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Abstract

To analyze the trade-off between channel capacity and noise-resistance in designing dynamical systems to pursue the idea
of communications with chaos, we perform a measure theoretic analysis the topological entropy function of a ‘gap-tent map’
whose invariant set is an unstable chaotic saddle of the tent map. Our model system, the ‘gap-tent map’ is a family of tent
maps with a symmetric gap, which mimics the presence of noise in physical realizations of chaotic systems, and for this
model, we can perform many calculations in closed form. We demonstrate that the dependence of the topological entropy
on the size of the gap has a structure of the devil's staircase. By integrating over a fractal measure, we obtain analytical,
piece-wise differentiable approximations of this dependence. Applying concepts of the kneading theory we find the position
and the values of the entropy for all leading entropy plateaus. Similar properties hold also for the dependence of the fractal
dimension of the invariant set and the escape rate. ©1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Longterm evolution of a chaotic systemis, by definition, unpredictable. The topological complexity of adynamical
system has classically been measured in termigpflogical entropy1], which may be considered as the growth
rate of distinct states of the dynamical system, to the myopic observer. Shannon’s information theory tells us that a
sequence of events conveys information only if the events are not fully predictable, and therefore, the topological
entropy may be considered as a quantitative measurement of the information generating capacity of the chaotic
dynamical system [2,3]. On the other hand, metric-entropy can also be considered as a statistical quantification
of irregular behavior, where probability of events are weighted in terms of the specific invariant measure chosen.
Indeed, the link between these two types of quantifiers, topological and metric entropy, is in terms of the choice of
invariant measure.
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Given this classical and deeply rooted link between chaos and information theory, perhaps it is surprising that only
recently we have finally realized that the link can be exploited, since chaotic oscillators can be controlled to transmit
messages [4—-13]. However, such exploitation of chaotic oscillators awaited the (now obvious) realization that chaos
is controllable; following the seminal ‘OGY’ paper [14] at the beginning of this decade, there has literally been an
explosion of various approaches and wide applications of the concept. The oxymoron between the words, ‘chaos’
and ‘control’, is resolved by the fact that a chaotic dynamical system is deterministic, even while it is long-term
unpredictable.

The Hayes et al. [4—7] method of chaos communication relies on the now classical description of a chaotic
dynamical system in terms of a (semi-)conjugacy (an equivalence) to the Bernoulli-shift map symbolic dynamics
[15,16]. Given the link of a conjugacy function, i.e., a coding function, control of chaotic trajectories is equivalent
to control of (message bearing) digital bits. However, there were practical obstacles: (1) experimentally observed
chaotic dynamical systems are typically nonhyperbolic [17] and therefore Markov generating partitions are difficult
to specify [18,19], (2) even small channel noise could cause bit-errors. For example, in the case of a two-symbol
dynamics representation, a poinhear the symbol partition, which bears the message bit, say a 0, may be kicked
across the partition by external noise, and therefore another error-bit, a 1, is inadvertently transmitted. One of us has
recently co-authored a technique to solve both of these problems [20]. Avoiding neighborhoods of the generating
partition, andall pre-iteratesof the partition, yields an invariant Cantor-like unstable chaotic saddle, which we
showed, is robust to reasonably high noise amplitudes. Interestingly, the topological entropy of these unstable
saddles was found to be a monotone nonincreasing devil’'s staircase-like function of the noise gap Wmidth
subsequent work [21], this devil's staircase function was analyzed from a topological standpoint, by a ‘bifurcation’
diagram ins, of the word-bins, which were found to collide with each other at varyinglues, thus creating the
‘flat-spots’. While we have initially been motivated to study the 1D maps with a gap, due to the communications
application, we have subsequently also found the analysis of their ergodic properties to be quite rich.

In this paper, we shall be concerned with ergodic properties ofethiewith a gap— a 1D dynamical system
defined forx € Y = [0, 1] by [20]

2x for x<(1-29)/2,
fe(x) =1 —Lgap for x e ((1-¢)/2,(1+¢)/2), 1)
21l—x) for x> (1A+¢)/2,

where the size of the gapis a free parameter & ¢ < 1. The value of the function inside the gépl) is an
arbitrary number outside the interval [[] (see Fig. 1). This map has the desired property that orbits have reduced
probability of bit error due to noise of amplitude less thdR0]. For simplified analysis in this paper, we consider
these flattened tent maps Eq. (1), for which many calculations are in closed form, and which may be considered to
be typical of truncated continuous one-hump maps. The entropy of the closely related trapezoidal maps (flat ‘roof’
of the tent instead of the gap) was studied in [22], but their analysis was quite different, involving splitting the family
of maps into a codimension-one foliation according to possible dynamical behaviors.

The kneading theory of Thurston and Milnor, introduced in Ref. [23,24], revealed the importance of the itineraries
of the critical points, the so-callddheading sequencefor the admissibility of other itineraries. Kneading theory
gives a bifurcation theory of symbol sequences, which for one parameter ‘full families’ of maps, including the logistic
mapx,+1 = Ax, (1 — x,) and the tent map,+1 = s(1/2 — |x — 1/2|). The symbol dynamical representation of
bifurcations includes the periodic windows in Sharkovsky’s order, and corresponding flat spots on the topological
entropy versus parameter value function. ‘Fully developed chaos,’ occurs when these maps are everywhere two-to-
one (. > 4,ors > 2);thereisaconjugacy to the fullshift and the topological entropy is- In(2). Correspondingly,
the topological entropy is found to be constant in periodic windows [23—28], which are known to be dense in the
parameten for the logistic map, and a closely related, quadratic map [29]. As we shall clarify in this paper, an
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Fig. 1. Tent map with am-gap represented by the central dark strip. Its preimages of the first and second order are represented by narrower
vertical strips. The support of the invariant measure can be divided into two parfer which each point has two preimages ahdfor which
there exists only one preimage.

analogous situation occurs for our model noise-resistant tent gap-map Eq. (1); as the gap paranretezased

the maximal value of the map is decreased, and correspondingly the kneading sequence is decreased, with now
familiar consequences to the topological entropy function, which also has flat spots in the window regions. In fact,
staircase like functions can be found repeatedly in the dynamical systems literature [30—33], and they often signify
structural stability of the observed quantity.

A brief overview of this paper is as follows. In Section 2, we will make the necessary introductory definitions
and standardize notation, concerning entropy, as well as gap boundaries, and preimages, and relevant measures.
In Section 3, we derive conceptually simple and new formulas for the direct computation of the devil's staircase
topological entropy function, summarized by Proposition 1. In Section 4, we briefly demonstrate, by example, the
efficacy of the formula of Proposition 1. Then in Section 5, we discuss implications to the structure of the devil's
staircase function, which we can conclude using the formula, and the closed form representation of the endpoints
of the ‘flat-spots’. In Section 6, (and Appendix A), we link the roots of the corresponding polynomials to the
topological entropy (and we relate this to the kneading theory of Milnor and Thurston [23,24]). We show how the
infinitely fine structure of the devil's staircase function is correspondingly linked to a sequence of ‘descendant’
polynomials, by several operators on sequence space, which we shall discuss. Furthermore, we discuss the structure
of the flat-spots, in Proposition 2, and we relate this to the familiar Feigenbaum-like accumulation. This leads to
several exact statements which made concerning values of the entropy at specific points, as well as a sharp estimate
for the ‘maximal’ topologically nondegenerate gap,In Section 7, we discuss a generalization based on weakening
the assumptions of Proposition 1, yielding Proposition 3 in which we show that topological entropy of a class of
maps can be calculated by ‘averaging’ (with respect to the appropriate measure) the pointwise pre-image count.
Finally, in Section 8, we discuss implications to the pointwise spectrum of fractal Renyi-dimensions, as well as
escape rates.

2. Measures and entropies of the tent gap-map

Before we may begin our main propositions in the following sections, we have several preliminary definitions
and derivations to present in this section.
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The topological entropy of a map on its phase spadé, may be defined in the symbol space representation as
the asymptotic rate of growth of permissible words with respect to word length,
In N
hr = fim DN@) €

n—00 n

whereN (n) is the number of permissible words of lengthAlternatively, we may define the topological entropy
to be

ht = SUBepm, (pHh (1, 1), 3)

where we take the supremum over entropies with respect to the set of all invariant measub€g f), of f. For
a topological Markov chain, such s, this supremum is actually attained by the entropy with respect to the Parry
measurgu,, ht(f) = h(us, f) [34], also known as Parry’s topological entropy measure.

The use of formula Eq. (2) requires splitting the phase spaee [0, 1] into cells of equivalent-iterate f,
orbits, which we can write in closed form for our model tent gap-niapwve will use the formula for the:-bit
bins extensively throughout the rest of this paper. In fact, our ability to writentioét bins A,,; in closed form,
allows us to explicitly perform many of the calculations in this paper, which was a main motivation of choosing the
model Eq. (1). To find the (up to)2 m-bit bins, A%, consider the critical point. = 1/2 of the tent mapfp. It
has 2' mth preimages with respect to the tent map (without the gap). They@féx.) = (2k — 1) /2" +1 with
k=12...,2" Let Apy denote the gaplor = ((1 — ¢)/2, (1 + ¢)/2). Its mth preimages with respect to the
systemf, have the widthe /2" and are centered at the preimages of the critical point. Denntthgpreimages of
the gap byA,,;, we obtain

2k—1—¢ 2k—1+4¢

wherem = 1,2,3,... andk = 1,...,2". We note that depending on the size of the gagpme preimages,
corresponding to different valuesaf may merge together, and it is exactly such overlaps which cause topological
entropy flat spots. Also note that each of thebit word cellsA,,; are the same length (Lebesgue measured); this
is due to the fact that our mafs has a constant magnitude slopg,| = 2.

We also find it useful to considen,srs, the SRB invariant measure for the syst¢gmIt may be defined as the
eigenmeasure of the Koopman operator associated with the system (i.e. the adjoint to Frobenuis—Perron operator)
corresponding to the largest eigenvalue. A detailed discussion of these measures can be found in Ref. [35] for
‘cookie cutters'.

Proposition 1. The support ofusrg is contained inX = [ f:(yw), yml = [2¢, 1 — €], wherey,, is the maximal
value of the systeni ((1 — ¢)/2) = 1 — ¢ (see Fig. 1).

The support ofusrs equalsS = lim,,_, .S, where

n n 2m
Se=x\{J f 400 = X\ JAm- (5)
m=0 m=0 k=1

Let us also define theniformmeasures,, constructed inductively ofi as follows:
o let u1 be the uniform measure ofi; normalized so that| du; = 1; (6)
X

e let u, be the uniform normalized measure op; )

e the uniform measuree, is defined by the weak limifw, = lim w,. (8)
n—oo
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The uniform measurg,, is connected to theatural measure on stable manifold, which is often considered
in the physical literature [36]. Let us draw randonx0) initial points with respect to the uniform density on the
setY = [0, 1] which containsS, and letN (n) denote the number of points which did not leave the system by the
nth iterate. LetC be any Borel subset df, and N, (C, n) denote the number of initial conditions belonging@o
whose trajectories remain in the systemsaterations. Then one defines [36]
N;(C,n)

Remark 1. For x € S both measures are proportionak, (A) = cus(A), for Borel subsetsA C Y, where the
proportionality constant depends on the choice of the et

For the case of the tent gap-mgjp in Eqg. (1), we can show that thesgrg, corresponding to natural measure,
coincides with the Parry’s maximal entropy measuyrg, To show this, we observe that the absolute value of the
derivative is constantf’(x)| = 2 for anyx € Y. Hence, the topological entropy and the KS metric entropy are
equalht = hks = hy. The notatiom:, denotes the generalized Renyi entropies, which are discussed in detail in
[37]. This coincidence follows since the avera,@eln | f/(x)|du(x) equals In 2, independently of the measure
Hence, we see that the topological pressure, which is defined [35],

P(p) = SUp[th(M) - /Yﬂ In If/(X)IdM(X)} , (10)
n

where the supremum is taken over all invariant measurgsladis the constant integral fixed at In 2, for all measures
w. It follows then that supremum is achieved, by the measure which we deggtgirrespective of the parameter
B. Therefore, in this case, it follows that the SRB measure coincides with the maximal entropy meastinesre.

3. Topological entropy expressed by mean number of preimages

In [20,21,38], it was shown that the topological entropy functigite) is a ‘devil’s staircase’ function for the
model f,. We are now in a position to better understand the flat spots of the staircase. In this section, we also
give a Proposition, which gives an explicit construction to generate a sequence of approximating functions which
asymptotically converge to the devil’s staircase.

We begin by noting that the poirf?(y,,) = 4 divides the suppoif into two setsE> contains all points > 4e
of the support which have two preimages with respegtt@ndE1 = S\ E2 consists of points with one preimage
only (see Fig. 1).

Let us define a functioM (¢)

1—¢
M(e) = / ditu, (11)
4,

£

which is closely related to the topological entropy function. Notice Mié&t) measures the relative ‘volume’ of the
set with two preimagesy, (E2).
The right-hand side of (11) can be interpreted asymptotically as

M(e) ~ M,, = U,/ T,, for largen, (12)

whereU, is the total length of the,, in (4¢, 1 — ¢), while T,, represents the total length of tlig in X. For each
finite n, U, = u,[Sy, N (4e, 1 —¢)]andT,, = u,[S, N X], can be calculated numerically as the sum of the lengths
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of subintervalsA,,;, from Eq. (4). Numerical evidence indicates that the sequendé,ofonverges in the limit

n — oo, at least for almost all (w.r.t. Lebesgue)However, for certain values @f this is not true. For example,

for e = €1 = 1/6 the sequencaf, does not converge, sinddéy, = 1/3 andMo,,1 = 1/2forn =0,1,2,.... We

expect that such problemare ‘atypical’ in that they have Lebesgue measure zero, due to the weak convergence of

the measureg,, to u,,. We also observe that, in general, the convergence occurs faster for smaller values of
Similarly, the value ofV/ (¢) can be expressed by a ratio of natural measures of two intervals

_ s ([Be.1—¢])

s (26,1 —¢])’

since the unknown proportionality constanimentioned in Remark 1, is eliminated due to cancellation.
We now establish a function which gives the topological entrop) of the tent gap-map, in terms of (¢).

Thereforeht(¢) is easily approximated, which may be considered surprising, givehtligtis a ‘devil’s staircase.’

M(e) (13)

Proposition 1. The topological entropjt of the tent map witla -gap equals,

ht(e) =In[1+ M(e)]. (14)

Sketch of the proof [39]: Consider the Ruelle—-Bowen transfer opefatassociated with the mixing dynamical
systemf, which acts on a continuous density functipn X — [0, 1]

Lig@]:= Y g, (15)
yef~lw)
found in Ruelle’s Perron—Frobenius Theorem, [40]. Whes a binary rational, (computers can only store such
numbers), then there is a conjugacyfoto a subshift of finite type, which is exactly a topological Markov chain, for
which Bowen'’s version of Ruelle’s Perron—Frobenius Theorem is stateds ffot a binary rational, the conclusion
of the theorem still holds [39].

The conclusion is therefore as follows. The operdidnas the eigenfunctiop(x), Lp(x) = Ap(x), and the
adjoint operato.* has the eigenmeasureL*v = Av which may be normalized so thatX) = 1; bothp(x),
andv correspond to the same largest eigenvaluand the maximal entropy measytg is uniquely absolutely
continuous with respect to by the density functiom (x). Thus g, (x) = p(x)dv(x). The topological entropy of
f is equal to the logarithm of this largest eigenvalueof L and L* [40].

For the model Eg. (1), there is constant slopg = 2, and therefore, for arbitramy, any normalized uniform
measurew, (X) = 1 from Eq. (7) iterates,

L*[n] = mppinta, (16)

wherem, = 1+ M,, andu,+1 is also uniform. Therefore, in the weak limit— oo, we obtainL*[u,] = Au.
Thus, the measuneis equal to the uniform measugs,, and both are absolutely continuous to the maximal entropy
measure.,.

The measure of the entire spaXewith respect ta.*(v) is given by

L*v(X) = v(E1) + 2v(E2), 7

since, by definition, for any € E» there exist two preimages 1(x) € S, and for anyx € E1 there exist only one
such preimage. Making use of the eigenequatich, = Av, and the normalization condition £1) + v(E2) = 1
we arrive at

r=1+v(E), (18)

which proves the formula (14), making use of our special case result that,, .
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Fig. 2. Topological entropyt of the tent map as a function of the gap widtbbtained via Eq. (14) (thick line). Crosses represent points at the
edges of the entropy plateaus computed from roots of polynomials (24). Position of the main plateaus are labeled according to the relation (22).
Narrow solid, dashed and dotted lines represent continuous approximatie§@ nfk1(¢), andhz(e) respectively, Egs. (19), (20) and (21) of

the zeroth, first, and second order, respectively.

4. Direct approximation of the topological entropy function

In this section, we give numerical and graphical evidence as to the accuracy of Proposition 1.

Example 1. Fore = 1/7 the continued fraction expansion of (several) numbésconsists of ones only, and
the sequence, converges to the golden numbet(e = 1/7) = (V5 — 1)/2 = y ~ 0.618034, so that
ht(e = 1/7) = In[(+/5+ 1)/2] ~ 0.481212.

Example 2. We now consider a sequence of closed form approximates to the devils staircase entropy function
ht(e), basedon Egs. (12)—(14). As the zero order approximation,aie take the ratio between Lebesgue measures
Mo = (1— ¢ —4e)/(1— ¢ — 2¢). Substituting this into (14) gives far € [0, 1/5] an analytical approximation of

the entropy

ho(e) = In [

o
1-3¢

}fors € [0, 1/5] (19)

represented in Fig. 2 by a thin solid line. This formula gives the asymptotic behaMior ~ In2 — ¢, valid for
smalle.

Example 3. Calculating higher order ratia¥,, yields better approximations for the topological entropy function.
For example M1 gives

In [(2—10e)/(1— 4e)] for & e0,1/9],
hi(e) = { IN[(3—11e)/(2—8e)] for e e[1/9,1/7], (20)
In[(2—9)/(1—4e)] for ee[l/7,1/5]

while the next approximate, based bf, reads

In[(2—12¢)/(1—-5¢)] for e €]0,1/17],
In [(7—31)/(4—20e)] for ee[1/17, 1/15],
ha(e) =1 In[(4—23)/(2—10e)] for ¢ e[1/15,1/9], (21)
In[(5—19%)/(3—11s)] for &e[1/9, 1/7],
In[(4—20)/(2—9)] for ee[1/7,2/11].
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Theh1(e) andh2(e) approximates can also be found in Fig. 2, and we seéiti(a} is already pretty good. The

solid thick line representsig(e), obtained with the uniform measure supported on theSggtby numerically
computing the ratiav/19, according to Eq. (12). Crosses denote exact results, computed by roots of polynomials,
as described in Appendix A, for values ofcorresponding to periodic orbits of length < 6. Whene < 1/7,

these results coincide to within 18. On the other hand some discrepancies are visible for larger gaps, for which
convergence of the sequent® is slower.

Conjecture. Iterating this procedure produces continuous, piecewise differentiable fungtjémswhich, in the
limit » — 0o, converge to the topological entropy versus noise gap funatiés). Convergence is in thel-norm,
and [ |h7(e) — ha(e)lde — 0 asn — oo.

5. Structure of the entropy devil’s staircase

In fact, Egs. (12)—(14) of Proposition 1, together with the closed form representatidp.ofound in Eq. (4)
can be used to investigate the structure of the devil's staircase topological entropy fulnetignwhich we do in
this section.
Our primary remark of this section follows from the observation that the fundd is constant foe € {¢ :
4de € Ay} (for anym andk), since varying the parameteboth integration borders sweep the empty regiox of
and the measurg, (¢) does not change in each of these intervals. This is equivalent to an alternative topological
description of the same phenomenon: when word bins overlap, no change takes place to the topological entropy
of the corresponding symbol dynamics, which must be a subshift of finite-type [21]. In other words, varying the
parametek in these regions does not influence the set of periodic orbits, and hence the topological polynomials
[23,24], or dynamical zeta functions [41], are unchanged and therefore lead to the constant topological entropy.
The condition that the integration ‘sweeps a gap’ when{c : 4¢ € A}, defined in (4), gives

2k—1 2k—1
om+3 4 1’ om+3 _ 1|’

for eachm-pre-iteration of the gap (word-length) (m = 0,1, 2, ... and eachn-bit word,k = 1,2, ... ,2™).
In particular, we have monotonicity of the (¢) function, and so it must follow that

M(e) = const fore € By, i := [ (22)

M(g1) < M(g2) for g1 > ep. (23)

It therefore immediately follows that topological entrapy(e) is a non-increasing function ef as was proven in
[22].

Example 4. The gapAo1 generates the main plateau of the “devils staircakel’.= [1/9, 1/7], for which the
topological entropy is equal to I1i{/5 + 1)/2] (see Example 1 above).

Remark 2. Inside the main plateaBo 1 = (1/9, 1/7) all three of the approximate functiongg(¢), k1(¢) and
ha(e), cross ate = (6 — +/5)/31 ~ 0.121417 for which the sequencH,, is constant and equal to the golden mean
y, corresponding to the exact value of the entragy=In(1 + y). See Fig2.

6. Kneading sequences and the entropy plateaus

The kneading theory of Milnor and Thurston [23,24] allows us to compute the topological entropy of a unimodal
map from the orbit of its critical point, using the so-called kneading determinant (see e.g. [42]). This technique may
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also be applied in our analysis of the tent map with a symmetric gap, for which the critical orbit originates in one
of (either) two ends of the gap(l — ¢)/2, (1 + ¢€)/2]. It enables us to express the topological entropy for any flat
steps of the staircase,c Bk, as

hT(gmk) = |n()\mk)s (24)
wherei,,; is thelargest(real) root of the polynomiaP, (z) of orderm + 2, which is the characteristic polynomial
of the Stefan transition matrix [43]. As shown in Appendix A, all of the coefficients $, ¢r1, ... , c1, co] are

equal to either-1 or —1. These coefficients are uniquely determined by the kneading sequence, representing the
symbolic itinerary of a periodic critical orbit. It follows, from Eq. (24), that the values of the corresponding plateau
B« in the space of, are also uniquely determined by these same coefficients.

We remark that for the polynomialB,(z) are closely related to the kneading determin8ntz) of Milnor
and Thurston. For any plateay,;, associated with an orbit of the length= m + 3, the kneading invariant is
proportional to a finite polynomiat, (1/z) and the topological entropy is given as the logarithm oftinallestoot
of P,(1/z) [23,24,44]. Kneading determinants are considered a standard tool to compute the topological entropy of
1D maps [45,46,26], but for our purposes, we find the related polynomj&ts are more convenient.

To highlight our understanding of the relationship between the funétign), displayed in Fig. 2, relative to
calculations based on Eg. (24), we have constructed Table 1, by collecting the kneading sequences, corresponding
polynomials, their largest roots, and the values of the topological entropies for plateaus corresponding to periodic
orbits. Each plateau occurs fore [¢_, 1] given by Eq. (22). The orbits of length = 3 through 7 (and some of
the lengthl. = 8) are ordered according to the decreasing entropy, which corresponds to increasing width of the gap
¢. Any periodic orbit may represent a kneading sequence, but not vice-versa; some kneading sequences (and hence
the corresponding polynomials) are not admissible for the tent map (see e.g. [47,48]) as they do not correspond to
any periodic orbits in the system, and therefore, do not affect the dependeige

Example 5. Consider the main plateaBo 1 = (1/9, 1/7). The critical orbit has the length = m + 3 = 3,
representing the kneading sequence CRL, corresponding to the sequence of coefficient$, which denotes

the polynomialP,(z) = z2 — z — 1. The symbols C, R, L, are used to mark, whether each iterate is at the critical
point (Center), right of it (Right) or left of it (Left). Largest root of the (this) equatiyiiz) = 0 equalsigr = 1+ y
wherey denotes the golden me&x’5 — 1)/2. The one follows the same result for topological entropy discussed
in Proposition 1.

We characterize a peculiarity in the structure of the devil's staircase, visible in Fig. 1, by the following

Proposition 2. Any entropy plateau corresponding to an orbit of lendths accompanied on the left (smaller
gap width) by an infinite number of adjacent plateaus with the same entidpgh are caused by orbits of period
2L,4L,8L,....

To prove this proposition, consider the sequence of signsif ¢;—2. .. , c1, cg], (defining a polynomial cor-
responding to an orbit of length, as mentioned above). Also consider the following operations acting on the
sequences of signs = +1 of lengthL, which double their length:

Wl[chla cpL-2---,¢C1, CO] = [chla cpL-2,++,¢€,¢c0, —CL-1, —CL-2"--,—C1, _C0]7 (25)
Wolcp—1.¢cp-2-++ ,c1,c0]l =[cp-1,¢cp-2--+ ,c1,c0, -1, -2, €1, CO]. (26)

In a straightforward way, these transformations, discussed in [23,24], may be mapped into the space of polynomials,
of orderL — 1, with all coefficients equal ta-1,

W1(Pa(2)) = (zF — 1) Py (2); Wa(Pa(2)) = (25 + 1) Py (2). (27)
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Table 1

Topological entropy at plateaus and the corresponding periodic orbits for the tentmaii 8ymmetrice-gap forx € [(1—¢)/2, (1+¢)/2].
Subsequent columns contain respectively: length of the arhibot 2, topological entropy equal to (k), polynomial, numbek — 1 labeling

the L — 3th preimages of the critical point, kneading sequence, both edges of the platesud .. The symbol § — —] represents the
polynomialx2 — x — 1 = 0, which root gives the golden mean. The letter E denotes an descendent orbit forming an extension of the plateau
related to the two times shorter ancestor orbit, N denotes an non-admissible orbit, which plateau is entirely shadowed by the ancestor plateau.
The symbol D represents descendents orbits obtained by the renormalization opékatiao times longer period corresponds to two times

smaller topological entropy

Length A Entropy Polynomial k1 Kneading sequence e_ et

7 1.9835828 0.6849047 - 1 0 CRLLLLL 0.00775 0.00787

6 1.9659482 0.6759747 fr———-] 0 CRLLLL 0.01538 0.01587

7 1.9468563 0.6662159 | 1 CRLLLLR 0.02326 0.02362

5 1.9275620 0.6562560 fr——=] 0 CRLLL 0.03030 0.03226

7 1.9073421 0.6457107 = ——+-] 2 CRLLLRR 0.03876 0.03937
6 1.8832035 0.6329743 H———+] 1 CRLLLR 0.04615 0.04762

7 1.8558860 0.6183622 = — —++4] 3 CRLLLRL 0.05426 0.05512

E8 1.8392868 0.6093779 = — —++4] 7 CRLLLRLL 0.05837 0.05882

4 1.8392868 0.6093779 f+—-] 0 CRLL 0.05882 0.06667

N8 1.8392868 0.6093779 H——+——-] 8 CRLLRRLL 0.06615 0.06667

7 1.8239445 0.6010015 -] 4 CRLLRRL 0.06977 0.07087
6 1.7924024 0.5835568 -+ 2 CRLLRR 0.07692 0.07937
7 1.7548777 0.5623992 - —+—+] 5 CRLLRRR 0.08527 0.08661
5 1.7220838 0.5435351 H——+] 1 CRLLR 0.09091 0.09677
7 1.6859262 0.5223151 = — 6 CRLLRLR 0.10078 0.10236

E6 1.6180340 0.4812118 - —+4] 3 CRLLRL 0.10769 0.11111

3 1.6180340 0.4812118 -] 0 CRL 0.11111 0.14286

N6 1.6180340 0.4812118 H—+—-] 4 CRLRRL 0.13846 0.14286
7 1.5560302 0.4421378 ==+ 9 CRLRRLR 0.14729 0.14961
5 1.5128764 0.4140127 =+ 2 CRLRR 0.15152 0.16129
7 1.4655712 0.3822451 ==+ 10 CRLRRRR 0.16279 0.16535
D8 1.3562031 0.3046889 -4 21 CRLRRRRR 0.16732 0.16863
D6 1.2720197 0.2406059 H—+—+] 5 CRLRRR 0.16923 0.17460
DES8 1.0 0.0 [+ —+—++-] 22 CRLRRRLR 0.17510 0.17647
DE4 1.0 0.0 [+ —+] 1 CRLR 0.17647 0.20000
2 1.0 0.0 [+1] 0 CR 0.20000 0.33333

Since the roots of the factar” + —1) are situated on the unit circle, the largest real roots of the polynomial
a = P,(z), and its two imagesy’ = W1(P,(z)) anda” = Wa(P,(z)), are the same. Therefore, if there exist
admissible periodic orbits corresponding to the ‘descendent’ polynomwiasdca”, then they form a plateau of
the same height as their ‘ancestor’ polynonaial

We find, in fact, that there are such plateaus corresponding to the desceridhotot for the descendanis.
We establish, in a somewhat indirect way, the existence af'tplateaus by considering their location (terminology
as used in [47]). Let us rewrite, in a simplified form, the position of the plateau induced by the polyrmomial
according to Eq. (22))B.,; = [j/(2L + 1), j/(2F — 1)], whereL = m + 3 andj = 2k — 1. Using the fact
that the sequence of coefficientsrepresent the integér— 1 in the binary code (but not the itinerary code: see
Appendix A), we arrive at the conclusion that the polynoriais associated with the platedi = By; ;/, where
j' = j(2L' — 1). Therefore, this descendent plateBiu= [ (2L — 1)/(22L + 1), j(2X — 1)/((2~ — 1)(2L + 1))]
touches, from the left, the ancestor platday; = [j/(2- + 1), j/(2F — 1] and thus influences the devil staircase.
This reasoning is valid for any admissible periodic orbit of lengtlSince the descendent plateau, corresponding to
the orbit of length 2L, has descendants related to the orbit of the lengtfh 2, there exists an infinite sequence of
plateaus (related to the orbits of lengthi2»n = 1, 2, ... ) and Proposition 2 is justified. Furthermore, the length of
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these adjacent plateaus, determined by the denomindtbrsi2creases exponentially witth and their total sum
gives the total width of a plateau.

The ‘would-be’a” plateaus may be formally constructed, but we find that they are entirely included within the
boundaries of the ancestor plateausn the analogous construction to that of the previous paragraph, we find that
the polynomiat”” would be associated with plate®! = B, ;», where;” = j(2F 4 1). Calculating the location,

B” = [j (2L +1)/(2%L 4+ 1), j/(2F + 1))], we see that its right edge coincides with the right edge of the plateau
Br j, i.e.,B” C By ;. Consequently, descendant$ are entirely shadowed by the longer ancestor plateaus and
do not affect the devil staircase. This reflects the fact that the sequeticiEsnot correspond to any admissible
periodic orbits (see e.g. [48], pp. 136—-139).

Example 6. The golden platea®g 1, with ¢ € [1/9,1/7] found by Eq. (22), is represented by the polynomial

o = [+ — —], according to Eqgs. (A.2) and (A.3), usimg= 0,k = 1 andL = m + 3 = 3. The two descendant
polynomials aréVi(a) = o' = [+ — — — ++]andWa(«) = ¢” = [+ — — + ——]. The former represents the orbit
CRLLRL leading to the plateau fer € B3 4 = [7/65, 7/63] (again by Egs. (22) and Egs. (A.2) and (A.3)), which
forms an extension of the ‘golden’ plateay 91 1/7] of the same entropy (i + y). The latter corresponds to the
non-admissible orbit CRLRRL [45] and the hidden platdws = [9/65, 9/63] which is a subset of the golden
plateau. Existing left extensions of shorter orbits plateaus are marked by ‘E’ in the Table 1, and for pedagogical
purposes, we also include the non-existing hidden plateaus (stemming from polynefialarked by the letter

‘N’

In order to analyze the case of widgaps, characterized by a decreasing entropy, it is helpful to consider two other
operations doubling the sequences of signs,

Uilep—1,¢1-2...,¢1,c¢0] = [cp-1, —cL-1,¢cL-2, —CL—2, ... , C1, —C1, €O, —C0], (28)

Uslcp—1,¢1-2...,¢1,c0] =[cp-1,¢c0-1,¢cL—-2,¢L—2, ... ,C1, C1, €O, €O, (29)
and the corresponding transformations in the space of polynomials

U1(Py(2)) = (2 = DPu(z®);  Uz(Pa(2)) = (z + D Pu(Z?). (30)

Let A, denotes the largest root of the polynomiabf order L — 1. It is easy to see that the largest roots of the
descendent polynomialss = Ui(a) anday = Uz(a) of order 2L — 1 are equal to,/2,, so the corresponding
entropies are halved. The sequeneggio not correspond to any of the admissible periodic orbits [48], and the
operatorUU, is mentioned here for completeness only. On the other hametioamalizationroperatorl/;, generating
admissible periodic orbitss, is often discussed in the literature [45,48,26]. In a natural way this operator can be
generalized to act in the space of infinitely long sequences. The corresponding operation of the kneading sequences,
which doubles the length of the periodic orbit, is a special case of the Derrida—Gervois—Pe@maposition

[43].

Remark 3. We are now in a position to bound the critical last gap vatdyefor which any largers-gap has no
topological entropysince all of the gaps have overlappédhis remark is summarized by Fig. The tent map with
no gap(e = ¢g = 0) is characterized by the kneading sequefice- CR(L)*°, polynomialag = [+ — — — -+ -]
and the entropy Ir2. The kneading sequenéex Q = CRL(R)* is represented by the polynomi&h(ag) =

[+ — — + (—+)°]. Consequentlythe entropy In2/2 is achieved foe = €1 = 1/6. In this way we construct a
family of kneading sequencB$ + Q and the polynomial#/' («p), which allow us to find the sequence of numbers
€, such thathit(e,) = 27" [n 2. In particular e = 7/40 = 0.175, while already the next values ~ 0.175092
provides a good approximation of the Feigenbaum critical pejnt lin,—, o€, -
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Fig. 3. Sketch of the dependence of topological entiopwyn the gap width in the vicinity of the critical poink,. = e,.

The same value can be approached from above by considering widet gaps, corresponding to periodic
orbits of the lengti. = 2/, which lead to the zero entropy. A gap of the widtk: ¢; = 1/5 leads to the orbit S=CR
and a trivial polynomiaB; = [+—] with the rootA = 1. For this polynomial both operatioi¥; andU; produce
the same resuBl, = [+ — —+] (since half of zero entropy is equal to zero). The corresponding orbit CRLR appears
ate = ep = 3/17 ~ 0.17647. Subsequent processes of period doubling occur at the gapg corresponding
to the polynomialss, = Uy (B1). For example8s = [+ — — + — + +—] givesez = 45/257 ~ 0.175097, where
L=8m=L-3=5k=2j+1=45j =22 and? + 1= 257 are all consistent, again by Egs. (22) and
Egs. (A.2) and (A.3). In general

_ 1 ]:[1 (22" - 1) (31)
n = oa il ,

and each zero entropy platea [e,+1, ¢,] forms an extension of the plateag)[ e, —1].

The sequence, converges quadraticallye, +1—e,) ~ (e, —e,_1)?), in contrast with the geometric convergence
of the well known Feigenbaum sequence, (1 — ¢,)/(en, — en—1) = &, asymptotically as the Feigenbaum delta
constant), which describes the period doubling in the logistic map [36]. The first 15 decimal digjtarafeg are
the same and provide an excellent approximation of the Feigenbaum point,

ex = €, ~ 0.17509193271978 (32)

This can be considered as a sharp estimate for the ‘maximal’ topologically nondegenerate gap. A sketch of the
behavior of the functioftt(¢) in the vicinity of the critical point, is shown in Fig. 3.

Previous attempts to calculate the critical last gdpy ‘brute-force’ direct computation of the topological entropy
(by counting symbol sequences) on the invariant set, break-down due to the exponentially increasing difficulty (see
conjecture associated with Eq. (36) of locating the ever thinning invariant set (by PIM triple method) [21]. For the
first time, we can now draw the curve all the way to zero entropy, as shown in Fig. 3.

Remark 4. The analyzed structure of the dependence of the topological entropy is typical for all unimodal maps
with a gap While location of the entropy plateaus depends on the map and on the position of the gap, the heights
of the plateaus are universalhe same sequences of entropy plateaus occurs for some 1D maps without.the gap
For example the periodic windows for the logistic map are characterized by zero (or negative) KS-entropy and
a constant topological entropyts value is determined just by the kneading sequence of the periodic orbit and
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therefore can be expressed by roots of the polynomials discussed in thisAvbgkire of parametric dependence of

the topological entropy for quadratic map (related with logistic map) is already sketched in the preprint of Milnor
and Thurstor{23,24],and a more precise picture of such dependence is presented in the review of Eckmann and
Ruelle[25] and in the paper by Géra and Boyarsjd9].

7. Topological entropy is the ‘average’ pre-image count

In this section, we pursue a result, suggested by part of the proof of Proposition 1. For a more general map than
the (constant slope) tent map, we do not have the coincidence of uniform megsanel the Parry measuye,,
and therefore we cannot conclude Eq. (16) with a unifermn Nonetheless, we can make the following general
Proposition.

Proposition 3. The topological entropy of a 1D mixing syst¢m X — X, for a piece-wise monotone functigh
which is continuous on th¥ branchesis equal to

ht = In/ P(x)dv(x), (33)
X

whereP(x) : X — {0,1,2, ..., N}represents the number of preimageg @it the pointx (restricted to the support
of v) and the average is taken with respect to ftieeigenmeasure measuvewhich is absolutely continuous to
the maximal entropy measure. by theL eigendensity (x).

Note that one cannot generally expect P(x) to be surjective, onto tf@,4e®, ... , N}.

Proof. The proof is very similar to the second half of the proof of Proposition 1, which is all that survives the
weaker condition, that we allow maps with arbitrary slopes. As before, we X¥plitto X = U;V:OE,', where
Ej={x:xeX, andf~1(x) has j branchek The adjoint eigenstate equation of the Bowen transfer opekator
measuring the whole spadg is

N
L*v(X) =Y ju(E)) = /X P@)dv(x) = (P()y = (P()/p (). (34)
j=0

where, as before, the eigenmeasure of the opefator, is known to be uniquely absolutely continuous to Parry’s
maximal entropy measure,, by p(x), which is the eigenfunction of the adjoint eigenequatign= 1p. There-
fore, the eigenvalue of this equation is= (P(x)),, and the topological entropy i#t = In((P(x)),) =
In (P (x)/p(x))p,- U

Example 7. Take any unimodal map with a.e. two preimages, such as the logisticcmapix (1 — x) which is well

known [36] to have topological entroist = In(2), when the parameter value= 4. This result is particularly easy

to derive by Proposition 3, for which we may check that= In({P (x)),) = In(f[o)l]Zdu) = In(2f[0’l]dv) =1In2,

as expected. The main simplifying feature of the calculation is that only the number of branches, weighted by the
normalized measure, was important, and thus the calculation is quite general (and hence identical for, say, the
two-onto-one tent map, the two-onto-one cusp map, etc.).

We note that our formula Eqg. (34) is reminiscent to a similar formula, for almost &l /) = lim,,_,»(1/n)
log#f~"(x), used in Lopes and Withers [50]. The link follows by considering their formula as an average of the
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number of pre-images, of the initial condition, in which some branches are presumably dé&hsehith is just
the same as using the measure of maximal entropy.

8. Fractal dimension and escape rate

So far, we have only considered the topological entropy. The so-called flat-spots of the topological entropy
function, caused by overlapping symbol bins, which causes the integral of Eq. (1®)¥ ey to ‘sweeps a gap’
whene € {¢ : 4¢ € A} defined in (4), also has consequences to the spectrum of pointwise spectrum of Renyi-
DimensionsD, [51-53] (for the formulation in the context of Chaos theory, see Ref. [52]) (see e.g. [36] pp. 79, or
pp. 306 for review). We now discuss these implications in this section.

We conjecture that the Hausdorff dimension of the supgofand the measurg,) coincide with all of the
generalized Renyi (multifractal) dimensiofy [36], and hence we write

In(1+ M)

Do=D; = 2

In [35], we find the relationship, = hks/ In 2, directly linking thanformation dimensioproportionally to the KS
entropy, and this corresponds to the Kaplan—Yorke conjecture [36], formulated in a different setting. The dimension
is thus proportional to entropy and displays the same devil staircase like dependence on the parameter

Next we consider the nature of this map as a dynamical system on the unit interval, whose invariant set is an
unstable chaotic saddle. Therefore, the initial conditions which are not on this invariant set, escape to infinity. In
the analogy to [35,38], we conjecture that iteratifagon an initially uniform measure, causes the mass of points to
decay exponentially with the number of iterations, according tg-eXa). From such an exponential decay model
follows the exponengr,

(39)

2
R=In2—hks=1In |:1+Mi|. (36)
Furthermore, this escape raRedescribes the exponential convergence of the sdfjgsn Eq. (12). Note that the
numberM (e), in Eq. (11), defines the limit of this sequence, as well its convergence rate.

There is a striking similarity between the topological entropy devil’'s staircase functigp, aind the similar
devil's staircase topological entropy of the logistic map= rx(1 — x) on the parameter [26,54]. This follows
immediately from the fact that in both models, we are monotonously nonincreasing the kneading sequence, with
the parameters andr respectively. However, in the case of the tent gap-niaphe setG of ¢ values which are
not contained in the flat stepB,,; is of zero Lebesgue measure [22] and has a fractal structure [38]. In contrast,
the set of- values which lead to chaotic motion (not contained in the “periodic windows” of a constant topological
entropy) has a positive Lebesgue measure [55].

It is natural to investigate the homogeneity and the local pointwise dimedyiai the setG C [0, ¢,] of ¢
valuesnot contained in the flat steps,,x. Consider a fixed value afand a sef§ of dimensionD, which supports
the invariant measure, (¢) of the system. We perturb the size of the gdps= ¢ + §, and we find that in the limit
8 — 0the measurg,(¢’) converges weakly tp..(¢). As we have already discussed that Eq. (14) of Proposition 1
implies that entropy changes only if the integral (11) changes, which occurs as the integration borders sweep across
the fractal sef, but not when we sweep the gaps

Therefore we conjecture that the gets nonhomogeneous and its local point dimendiprdepends on the size
of the gap according to [38],

IN(1+ M(¢s))

Di(G(e)) = D(¢) = n2

(37)
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Table 2

Number/;, of periodic orbits of lengttL creating a plateau in the entropy dependeki¢e) for s € Ag = (0, 1/6). Total length of these plateaus

equalsT;,. Cumulative number of plateaus, = Z,fzalL, while W, =1/6 — Z,f=3TL represents the total volume of the parameter spate
includedin the plateaus

3 1 1 Q03175 013492
4 1 2 Q00784 012708
5 3 5 Q01759 010948
6 3 8 Q00781 010167
7 9 17 001086 009080
8 13 30 000659 008421
9 28 58 000720 007701
10 45 103 000522 007179
11 93 196 000528 006651
12 161 357 0412 006238
13 315 672 0396 005842
14 567 1239 M0330 005512
15 1091 2330 0307 005205
16 2018 4348 0267 004938
17 3855 8203 0247 004692

Remark 5. The intervalsA,, := [¢,, €,+1] are similar in the sense that any plateau in the interxal associated
with the polynomialr, has a corresponding plateau in each of the intervajsand these descendent plateaus are
represented by polynomialg; (c).

Example 8. An orbit CRLRRR is associated with the polynomial F — + —+] = U1([+ — —]), so the cor-
responding plateau is localized ixp and its entropy is equal to [{fh + y)]/2 =~ 0.240606. Another descendent

plateau, determined b1 ([+ — ——1]), and corresponding to the orbit of the length 8, is marked in Table 1 by the
letter ‘D’.

Despite the similarity emphasized above, the entropy devil's staircase is not self-similar in the imgrJais
not possible to linearly rescale the intervg] by a constant factor to get the dependeheé&) in the next interval
A, +1. This corresponds to the fact that the &eis not homogeneous and its local dimension varies with

Remark 6. The number of plateaus generated by periodic orbits of the lengtin the first intervalAg are
listed in Table2. We do not count those orbjtahich produce plateaus embedded in longer plateaus generated
by shorter orbits The columnT;, represents the total width of all plateaus generated by all orbits of the length
L, while the last columniV;, represents the total volume of the parameter spacégnnot contained in the
sum of the plateau$;. A naive exponential fit give®; = a + be <L with a positivea ~ 0.03, but if G

is indeed a fractal contained in the interydhen this approximation can not be true singeshould be zero
Comparison with a similar table obtained for logistic mggg] shows that the number of flat steps in the entropy
dependence on the parameteshich correspond to periodic orbits of a fixed lengéine almost the sam®n the

other hand, the relative Lebesgue measure of the plateaus in the parameter space is much smaller for the logistic
map.

9. Pragmatic conclusions

We have performed a detailed measure theoretic based analysis of the devil’'s staircase topological entropy function
of the gap-tent map whose invariant set is an unstable chaotic saddle invariant set of the tent map. The point was
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to further analyze the trade-off between channel capacity and noise-resistance in designing dynamical systems to
pursue the idea of communications with chaos. One may reduce the effects of an external noise by introducing a gap
into the system (i.e. by not using parts of the phase space close to the partition lines). We explicitly demonstrate that
some levels of noise are better than others for this purpose. For the simple tent-gap map model systerméi)
the noise gap = 1/7 provides the same maximal information transmission rate (topological entropy) as the gap
& = 1/9 and offers 128% larger immunity against noise. In general, for this system the ga(® — 1) /(2" *+3—1)
(at the right edges of the plateaBg; ), are more useful than when= (2k — 1)/(2"*+3 + 1) (at the left edges of the
plateaus), with fixed natural numbernsandk. Our analysis can also be applied to investigate the effects of noise
in measurements performed by electronic devices, in which the result of measurement is determined by a symbolic
sequence describing a chaotic trajectory [56].

We would like to mention, in Appendix B, a brief description for our future research, by which the measured
statistical properties of deterministic dynamical systems are linked to an appropriately chosen stochastic system by
the so-called iterated function systems theory.
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Appendix A. Kneading sequences and polynomials for the gap tent map

If the trajectory of the critical point is periodic the topological entropy of the gap tent fnapn be expressed as
a logarithm of largest root of some polynomial, with all coefficients equaltoEven though this fact follows from
the kneading theory of Milnor and Thurston [23,24], we give here a brief derivation of this result and introduce the
polynomials and notation used in this paper.

Our reasoning is based on the fact that two conjugate maps share the same topological entropy [36]. For the
map f. (or for other unimodal maps) it is sufficient to find such a value of the stopiethe tent mapf; (x) =
s(1/2 — |x — 1/2]), that the kneading sequences are identical. Then the entropy of the analyzed map is equal to
In s — the entropy off; [42]. For the simple orbit CR of length 2 the conditigig(1/2) = 1/2 leads to following
equations(1 — s/2) = 1/2. It can be rewritten aé — 1) Po(s) = 0, with Po(s) = (—s + 1) represented by
[—+]

Proceeding inductively, we assume that a sequence Q of |&rgtiresponds to the polynomiB} = [¢;—1, ... ,
c1, co]. Extending the kneading sequence by one symboek@X, the descendent polynomi&} . 1(s) reads

sPr(s)+1, for X=1L,

—sPr(s)+1, for X=R. (A1)

Pria(s) = {
Therefore, every coefficient of any polynomial is equatitd. Since multiplication of all coefficients of a given
polynomial by—1 does not influence its roots, we can arbitrarily define the leading coefficient,to be+1. This
corresponds to the initial symbol C (strictly speaking it should be L for left end of the plateau and R for the right
one). The next sign of the polynomial is determined by the next symbol of the kneading sequence: when the symbol
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is an L, the sign is the same as the previous sign, while the sign changes when the symbol is an R. More precisely,

L2
ci1=+1ande; = [[giforj=0,....L -2 (A.2)
i=j
whereg; (L) = +1 andg; (R) = —1 [23,24]. See several examples collected in Table 1.

Any entropy plateau occurring fere B,,; may be related with a concrete periodic orbit. Consider, for example,
em1 = 1/(2"+3 4 1), which corresponds to left edges of plateas defined in Eq. (22). The orbit starting at
x = 2¢,,1 is periodic with the lengtl. = m + 3, and its kneading sequence reads CRLL. The corresponding
polynomial  — —--- — —] can be found independently by the companion matrix [57] which is equal to the
topological transition matrix of the systeffy, . The largest eigenvalues of the topological transition matrices can
be used to find the topological entropy — see e.g. [43,48,49].

Let us order entropy plateaus, ;, corresponding tanth preimages of the gapio, according to decreasing
entropy. When we increase the gap widttwe decrease the critical poing = (1 — ¢)/2. Since the real line is
ordered monotonically with the order of kneading sequences [23,24,47] (and polynomiald)y tateauB,,
corresponds to theth periodic orbit of the lengti. = m + 3 (ordered according to decreasing entropy). In other
words, the periodic orbit represented by the polynomigl, c;—2, ... , c1, co] is kth in the family of orbits of
lengthL, where

L2
k=14 2/(c;+1)/2. (A.3)
j=0
Thus, this orbit corresponds to the platedu_3 ., which occurs for the gap sizes,determined by Eq. (22) — see
Table 1.

Appendix B. Gap-tent map and iterated function system

We describe here a technique of generating invariant measures for dynamical systems via appropriate IFS as
applied in Refs. [59-62]. In chaos, the initial condition is chosen randomly, albeit in a small ball, (e.g. machine
precision indoubleis typically a ball of radiusv 10-16), and the sensitive dependence to initial conditions, of the
nonetheless deterministic dynamical system, amplifies this randomness. The deterministic chaos problem, can be
traded for an appropriately chosen truly stochastic process, which evolves (supposedly exact) initial conditions by
a random dynamical system, whose randomness mimics the chaos.

Barnsley's Iterated Function Systems (IFS) [58] are an appropriate formalism by which we may accurately
exchange the deterministic problem for the right stochastic problem. In simplest form, an IFS of the first kind
involves an iteration,, 1 = F;(x,), where the function actually used at each step is chosen randomly with place
dependent probabilitielp; (x)}f.‘zl, > pi(x) = 1, amongsk possible function$F; (x)}fle.

For the tent gap-map model, we define an IFS consisting of two functions with place dependent probabilities:
(X =[2¢,1—¢], F1(x) = x/2, F2(x) = 1—x/2;p1 = 0forx < 4e andpy = wforx > 4e; pp = 1— p1}, where
the relative weightv is a free parameter. Since there exist points transformed by one function with probability one
(p2 = 1 forx € [2¢, 4¢)), the standard assumptions [58-60] sufficient to prove existence of a unique attracting
invariant measure are not fulfilled for this IFS.

Nonetheless we conjecture:

(a) for every value ofv € (0O, 1) there exist an attracting invariant measuygeof the IFS and it is localized on the
same suppoif as the measurgsrg.
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(b) for every value of, there existv = w(e) such that the induced invariant measure of the IFSand the SRB
measure of the tent map with the gap, are equgks = v,,.
(c) the spectrum of entropigs, and the generalized dimensioBg for IFS(e, w(e)) and the tent map with a gap
fe are identical for any fixed value &f
Let us consider the simplest case with the gap of the width 1/7 for which M = y (compare to Example
1). Since the interval4/7, 6/7) of the mass¥ is transformed by this IFS, with probability, into the interval
(2/7,3/7) of mass 1—- M, the relative weightv is equal to(1 — M)/M = (1 — y)/y = y. More generally, for
& € By1 the above relation is fulfilled fow = 1/1,,1, so in the limit of no gag — 0 one has lim_ cocAm1 = 2
and the IFS becomes symmet(ic = p1 = p2 = 1/2).
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