E”hn oTh—hpo S”p,[o,%] + Eth oTh—hno SHp,[%,l] + ;”hn — Hlppo.
p

which implies

1

2(1-

)”hn oTh—hyo SHp,[%,l]
2

lIhn = Hippo.) < m”hn ©Th—hnoSllypy +
2P

U\Hl'—‘

By the continuity inLP[2], since

o= Slipo21 = O. T = Slipgzzy = 0 (Vo — 1)

we have

Ihho Ty —hyo SHp,[O,%] — 0, [[hhoTy—hyo S”p,[%,l] -0
Thus

Ihn = Hlpjoyy = 0asV, = 1, 1< p< oo
O

The above theorem says thatgs— 1, ||h, — lllp01 — O. In fact, the convergence under this norm is
strictly monotone. First let's see what we can tell from FegQ.

As we increasing the values @f, we calculate the dlierence between the symmetric tent map with
peakv, and the full symmetric tent map under 1-norm and 2-norm. Weatsserve from Figure 2 that
the valueglh, — I|l1[0,1; @and|lh, — l]|20,1) @re decreasing monotone\ass increasing. But what we have
claimed is only based on computation results and obsenatits natural to ask whether this property
of monotone convergence of the commuters can be provenetiealy, and more generally. That is, if

monotone
Vo = 1, [[hy - I||p,[0,1] — 0.

o
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(a) Convergence Analysis with 1-norm (b) Convergence Analysis with 2-norm

Ficure 2. Asv, — 1, the diference betweeh, andl under the nornfl - || 0,17 IS going to
0 strictly monotone.

Before giving the answer, let’'s go back to the constructibthe commuter functions and see whether

it will give us some hits to prove it.
From the procedure of generating the commuter function éetwthe symmetric tent map and the

full symmetric tent map, we start with the identity functiahthe first iteration. Suppose we have the
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commuter functiorh(x) at then™ step. At the next step, we make a copyh(x), shrunk it by ¥2 in the
vertical and by 2 in the horizontal (Figure 3(b)). Take a second copy, scdledsame horizontally, and
vertically scaled by 12. Rotate this copy by 180 degrees and place it in the uppetrp@tion of the unit
square (Figure 3(c)). Then truncate the left copy to thewald0, 1/2) and the right copy to [22, 1]. The
result (Figure 2(d)) return the commuter functia(x) at stepn + 1"

- : Tz - -
AR VA VAR Ve
(a) Commuter at (b) Step 1 (c) Step 2 (d) Commuter at '3
Iteration Iteration

Ficure 3. Construction Procedure Of Commuter Function

In Figure 4, the red curve is the commuter with the peak vaigledr than the blue ones. And the green
line is the identity function. We can see that onQ®], every point of the red one is greater than the green
one. While on [, 1], every point of the red one is less than the green one. Thieemthe dference
between the identity function and the red’ commuter]li.e.hgl, is less than that between the identity
function and the 'green’ commuter ille= hyuel, which also impliegiheq — Hlpjo,1) < [Noive = Hlp 013, 1 <
p < oo.

1 T T T T
0s) 7
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0.8} -

01} P
7

0.5
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> /x/’/
0.1 /,
O Il Il Il Il
0 0.2 0.4 0.6 0.8 1
X

h(x)

Ficure 4. Analysis for the commuter function: (Green) The identitgction. (Red) The
commuter between the full tent map and the tent map with peagg a.9). (Blue) The
commuter between the full tent map and the tent map with pE(a}g @.8). Notice that on
[0,0.5], every point of the red one is greater than the green ondéeWh [0.5, 1], every
point of the red one is less than the green one.

More precisely, if we can prove that given two symmetric t@aips, one is higher than the other, and
they have the above property, then the monotone converdelmes.
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Theorem 3.2.1f v, is a sequence going to 1, then the commuter from the symntenitienap T, with
peak y to the full symmetric tent map S, is monotone convergentetaddmtity function (x) under the
normy| - |lp0.1]

Proof. Without loss of generality, we let.q be the peak of the higher symmetric tent map, whijg be
peak of the lower symmetric tent map. We are going to showdhdhe interval [01/2], every point of
the commuter from the red symmetric tent map to the full teapns greater than the blue one. on the
interval [1/2, 1], every point of the commuter from the blue symmetric temjprto the full tent map is
greater than the red one. Here we just give the prove for therdr. For arbitrary p-norm, it is also true
by the fact of the embedding theorem.

We prove it by induction.

For the first iteration, we start with the identity functicsee the Green line in Figure 5(a). Then we
make a copy oh(x), shrunk it by ¥2 in the vertical and bym W respectively in the horizontal. Take
a second copy, scaled the same horizontally, and vertisedliied by 12. Rotate this copy by 180 degrees
and place itin the upper right portion of the unit square.rTinencate the left copy to the interval [y 2)
and the right copy to [12, 1]. The result return the commuter functibgy(x) andhy(X) after the first
iteration.

09 4 0.9 ] 4
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0.6
£ 05
0.4
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0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

(a) 1" Iteration (b) n" iteration

Ficure 5. Commuter Functions With Berent Peak Values

We can see that the every red point in the intervad[®) is greater than the blue one. Every blue point
in the interval [05, 1] is greater than the red one. That is true because the reshouek by— which
is more than what the blue one shrunk. See Figure 5(a).

Now we suppose what we need to prove is true inrfigteration. That is, every red point in the
interval [Q 0.5] is greater than the blue one. Every blue point in the irae}@.5, 1] is greater than the
red one. At the next step, we still construct the commuter ljkse the procedure in the first iteration
above. Without loss of generality and for simplification, assume that the commuters look like Figure
5(b). In fact this picture is the commuter after three itieras. In order that at the + 1" iteration, every
red point is greater than the blue one in the intervad[®], we just need to figure out in the most upper
right segment, whether the red points shrunk more enoughttf@blue ones, so that every red point
in this segment runs above the blue one. If so, then everyt pbithe whole red commuter will runs
above the blue commuter, which is exactly what we want to eapphis can be tell easier if see Figure
5(b). Since the blue line segment moveé&(l/vy,e) horizontally, the red line segment move(1/Vieq)
horizontally, the blue one moves(1/Vuwe — 1/Vieq) With respect to the red one. Farsuficiently
large, the commuter is going to converge to the final commiutection, the slopes of the blue line
segment and the red line segment are going to be 0. At the saradlte length of them are going to
be 0. So the left end points of the red and blue line segmeiitbevcloser and closer as— oo, until
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their distance reaches 0, which is absolutely less thHa(1vpue — 1/Vieq). Thus the conclusion is true in
[0,0.5]. For [05, 1], the argument is similar because of symmetry.
As a result, at the + 1" iteration, the conclusion is also true. This finishes thepro O

Although the above discussion dealing with very simple satee idea of proof can be extend to be
more general.

08 T T T
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Ficure 6. Convergence Analysis For Skew Tent Maps

For example, if we start with a pair of skew maps with peaksh,) and @, b) respectively, see Figure
6. Leth, be the commuter between these two systems. As the segi(end®)} goes to &, b), it can be
also showed thdlh,, b, — 0,17 — 0. More precisely, we have the following theorem.

Theorem 3.3.1f (a,, b,) is a pair of sequence going {a, 1), then the commuter from the skew tent map
T, with peak(a,, bn) to the skew tent map T with pegd 1), say h, is convergent to the identity function
| (X) under the nornil - [0, 1 < P < o

Proof. From the commutative diagram in section 2, we can have themadsr function betweef, and
T satisfies the following equations

b
am(a” X), 0<x<a
hn(x) = b
1-(1- a)hn(a”(l -x), a<x<l.
Also notice thah, maps monotone segments of the grapif, onto monotone segmentsdfi.e.h,
maps segment on the interval 9] of T, p, onto the segment on the interval ) of T. Also notice that

the inverse function of exists on each of these intervals.
First consider X X < a,

llhn — I||p,[0,a] = ”T_l oh,o Tan,bn ~-Ttolo T”p,[O,a]
< Llhy o Tan,bn —-lo T||p,[0,a]
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Here, we are dealing with the systéifix) = 1/ax. Thus it is easy to see that the lipshitz for(x) is
a
Thus,

< allhy o Tan,bn -lo T”p,[o,a]
< alhyo Tan,bn —hpo T”p,[O,a] +alhhoT-1o T||p,[0,a]

a 1 1 1
= alhyo Tap, —hoTllpoa + a(f |hn(ax) - axlpdx)p
0

||hn - I||p,[0,a]

Let %x = U, we can substitutg = au on the above equation because of its absolute continyity.[3
So,

a 1 1 1
lIhn — I”p,[O,a] < alhyo Tan,bn —hno T”p,[O,a] + a(f |hn(ax) - axlpdx)p
0

(16) ' :
=alhho Tap, — Mo Tllpoa + a(f Ih,(u) — ulPdau)?
0

= allhy © Tayb, = o © Tllppoa + & #liMe = llpoy
On the other hand, fa < x < 1, we are dealing with the systef{x) = 1/(1 — a)(1 - x). Thus itis
easy to see that the lipshitz for(x) is (1 - a).

Lilhn © Tapb, =1 © Tllpay

Ihn = Hlp[a <
< LIhy o Tap, —=hno Tllpay + Liha o T =1 o Tllpjay

L 1 1 1
= (1-a)llhno Tab, —Mro Tllpay + (1 - a)(f Ih(z——1-X%) - ——(1- X)Ide)%’
a l1-a l1-a

Again, Ietﬁ(l — X) = u, we can substitute = 1 — (1 — a)u on the above equation because of its
absolute continuity.[3]
So,

(17)

! 1 1 1
Ihn = Hlpay < (L= a)llhn o Tayp, — hno Tllgpa + (1 - a)(f |hn(1—(1 - X)) — ——=(1 - x)|Pdx)?
a -a l-a
0
=1 -a)lhhoTap, —hnoTllpay + (1 - a)(f Inn(u) — uPd(1 - (1 - a)u))»
1

1
= (1-a)lltn o Ta,p, = o Tllpfay + (1 - a)(f In(u) - ulP(1 - a)du)®
0

= (1 - a)”hn © Tan,bn —hpo T||p,[a1] + (1 —a 1+%th - I||p,[0,1]
Since 1< p < oo, by raisingp power on (16}(17), we can get

A = 1120 5 + A0 = 1121y < (100 = Hlpgo + 11 = Hlpgaay)P
< (@llhn © Tagy = Mo o Tllpoa + a5 8lIhy — Hlngo g
+ (1= a)lIhy © Tap, — hn 0 Slipgag + (L~ &)l — Hipo.1)"
So,
I = Hlpgoa) < @l © Tarb, — Mo © Tllpjoa + @ #llhn = Hipgoag

+ (1 - a)”hn © Tan,bn —hypo S”p,[a,l] + (1 - a)l+%||hn - I”p,[O,l]
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As we assume that mgx 1 — a} < 1, soa < 1 and (1- a) < 1. We also notice thaal*s < a and
1 1 1 .
(1-a)'*» < (1-a). So here we hava'*s + (1—-a)**? < a+(1—a) < 1. Rearrange the above equation, we
get

a

Ihn = Hipo.y < 1 al*s @ a)1+;)||h” © Taby =P © Tllpjoa
— p — — p
l-a
+ 1 ||hn © Tan,bn - hn o T||p,[a,1]

(1-a'"s - (1-a)*?)
By the continuity inLP[2], since

ITanbn — Sllpo.a] = 0, Tayp, — Sllpa = 0 ((@n, bn) — (a, 1))
we have

lIhy o Tan,bn —hyo T”p,[o,a] — 0, [[hyo Tan,bn —h,o T||p,[a1] -0
Thus

||hn - I||p,[0,1] - Oas(an, bn) - (a’ 1)’ 1 < p <oo.

4. Tue MeasuraBiLITY OF CoMMUTER FuNCTIONS

Theorem 4.1. For the procedure of producing the commuter functions seced,. If f;, the initial guess
commuter, is measurable, i.e. the identity function, tligieace fis measurable.

Remark4.2 f is measurable meang € E : f(X) > a} is measurable for every fini® E is measur-
able. Sincef.1[1x] = g, o fao gi[lx], g, is continuous orY. f, : X — Y. Suppose the range gff1x]
is a measurable set.

Lemma 4.3. If ¢ is continuous, f is finite a.e. and measurable on E, therf is measurable.

Remarkd4.4. Please be noticed that the product of two measurable furectiay not be measurable. That's
the reason that | force the assumption of the measurabflithyeorange ofgi[lx]. (More details are in
'Proof of Statement 1’) In fact, this assumption would nottbe strong since the dynamical systems
01, 02 in our project are regular’ in some sense.

Proof of Theorem 11From the relation that
follx] = g5t o frogullx], o5t

Since f; is measurable on the range®flx ] as we suppose, i.e. most of the time we will start with
f, = I, identity function.
So f, is measurable, so i&...f,, by 4.3. O

Lemma 4.5. If fnis a sequence of measurable functions, tep f«(X) and infy fi(X) are measur-
able. Here{x : sup, fu(X) > a} = Uk{x: f(x) > a}

Proof. [1]Since inf fx = —sup(—fk), it is enough to prove the result for sufp. This follow from the
fact that{sup, fx > a} = Ui{fx > a. O

Theorem 4.6. Fromlemma 2, sequence,fconverges to f. We claim that f is also measurable, and hence
f isin LP because we assume the commuter function f is bounded.
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Proof. [1]Since
limy. supfx = infj{sup; fi}
limy_. inf fy = sug{infk>j fi}
Then this statement follows from 4.5. Since|lipg, fi exists, so it equals to lig,, supf, and lim_,., inf f, and
hence measurable. O

5. AN IMPROVEMENT ON PIECEWISE INTERPOLATION

For the computation error analysis, we use the method inollenfing diagram:

Blur Piecewiselnterpolating fA

f fe
Wheref is the original commuter, ihP space, I< p < co. While f, = f « K, = f f(x - t)K(t)dtand
f is the piecewise interpolation t0.
Remark5.1 DefineK(x) = e "K(%) = e "K(%, 2, ..., 2) with K € LY(R"), € > 0, then it follows,

() Ke = f K=1;
Rn RN
(i) K] = 0ase — 0, forany fixeds > 0

|X|>6

Theorem 5.2.1f f € LP(R"), 1 < p < oo, then¥np >0, 36 > 0, st.

If = fllp < If = fellp + 1o = fllp
(18)

2 L1 LoCyl £™8),
< IKIF - [7lIK L + 21 fllp)P f K (t)ldf] + e
1 ! P tI>6 (n+1)!

Where h is the mesh size faf, X1, L, is the Lipchiz constant, Js a constant, n is the degree of
interpolation degree, p and’ are conjugate components.

Proof. For the first term,
If = fellp < Ly - 11f 0 9109 = fe 0 G ()l

LCall £ .

W max(gi(x) — G1(%-1),i = 1, 2..N}™

LiLoCall €™ llp, .4

(n+21)!

Notice that in the second inequality, we just apply the ba&sior estimate for piecewise interpola-
tion. This can be found in many books abduimerical Analysid].

This finishes the first term.
For the second term[2],

f(x) = f(x) fRn Ktydt= [ f(K(t)dt

RFI

So

) - f = f [f(x—1t) - FOOIK.(t)dt

(19) R”A ) 1 )
< [ 1= = Fo1- . - .1 o
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In (2), we apply Holder’'s Theorem for the terﬁg1 K.(t)dt with conjugate componenfsandp’. Now
we raise (2) top" power and integrate with respectxpwe get

fRn 1100 = L.0Pdt < IKIP T fRn fRn 1(x 1) - fOPIK ®)Idtldx

(20) A A

— IKIIP - f Ke(®) [ [ 1f(x=1) - FIPIdat
Rn RN

Sollfe = TOIB < IIKIY - [ IKe(®) - 11F(x = 1) = F(x)l1Bdt

Notice that in (3), we can change the order of integratiorabee the functionf(x —t) — f(x))P(K.(t))
isin LP(R" x R"). And this comes from the fact that botlix) andK,(t) are inL°(R" x R").

ANf(x=1t) = f(X)||Pdt =
fRn K1 1 (x 1) - Fldt L I L .

= Acs + Bes

Foré > 0, write

Continuity of LP space says: If € LP, 1 < p < o, then
limpo lIf(x+h) = f(X)ll, =0

SoVyp >0, 36> 0, st.if [t <6, [[f(x+h) = FX)E < 7.
Then

(21) A< [ K< - K foralle
[t]<o

Moreover,||f(x - t) — f(x)||,§ is a bounded function. By Minkowski’s Inequality,
1 (x =) = TONIE < (1T x = t)llp + T (XlIp)P

= 2 (lp)°
IKc(t)|[dt — 0 ase — 0O for some fixed > 0.

(22)

S0,B.s < AIFCNRP - [y
From (4) and (5),
~ L
Ife = fllp < Kl - [7lIK]l1 + (2||f||p)pf|t|>5 IKe(D)Idt]
This finishes the second term. O
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