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Abstract

To analyze the trade-off between channel capacity and noise-resistance in designing dynamical systems to pursue the idea
of communications with chaos, we perform a measure theoretic analysis the topological entropy function of a ‘gap-tent map’
whose invariant set is an unstable chaotic saddle of the tent map. Our model system, the ‘gap-tent map’ is a family of tent
maps with a symmetric gap, which mimics the presence of noise in physical realizations of chaotic systems, and for this
model, we can perform many calculations in closed form. We demonstrate that the dependence of the topological entropy
on the size of the gap has a structure of the devil’s staircase. By integrating over a fractal measure, we obtain analytical,
piece-wise differentiable approximations of this dependence. Applying concepts of the kneading theory we find the position
and the values of the entropy for all leading entropy plateaus. Similar properties hold also for the dependence of the fractal
dimension of the invariant set and the escape rate. ©1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Long term evolution of a chaotic system is, by definition, unpredictable. The topological complexity of a dynamical
system has classically been measured in terms oftopological entropy[1], which may be considered as the growth
rate of distinct states of the dynamical system, to the myopic observer. Shannon’s information theory tells us that a
sequence of events conveys information only if the events are not fully predictable, and therefore, the topological
entropy may be considered as a quantitative measurement of the information generating capacity of the chaotic
dynamical system [2,3]. On the other hand, metric-entropy can also be considered as a statistical quantification
of irregular behavior, where probability of events are weighted in terms of the specific invariant measure chosen.
Indeed, the link between these two types of quantifiers, topological and metric entropy, is in terms of the choice of
invariant measure.
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Given this classical and deeply rooted link between chaos and information theory, perhaps it is surprising that only
recently we have finally realized that the link can be exploited, since chaotic oscillators can be controlled to transmit
messages [4–13]. However, such exploitation of chaotic oscillators awaited the (now obvious) realization that chaos
is controllable; following the seminal ‘OGY’ paper [14] at the beginning of this decade, there has literally been an
explosion of various approaches and wide applications of the concept. The oxymoron between the words, ‘chaos’
and ‘control’, is resolved by the fact that a chaotic dynamical system is deterministic, even while it is long-term
unpredictable.

The Hayes et al. [4–7] method of chaos communication relies on the now classical description of a chaotic
dynamical system in terms of a (semi-)conjugacy (an equivalence) to the Bernoulli-shift map symbolic dynamics
[15,16]. Given the link of a conjugacy function, i.e., a coding function, control of chaotic trajectories is equivalent
to control of (message bearing) digital bits. However, there were practical obstacles: (1) experimentally observed
chaotic dynamical systems are typically nonhyperbolic [17] and therefore Markov generating partitions are difficult
to specify [18,19], (2) even small channel noise could cause bit-errors. For example, in the case of a two-symbol
dynamics representation, a pointx near the symbol partition, which bears the message bit, say a 0, may be kicked
across the partition by external noise, and therefore another error-bit, a 1, is inadvertently transmitted. One of us has
recently co-authored a technique to solve both of these problems [20]. Avoiding neighborhoods of the generating
partition, andall pre-iteratesof the partition, yields an invariant Cantor-like unstable chaotic saddle, which we
showed, is robust to reasonably high noise amplitudes. Interestingly, the topological entropy of these unstable
saddles was found to be a monotone nonincreasing devil’s staircase-like function of the noise gap widths. In a
subsequent work [21], this devil’s staircase function was analyzed from a topological standpoint, by a ‘bifurcation’
diagram ins, of the word-bins, which were found to collide with each other at varyings values, thus creating the
‘flat-spots’. While we have initially been motivated to study the 1D maps with a gap, due to the communications
application, we have subsequently also found the analysis of their ergodic properties to be quite rich.

In this paper, we shall be concerned with ergodic properties of thetent with a gap– a 1D dynamical system
defined forx ∈ Y = [0, 1] by [20]

fε(x) =



2x for x ≤ (1 − ε)/2,

−1(gap) for x ∈ ((1 − ε)/2, (1 + ε)/2),

2(1 − x) for x ≥ (1 + ε)/2,

(1)

where the size of the gapε is a free parameter 0≤ ε < 1. The value of the function inside the gap(−1) is an
arbitrary number outside the interval [0, 1] (see Fig. 1). This map has the desired property that orbits have reduced
probability of bit error due to noise of amplitude less thanε [20]. For simplified analysis in this paper, we consider
these flattened tent maps Eq. (1), for which many calculations are in closed form, and which may be considered to
be typical of truncated continuous one-hump maps. The entropy of the closely related trapezoidal maps (flat ‘roof’
of the tent instead of the gap) was studied in [22], but their analysis was quite different, involving splitting the family
of maps into a codimension-one foliation according to possible dynamical behaviors.

The kneading theory of Thurston and Milnor, introduced in Ref. [23,24], revealed the importance of the itineraries
of the critical points, the so-calledkneading sequences, for the admissibility of other itineraries. Kneading theory
gives a bifurcation theory of symbol sequences, which for one parameter ‘full families’ of maps, including the logistic
mapxn+1 = λxn(1 − xn) and the tent mapxn+1 = s(1/2 − |x − 1/2|). The symbol dynamical representation of
bifurcations includes the periodic windows in Sharkovsky’s order, and corresponding flat spots on the topological
entropy versus parameter value function. ‘Fully developed chaos,’ occurs when these maps are everywhere two-to-
one (λ > 4, ors > 2); there is a conjugacy to the fullshift and the topological entropy ishT = ln(2). Correspondingly,
the topological entropy is found to be constant in periodic windows [23–28], which are known to be dense in the
parameterλ for the logistic map, and a closely related, quadratic map [29]. As we shall clarify in this paper, an
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Fig. 1. Tent map with anε-gap represented by the central dark strip. Its preimages of the first and second order are represented by narrower
vertical strips. The support of the invariant measure can be divided into two parts:E2, for which each point has two preimages andE1 for which
there exists only one preimage.

analogous situation occurs for our model noise-resistant tent gap-map Eq. (1); as the gap parameterε is increased
the maximal value of the map is decreased, and correspondingly the kneading sequence is decreased, with now
familiar consequences to the topological entropy function, which also has flat spots in the window regions. In fact,
staircase like functions can be found repeatedly in the dynamical systems literature [30–33], and they often signify
structural stability of the observed quantity.

A brief overview of this paper is as follows. In Section 2, we will make the necessary introductory definitions
and standardize notation, concerning entropy, as well as gap boundaries, and preimages, and relevant measures.
In Section 3, we derive conceptually simple and new formulas for the direct computation of the devil’s staircase
topological entropy function, summarized by Proposition 1. In Section 4, we briefly demonstrate, by example, the
efficacy of the formula of Proposition 1. Then in Section 5, we discuss implications to the structure of the devil’s
staircase function, which we can conclude using the formula, and the closed form representation of the endpoints
of the ‘flat-spots’. In Section 6, (and Appendix A), we link the roots of the corresponding polynomials to the
topological entropy (and we relate this to the kneading theory of Milnor and Thurston [23,24]). We show how the
infinitely fine structure of the devil’s staircase function is correspondingly linked to a sequence of ‘descendant’
polynomials, by several operators on sequence space, which we shall discuss. Furthermore, we discuss the structure
of the flat-spots, in Proposition 2, and we relate this to the familiar Feigenbaum-like accumulation. This leads to
several exact statements which made concerning values of the entropy at specific points, as well as a sharp estimate
for the ‘maximal’ topologically nondegenerate gap,e∗. In Section 7, we discuss a generalization based on weakening
the assumptions of Proposition 1, yielding Proposition 3 in which we show that topological entropy of a class of
maps can be calculated by ‘averaging’ (with respect to the appropriate measure) the pointwise pre-image count.
Finally, in Section 8, we discuss implications to the pointwise spectrum of fractal Renyi-dimensions, as well as
escape rates.

2. Measures and entropies of the tent gap-map

Before we may begin our main propositions in the following sections, we have several preliminary definitions
and derivations to present in this section.
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The topological entropy of a mapf on its phase spaceY , may be defined in the symbol space representation as
the asymptotic rate of growth of permissible words with respect to word length,

hT = lim
n→∞

ln N(n)

n
, (2)

whereN(n) is the number of permissible words of lengthn. Alternatively, we may define the topological entropy
to be

hT = supµ∈MI (f )h(µ, f ), (3)

where we take the supremum over entropies with respect to the set of all invariant measuresµ ∈ MI(f ), of f . For
a topological Markov chain, such asfε, this supremum is actually attained by the entropy with respect to the Parry
measureµ∗, hT(f ) = h(µ∗, f ) [34], also known as Parry’s topological entropy measure.

The use of formula Eq. (2) requires splitting the phase spaceY = [0, 1] into cells of equivalentm-iteratefε

orbits, which we can write in closed form for our model tent gap-mapfε; we will use the formula for them-bit
bins extensively throughout the rest of this paper. In fact, our ability to write them-bit binsAmk in closed form,
allows us to explicitly perform many of the calculations in this paper, which was a main motivation of choosing the
model Eq. (1). To find the (up to) 2m, m-bit bins,Amk, consider the critical pointxc = 1/2 of the tent mapf0. It
has 2m mth preimages with respect to the tent map (without the gap). They aref −m

0 (xc) = (2k − 1)/2m+1 with
k = 1, 2, . . . , 2m. Let A01 denote the gapA01 = ((1 − ε)/2, (1 + ε)/2). Its mth preimages with respect to the
systemfε have the widthε/2m and are centered at the preimages of the critical point. Denotingmth preimages of
the gap byAmk we obtain

Amk =
(

2k − 1 − ε

2m+1
,

2k − 1 + ε

2m+1

)
, (4)

wherem = 1, 2, 3, . . . andk = 1, . . . , 2m. We note that depending on the size of the gapε some preimages,
corresponding to different values ofm, may merge together, and it is exactly such overlaps which cause topological
entropy flat spots. Also note that each of them-bit word cellsAmk are the same length (Lebesgue measured); this
is due to the fact that our mapfε has a constant magnitude slope,|f ′

ε| = 2.
We also find it useful to consider,µSRB, the SRB invariant measure for the systemfε. It may be defined as the

eigenmeasure of the Koopman operator associated with the system (i.e. the adjoint to Frobenuis–Perron operator)
corresponding to the largest eigenvalue. A detailed discussion of these measures can be found in Ref. [35] for
‘cookie cutters’.

Proposition 1. The support ofµSRB is contained inX = [fε(ym), ym] = [2ε, 1 − ε], whereym is the maximal
value of the systemfε((1 − ε)/2) = 1 − ε (see Fig. 1).

The support ofµSRB equalsS = limn→∞Sn, where

Sn = X\
n⋃

m=0

f −m(A00) = X\
n⋃

m=0

2m⋃
k=1

Amk. (5)

Let us also define theuniformmeasureµu, constructed inductively onS as follows:

• let µ1 be the uniform measure onS1 normalized so that
∫

X

dµ1 = 1; (6)

• let µn be the uniform normalized measure onSn; (7)

• the uniform measureµu is defined by the weak limitµu = lim
n→∞µn. (8)
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The uniform measureµu is connected to thenatural measure on stable manifoldµs , which is often considered
in the physical literature [36]. Let us draw randomly,N(0) initial points with respect to the uniform density on the
setY = [0, 1] which containsS, and letN(n) denote the number of points which did not leave the system by the
nth iterate. LetC be any Borel subset ofY , andNs(C, n) denote the number of initial conditions belonging toC

whose trajectories remain in the system forn iterations. Then one defines [36]

µs(C) = lim
n→∞ lim

N(0)→∞
Ns(C, n)

N(n)
. (9)

Remark 1. For x ∈ S both measures are proportional, µu(A) = cµs(A), for Borel subsetsA ⊂ Y , where the
proportionality constantc depends on the choice of the setY .

For the case of the tent gap-mapfε, in Eq. (1), we can show that theµSRB, corresponding to natural measure,
coincides with the Parry’s maximal entropy measure,µ∗. To show this, we observe that the absolute value of the
derivative is constant|f ′(x)| = 2 for anyx ∈ Y . Hence, the topological entropy and the KS metric entropy are
equalhT = hKS = hq . The notationhq denotes the generalized Renyi entropies, which are discussed in detail in
[37]. This coincidence follows since the average

∫
Y

ln |f ′(x)|dµ(x) equals ln 2, independently of the measureµ.
Hence, we see that the topological pressure, which is defined [35],

P(β) = sup
µ

[
hKS(µ) −

∫
Y

β ln |f ′(x)|dµ(x)

]
, (10)

where the supremum is taken over all invariant measures off , has the constant integral fixed at ln 2, for all measures
µ. It follows then that supremum is achieved, by the measure which we denoteµSRB, irrespective of the parameter
β. Therefore, in this case, it follows that the SRB measure coincides with the maximal entropy measure,µ∗ = µSRB.

3. Topological entropy expressed by mean number of preimages

In [20,21,38], it was shown that the topological entropy functionhT(ε) is a ‘devil’s staircase’ function for the
modelfε. We are now in a position to better understand the flat spots of the staircase. In this section, we also
give a Proposition, which gives an explicit construction to generate a sequence of approximating functions which
asymptotically converge to the devil’s staircase.

We begin by noting that the pointf 2
ε (ym) = 4ε divides the supportS into two sets:E2 contains all pointsx ≥ 4ε

of the support which have two preimages with respect tofε, andE1 = S\E2 consists of points with one preimage
only (see Fig. 1).

Let us define a functionM(ε)

M(ε) :=
∫ 1−ε

4ε

dµu, (11)

which is closely related to the topological entropy function. Notice thatM(ε) measures the relative ‘volume’ of the
set with two preimages,µu(E2).

The right-hand side of (11) can be interpreted asymptotically as

M(ε) ≈ Mn = Un/Tn, for largen, (12)

whereUn is the total length of theSn in (4ε, 1 − ε), while Tn represents the total length of theSn in X. For each
finite n, Un = µu[Sn ∩ (4ε, 1− ε)] andTn = µu[Sn ∩ X], can be calculated numerically as the sum of the lengths
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of subintervalsAnk, from Eq. (4). Numerical evidence indicates that the sequence ofMn converges in the limit
n → ∞, at least for almost all (w.r.t. Lebesgue)ε. However, for certain values ofε, this is not true. For example,
for ε = ε1 = 1/6 the sequenceMn does not converge, sinceM2n = 1/3 andM2n+1 = 1/2 for n = 0, 1, 2, . . . . We
expect that such problemε are ‘atypical’ in that they have Lebesgue measure zero, due to the weak convergence of
the measuresµn to µu. We also observe that, in general, the convergence occurs faster for smaller values ofε.

Similarly, the value ofM(ε) can be expressed by a ratio of natural measures of two intervals

M(ε) = µs ([4ε, 1 − ε])

µs ([2ε, 1 − ε])
, (13)

since the unknown proportionality constantc, mentioned in Remark 1, is eliminated due to cancellation.
We now establish a function which gives the topological entropyhT(ε) of the tent gap-map, in terms ofM(ε).

Therefore,hT(ε) is easily approximated, which may be considered surprising, given thathT(ε) is a ‘devil’s staircase.’

Proposition 1. The topological entropyhT of the tent map withε -gap equals,

hT(ε) = ln [1 + M(ε)]. (14)

Sketch of the proof [39]: Consider the Ruelle–Bowen transfer operatorL, associated with the mixing dynamical
systemf , which acts on a continuous density functiong : X → [0, 1]

L[g(x)] :=
∑

y∈f −1(x)

g(y), (15)

found in Ruelle’s Perron–Frobenius Theorem, [40]. Whenε is a binary rational, (computers can only store such
numbers), then there is a conjugacy offε to a subshift of finite type, which is exactly a topological Markov chain, for
which Bowen’s version of Ruelle’s Perron–Frobenius Theorem is stated. Ifε is not a binary rational, the conclusion
of the theorem still holds [39].

The conclusion is therefore as follows. The operatorL has the eigenfunctionρ(x), Lρ(x) = λρ(x), and the
adjoint operatorL∗ has the eigenmeasureν, L∗ν = λν which may be normalized so thatν(X) = 1; bothρ(x),
andν correspond to the same largest eigenvalueλ, and the maximal entropy measureµ∗ is uniquely absolutely
continuous with respect toν by the density functionρ(x). Thus dµ∗(x) = ρ(x)dν(x). The topological entropy of
f is equal to the logarithm of this largest eigenvalue,λ, of L andL∗ [40].

For the model Eq. (1), there is constant slope|f ′| = 2, and therefore, for arbitraryn, any normalized uniform
measureµn(X) = 1 from Eq. (7) iterates,

L∗[µn] = mnµn+1, (16)

wheremn ≡ 1 + Mn, andµn+1 is also uniform. Therefore, in the weak limitn → ∞, we obtainL∗[µu] = λµu.
Thus, the measureν is equal to the uniform measureµu, and both are absolutely continuous to the maximal entropy
measureµ∗.

The measure of the entire spaceX with respect toL∗(ν) is given by

L∗ν(X) = ν(E1) + 2ν(E2), (17)

since, by definition, for anyx ∈ E2 there exist two preimagesf −1(x) ∈ S, and for anyx ∈ E1 there exist only one
such preimage. Making use of the eigenequation,L∗ν = λν, and the normalization conditionν(E1) + ν(E2) = 1
we arrive at

λ = 1 + ν(E2), (18)

which proves the formula (14), making use of our special case result thatν = µu.
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Fig. 2. Topological entropyhT of the tent map as a function of the gap widthε obtained via Eq. (14) (thick line). Crosses represent points at the
edges of the entropy plateaus computed from roots of polynomials (24). Position of the main plateaus are labeled according to the relation (22).
Narrow solid, dashed and dotted lines represent continuous approximations ofh0(ε), h1(ε), andh2(ε) respectively, Eqs. (19), (20) and (21) of
the zeroth, first, and second order, respectively.

4. Direct approximation of the topological entropy function

In this section, we give numerical and graphical evidence as to the accuracy of Proposition 1.

Example 1. For ε = 1/7 the continued fraction expansion of (several) numbersMn consists of ones only, and
the sequenceMn converges to the golden number:M(ε = 1/7) = (

√
5 − 1)/2 = γ ≈ 0.618034, so that

hT(ε = 1/7) = ln [(
√

5 + 1)/2] ≈ 0.481212.

Example 2. We now consider a sequence of closed form approximates to the devils staircase entropy function
hT(ε), based on Eqs. (12)–(14). As the zero order approximation ofM, we take the ratio between Lebesgue measures
M0 = (1 − ε − 4ε)/(1 − ε − 2ε). Substituting this into (14) gives forε ∈ [0, 1/5] an analytical approximation of
the entropy

h0(ε) = ln

[
2 − 8ε

1 − 3ε

]
for ε ∈ [0, 1/5] (19)

represented in Fig. 2 by a thin solid line. This formula gives the asymptotic behaviorhT(ε) ≈ ln 2 − ε, valid for
smallε.

Example 3. Calculating higher order ratiosMn yields better approximations for the topological entropy function.
For example,M1 gives

h1(ε) =



ln [(2 − 10ε)/(1 − 4ε)] for ε ∈ [0, 1/9],
ln [(3 − 11ε)/(2 − 8ε)] for ε ∈ [1/9, 1/7],
ln [(2 − 9ε)/(1 − 4ε)] for ε ∈ [1/7, 1/5]

(20)

while the next approximate, based onM2, reads

h2(ε) =




ln [(2 − 12ε)/(1 − 5ε)] for ε ∈ [0, 1/17],
ln [(7 − 31ε)/(4 − 20ε)] for ε ∈ [1/17, 1/15],
ln [(4 − 23ε)/(2 − 10ε)] for ε ∈ [1/15, 1/9],
ln [(5 − 19ε)/(3 − 11ε)] for ε ∈ [1/9, 1/7],
ln [(4 − 20ε)/(2 − 9ε)] for ε ∈ [1/7, 2/11].

(21)
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Theh1(ε) andh2(ε) approximates can also be found in Fig. 2, and we see thath2(ε) is already pretty good. The
solid thick line representsh10(ε), obtained with the uniform measure supported on the setS10, by numerically
computing the ratioM10, according to Eq. (12). Crosses denote exact results, computed by roots of polynomials,
as described in Appendix A, for values ofε corresponding to periodic orbits of lengthL ≤ 6. Whenε < 1/7,
these results coincide to within 10−5. On the other hand some discrepancies are visible for larger gaps, for which
convergence of the sequenceMn is slower.

Conjecture. Iterating this procedure produces continuous, piecewise differentiable functionshn(ε) which, in the
limit n → ∞, converge to the topological entropy versus noise gap functionhT(ε). Convergence is in theL1–norm,
and

∫ 1
0 |hT(ε) − hn(ε)|dε → 0 asn → ∞.

5. Structure of the entropy devil’s staircase

In fact, Eqs. (12)–(14) of Proposition 1, together with the closed form representation ofAmk, found in Eq. (4)
can be used to investigate the structure of the devil’s staircase topological entropy function,hT(ε), which we do in
this section.

Our primary remark of this section follows from the observation that the functionM(ε) is constant forε ∈ {ε :
4ε ∈ Amk} (for anym andk), since varying the parameterε both integration borders sweep the empty region ofX

and the measureµu(ε) does not change in each of these intervals. This is equivalent to an alternative topological
description of the same phenomenon: when word bins overlap, no change takes place to the topological entropy
of the corresponding symbol dynamics, which must be a subshift of finite-type [21]. In other words, varying the
parameterε in these regions does not influence the set of periodic orbits, and hence the topological polynomials
[23,24], or dynamical zeta functions [41], are unchanged and therefore lead to the constant topological entropy.

The condition that the integration ‘sweeps a gap’ whenε ∈ {ε : 4ε ∈ Amk}, defined in (4), gives

M(ε) = const forε ∈ Bm,k :=
[

2k − 1

2m+3 + 1
,

2k − 1

2m+3 − 1

]
, (22)

for eachm-pre-iteration of the gap (word-lengthm) (m = 0, 1, 2, . . . and eachm-bit word,k = 1, 2, . . . , 2m).
In particular, we have monotonicity of theM(ε) function, and so it must follow that

M(ε1) ≤ M(ε2) for ε1 > ε2. (23)

It therefore immediately follows that topological entropyhT(ε) is a non-increasing function ofε, as was proven in
[22].

Example 4. The gapA01 generates the main plateau of the “devils staircase”.B0,1 = [1/9, 1/7], for which the
topological entropy is equal to ln [(

√
5 + 1)/2] (see Example 1 above).

Remark 2. Inside the main plateauB0,1 = (1/9, 1/7) all three of the approximate functions, h0(ε), h1(ε) and
h2(ε), cross atε = (6−√

5)/31 ≈ 0.121417,for which the sequenceMn is constant and equal to the golden mean
γ , corresponding to the exact value of the entropyhT =ln(1 + γ ). See Fig.2.

6. Kneading sequences and the entropy plateaus

The kneading theory of Milnor and Thurston [23,24] allows us to compute the topological entropy of a unimodal
map from the orbit of its critical point, using the so-called kneading determinant (see e.g. [42]). This technique may
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also be applied in our analysis of the tent map with a symmetric gap, for which the critical orbit originates in one
of (either) two ends of the gap: [(1 − ε)/2, (1 + ε)/2]. It enables us to express the topological entropy for any flat
steps of the staircase,ε ∈ Bmk, as

hT(εmk) = ln(λmk), (24)

whereλmk is thelargest(real) root of the polynomialPa(z) of orderm + 2, which is the characteristic polynomial
of the Stefan transition matrix [43]. As shown in Appendix A, all of the coefficients [cm+2, cm+1, . . . , c1, c0] are
equal to either+1 or −1. These coefficients are uniquely determined by the kneading sequence, representing the
symbolic itinerary of a periodic critical orbit. It follows, from Eq. (24), that the values of the corresponding plateau
Bmk in the space ofε, are also uniquely determined by these same coefficients.

We remark that for the polynomialsPa(z) are closely related to the kneading determinantPa(z) of Milnor
and Thurston. For any plateauBmk, associated with an orbit of the lengthL = m + 3, the kneading invariant is
proportional to a finite polynomialPb(1/z) and the topological entropy is given as the logarithm of thesmallestroot
of Pb(1/z) [23,24,44]. Kneading determinants are considered a standard tool to compute the topological entropy of
1D maps [45,46,26], but for our purposes, we find the related polynomialsPa(z) are more convenient.

To highlight our understanding of the relationship between the functionhT(ε), displayed in Fig. 2, relative to
calculations based on Eq. (24), we have constructed Table 1, by collecting the kneading sequences, corresponding
polynomials, their largest roots, and the values of the topological entropies for plateaus corresponding to periodic
orbits. Each plateau occurs forε ∈ [ε−, ε+] given by Eq. (22). The orbits of lengthL = 3 through 7 (and some of
the lengthL = 8) are ordered according to the decreasing entropy, which corresponds to increasing width of the gap
ε. Any periodic orbit may represent a kneading sequence, but not vice-versa; some kneading sequences (and hence
the corresponding polynomials) are not admissible for the tent map (see e.g. [47,48]) as they do not correspond to
any periodic orbits in the system, and therefore, do not affect the dependencehT(ε).

Example 5. Consider the main plateauB0,1 = (1/9, 1/7). The critical orbit has the lengthL = m + 3 = 3,
representing the kneading sequence CRL, corresponding to the sequence of coefficients [+ − −], which denotes
the polynomialPa(z) = z2 − z − 1. The symbols C, R, L, are used to mark, whether each iterate is at the critical
point (Center), right of it (Right) or left of it (Left). Largest root of the (this) equationPa(z) = 0 equalsλ01 = 1+γ

whereγ denotes the golden mean(
√

5 − 1)/2. The one follows the same result for topological entropy discussed
in Proposition 1.

We characterize a peculiarity in the structure of the devil’s staircase, visible in Fig. 1, by the following

Proposition 2. Any entropy plateau corresponding to an orbit of lengthL is accompanied on the left (smaller
gap width) by an infinite number of adjacent plateaus with the same entropy, which are caused by orbits of period
2L, 4L, 8L, . . . .

To prove this proposition, consider the sequence of signs [cL−1, cL−2 . . . , c1, c0], (defining a polynomial cor-
responding to an orbit of lengthL, as mentioned above). Also consider the following operations acting on the
sequences of signsci = ±1 of lengthL, which double their length:

W1[cL−1, cL−2 · · · , c1, c0] = [cL−1, cL−2, · · · , c1, c0, −cL−1, −cL−2 · · · , −c1, −c0], (25)

W2[cL−1, cL−2 · · · , c1, c0] = [cL−1, cL−2 · · · , c1, c0, cL−1, cL−2 · · · , c1, c0]. (26)

In a straightforward way, these transformations, discussed in [23,24], may be mapped into the space of polynomials,
of orderL − 1, with all coefficients equal to±1,

W1(Pa(z)) = (zL − 1)Pa(z); W2(Pa(z)) = (zL + 1)Pa(z). (27)
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Table 1
Topological entropy at plateaus and the corresponding periodic orbits for the tent map 2x with symmetricε-gap forx ∈ [(1− ε)/2, (1+ ε)/2].
Subsequent columns contain respectively: length of the orbitL, rootλ, topological entropy equal to ln(λ), polynomial, numberk − 1 labeling
the L − 3th preimages of the critical point, kneading sequence, both edges of the plateauε− andε+. The symbol [+ − −] represents the
polynomialx2 − x − 1 = 0, which root gives the golden mean. The letter E denotes an descendent orbit forming an extension of the plateau
related to the two times shorter ancestor orbit, N denotes an non-admissible orbit, which plateau is entirely shadowed by the ancestor plateau.
The symbol D represents descendents orbits obtained by the renormalization operationW1: two times longer period corresponds to two times
smaller topological entropy

Length λ Entropy Polynomial k−1 Kneading sequence ε− ε+

7 1.9835828 0.6849047 [+− − − − − −] 0 CRLLLLL 0.00775 0.00787
6 1.9659482 0.6759747 [+− − − − −] 0 CRLLLL 0.01538 0.01587
7 1.9468563 0.6662159 [+− − − − − +] 1 CRLLLLR 0.02326 0.02362
5 1.9275620 0.6562560 [+− − − − ] 0 CRLLL 0.03030 0.03226
7 1.9073421 0.6457107 [+− − − − +−] 2 CRLLLRR 0.03876 0.03937
6 1.8832035 0.6329743 [+− − − − +] 1 CRLLLR 0.04615 0.04762
7 1.8558860 0.6183622 [+− − − − ++] 3 CRLLLRL 0.05426 0.05512
E8 1.8392868 0.6093779 [+− − − − +++] 7 CRLLLRLL 0.05837 0.05882
4 1.8392868 0.6093779 [+− − −] 0 CRLL 0.05882 0.06667
N8 1.8392868 0.6093779 [+− − − +− − −] 8 CRLLRRLL 0.06615 0.06667
7 1.8239445 0.6010015 [+− − − − −] 4 CRLLRRL 0.06977 0.07087
6 1.7924024 0.5835568 [+− − − +−] 2 CRLLRR 0.07692 0.07937
7 1.7548777 0.5623992 [+− − − +− +] 5 CRLLRRR 0.08527 0.08661
5 1.7220838 0.5435351 [+− − − +] 1 CRLLR 0.09091 0.09677
7 1.6859262 0.5223151 [+− − − ++−] 6 CRLLRLR 0.10078 0.10236
E6 1.6180340 0.4812118 [+− − − ++] 3 CRLLRL 0.10769 0.11111
3 1.6180340 0.4812118 [+− −] 0 CRL 0.11111 0.14286
N6 1.6180340 0.4812118 [+− − +− −] 4 CRLRRL 0.13846 0.14286
7 1.5560302 0.4421378 [+− − +− − +] 9 CRLRRLR 0.14729 0.14961
5 1.5128764 0.4140127 [+− − +−] 2 CRLRR 0.15152 0.16129
7 1.4655712 0.3822451 [+− − +− +−] 10 CRLRRRR 0.16279 0.16535
D8 1.3562031 0.3046889 [+− − +− +− +] 21 CRLRRRRR 0.16732 0.16863
D6 1.2720197 0.2406059 [+− − +− +] 5 CRLRRR 0.16923 0.17460
DE8 1.0 0.0 [+− − +− ++−] 22 CRLRRRLR 0.17510 0.17647
DE4 1.0 0.0 [+− − +] 1 CRLR 0.17647 0.20000
2 1.0 0.0 [+−] 0 CR 0.20000 0.33333

Since the roots of the factor(zL ± −1) are situated on the unit circle, the largest real roots of the polynomial
α = Pa(z), and its two images,α′ = W1(Pa(z)) andα′′ = W2(Pa(z)), are the same. Therefore, if there exist
admissible periodic orbits corresponding to the ‘descendent’ polynomialsα′ andα′′, then they form a plateau of
the same height as their ‘ancestor’ polynomialα.

We find, in fact, that there are such plateaus corresponding to the descendantsα′, but not for the descendantsα′′.
We establish, in a somewhat indirect way, the existence of theα′ plateaus by considering their location (terminology
as used in [47]). Let us rewrite, in a simplified form, the position of the plateau induced by the polynomialα

according to Eq. (22)):BL,j = [j/(2L + 1), j/(2L − 1)], whereL = m + 3 andj = 2k − 1. Using the fact
that the sequence of coefficientsci represent the integerk − 1 in the binary code (but not the itinerary code: see
Appendix A), we arrive at the conclusion that the polynomialα′ is associated with the plateauB ′ = B2L,j ′ , where
j ′ = j (2L − 1). Therefore, this descendent plateauB ′ = [j (2L − 1)/(22L + 1), j (2L − 1)/((2L − 1)(2L + 1))]
touches, from the left, the ancestor plateauBL,j = [j/(2L + 1), j/(2L − 1)] and thus influences the devil staircase.
This reasoning is valid for any admissible periodic orbit of lengthL. Since the descendent plateau, corresponding to
the orbit of length 2nL, has descendants related to the orbit of the length 2n+1L, there exists an infinite sequence of
plateaus (related to the orbits of length 2nL, n = 1, 2, . . . ) and Proposition 2 is justified. Furthermore, the length of
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these adjacent plateaus, determined by the denominators 2nL, decreases exponentially withn, and their total sum
gives the total width of a plateau.

The ‘would-be’α′′ plateaus may be formally constructed, but we find that they are entirely included within the
boundaries of the ancestor plateausα. In the analogous construction to that of the previous paragraph, we find that
the polynomialα′′ would be associated with plateauB ′′ = B2L,j ′′ , wherej ′′ = j (2L +1). Calculating the location,
B ′′ = [j (2L + 1)/(22L + 1), j/(2L + 1))], we see that its right edge coincides with the right edge of the plateau
BL,j , i.e.,B ′′ ⊂ BL,j . Consequently, descendantsα′′ are entirely shadowed by the longer ancestor plateaus and
do not affect the devil staircase. This reflects the fact that the sequencesα′′ do not correspond to any admissible
periodic orbits (see e.g. [48], pp. 136–139).

Example 6. The golden plateauB0,1, with ε ∈ [1/9, 1/7] found by Eq. (22), is represented by the polynomial
α = [+ − −], according to Eqs. (A.2) and (A.3), usingm = 0, k = 1 andL = m + 3 = 3. The two descendant
polynomials areW1(α) = α′ = [+−−−++] andW2(α) = α′′ = [+−−+−−]. The former represents the orbit
CRLLRL leading to the plateau forε ∈ B3,4 = [7/65, 7/63] (again by Eqs. (22) and Eqs. (A.2) and (A.3)), which
forms an extension of the ‘golden’ plateau [1/9, 1/7] of the same entropy ln(1 + γ ). The latter corresponds to the
non-admissible orbit CRLRRL [45] and the hidden plateauB3,5 = [9/65, 9/63] which is a subset of the golden
plateau. Existing left extensions of shorter orbits plateaus are marked by ‘E’ in the Table 1, and for pedagogical
purposes, we also include the non-existing hidden plateaus (stemming from polynomialsα′′) marked by the letter
‘N’.

In order to analyze the case of wideε-gaps, characterized by a decreasing entropy, it is helpful to consider two other
operations doubling the sequences of signs,

U1[cL−1, cL−2 . . . , c1, c0] = [cL−1, −cL−1, cL−2, −cL−2, . . . , c1, −c1, c0, −c0], (28)

U2[cL−1, cL−2 . . . , c1, c0] = [cL−1, cL−1, cL−2, cL−2, . . . , c1, c1, c0, c0], (29)

and the corresponding transformations in the space of polynomials

U1(Pa(z)) = (z − 1)Pa(z
2); U2(Pa(z)) = (z + 1)Pa(z

2). (30)

Let λα denotes the largest root of the polynomialα of orderL − 1. It is easy to see that the largest roots of the
descendent polynomialsα3 = U1(α) andα4 = U2(α) of order 2L − 1 are equal to

√
λα, so the corresponding

entropies are halved. The sequencesα4 do not correspond to any of the admissible periodic orbits [48], and the
operatorU2 is mentioned here for completeness only. On the other hand, arenormalizationoperatorU1, generating
admissible periodic orbitsα3, is often discussed in the literature [45,48,26]. In a natural way this operator can be
generalized to act in the space of infinitely long sequences. The corresponding operation of the kneading sequences,
which doubles the length of the periodic orbit, is a special case of the Derrida–Gervois–Pomeau∗ composition
[43].

Remark 3. We are now in a position to bound the critical last gap valueε∗, for which any largerε-gap has no
topological entropy, since all of the gaps have overlapped. This remark is summarized by Fig. 3.The tent map with
no gap(ε = ε0 = 0) is characterized by the kneading sequenceQ = CR(L)∞, polynomialα0 = [+ − − − · · · ]
and the entropy ln2. The kneading sequenceR ∗ Q = CRL(R)∞ is represented by the polynomialU1(α0) =
[+ − − + (−+)∞]. Consequently, the entropy ln2/2 is achieved forε = ε1 = 1/6. In this way we construct a
family of kneading sequencesRn ∗ Q and the polynomialsUn

1 (α0), which allow us to find the sequence of numbers
εn such thathT(εn) = 2−n ln 2. In particular ε2 = 7/40 = 0.175,while already the next valueε3 ≈ 0.175092
provides a good approximation of the Feigenbaum critical pointε∗ = limn→∞εn.
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Fig. 3. Sketch of the dependence of topological entropyhT on the gap widthε in the vicinity of the critical pointe∗ = ε∗.

The same value can be approached from above by considering wider gapsε > ε∗, corresponding to periodic
orbits of the lengthL = 2l , which lead to the zero entropy. A gap of the widthε = e1 = 1/5 leads to the orbit S=CR
and a trivial polynomialβ1 = [+−] with the rootλ = 1. For this polynomial both operationsW1 andU1 produce
the same resultβ2 = [+−−+] (since half of zero entropy is equal to zero). The corresponding orbit CRLR appears
at ε = e2 = 3/17 ≈ 0.17647. Subsequent processes of period doubling occur at the gapsε = en corresponding
to the polynomialsβn = Un

1 (β1). For exampleβ3 = [+ − − + − + +−] givese3 = 45/257≈ 0.175097, where
L = 8, m = L − 3 = 5, k = 2j + 1 = 45, j = 22, and 2L + 1 = 257 are all consistent, again by Eqs. (22) and
Eqs. (A.2) and (A.3). In general

en = 1

22n + 1

n−1∏
k=0

(
22k − 1

)
, (31)

and each zero entropy plateauε ∈ [en+1, en] forms an extension of the plateau [en, en−1].
The sequenceen converges quadratically((en+1−en) ≈ (en−en−1)

2), in contrast with the geometric convergence
of the well known Feigenbaum sequence ((en+1 − en)/(en − en−1) = δ, asymptotically as the Feigenbaum delta
constant), which describes the period doubling in the logistic map [36]. The first 15 decimal digits ofe5 ande6 are
the same and provide an excellent approximation of the Feigenbaum point,

e∗ = ε∗ ≈ 0.17509193271978. (32)

This can be considered as a sharp estimate for the ‘maximal’ topologically nondegenerate gap. A sketch of the
behavior of the functionhT(ε) in the vicinity of the critical pointe∗ is shown in Fig. 3.

Previous attempts to calculate the critical last gapε, by ‘brute-force’ direct computation of the topological entropy
(by counting symbol sequences) on the invariant set, break-down due to the exponentially increasing difficulty (see
conjecture associated with Eq. (36) of locating the ever thinning invariant set (by PIM triple method) [21]. For the
first time, we can now draw the curve all the way to zero entropy, as shown in Fig. 3.

Remark 4. The analyzed structure of the dependence of the topological entropy is typical for all unimodal maps
with a gap. While location of the entropy plateaus depends on the map and on the position of the gap, the heights
of the plateaus are universal. The same sequences of entropy plateaus occurs for some 1D maps without the gap.
For example, the periodic windows for the logistic map are characterized by zero (or negative) KS-entropy and
a constant topological entropy. Its value is determined just by the kneading sequence of the periodic orbit and
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therefore, can be expressed by roots of the polynomials discussed in this work. A figure of parametric dependence of
the topological entropy for quadratic map (related with logistic map) is already sketched in the preprint of Milnor
and Thurston[23,24],and a more precise picture of such dependence is presented in the review of Eckmann and
Ruelle[25] and in the paper by Góra and Boyarsky[49].

7. Topological entropy is the ‘average’ pre-image count

In this section, we pursue a result, suggested by part of the proof of Proposition 1. For a more general map than
the (constant slope) tent map, we do not have the coincidence of uniform measureµu and the Parry measureµ∗,
and therefore we cannot conclude Eq. (16) with a uniformmn. Nonetheless, we can make the following general
Proposition.

Proposition 3. The topological entropy of a 1D mixing systemf : X → X, for a piece-wise monotone functionf ,
which is continuous on theN branches, is equal to

hT = ln
∫

X

P (x)dν(x), (33)

whereP(x) : X → {0, 1, 2, . . . , N} represents the number of preimages off at the pointx (restricted to the support
of ν) and the average is taken with respect to theL∗ eigenmeasure measureν, which is absolutely continuous to
the maximal entropy measureµ∗ by theL eigendensityρ(x).

Note that one cannot generally expect P(x) to be surjective, onto the set{0, 1, 2, . . . , N}.
Proof. The proof is very similar to the second half of the proof of Proposition 1, which is all that survives the
weaker condition, that we allow maps with arbitrary slopes. As before, we splitX into X = ∪N

j=0Ej , where

Ej = {x : x ∈ X, andf −1(x) has j branches}. The adjoint eigenstate equation of the Bowen transfer operatorL∗,
measuring the whole spaceX, is

L∗ν(X) =
N∑

j=0

jν(Ej ) =
∫

X

P (x)dν(x) ≡ 〈P(x)〉ν = 〈P(x)/ρ(x)〉µ∗ , (34)

where, as before, the eigenmeasure of the operatorL∗, ν, is known to be uniquely absolutely continuous to Parry’s
maximal entropy measureµ∗, by ρ(x), which is the eigenfunction of the adjoint eigenequationLρ = λρ. There-
fore, the eigenvalue of this equation isλ = 〈P(x)〉ν , and the topological entropy is,hT = ln(〈P(x)〉ν) =
ln 〈P(x)/ρ(x)〉µ∗ . �

Example 7. Take any unimodal map with a.e. two preimages, such as the logistic map,x′ = 4x(1−x) which is well
known [36] to have topological entropyhT = ln(2), when the parameter valuea = 4. This result is particularly easy
to derive by Proposition 3, for which we may check that,hT = ln(〈P(x)〉ν) = ln(

∫
[0,1]2dν) = ln(2

∫
[0,1]dν) = ln 2,

as expected. The main simplifying feature of the calculation is that only the number of branches, weighted by the
normalized measureν, was important, and thus the calculation is quite general (and hence identical for, say, the
two-onto-one tent map, the two-onto-one cusp map, etc.).

We note that our formula Eq. (34) is reminiscent to a similar formula, for almost allx, h(f ) = limn→∞(1/n)

log#f −n(x), used in Lopes and Withers [50]. The link follows by considering their formula as an average of the
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number of pre-images, of the initial condition, in which some branches are presumably dense inX, which is just
the same as using the measure of maximal entropy.

8. Fractal dimension and escape rate

So far, we have only considered the topological entropy. The so-called flat-spots of the topological entropy
function, caused by overlapping symbol bins, which causes the integral of Eq. (11) for(M(ε) to ‘sweeps a gap’
whenε ∈ {ε : 4ε ∈ Amk} defined in (4), also has consequences to the spectrum of pointwise spectrum of Renyi-
DimensionsDq [51–53] (for the formulation in the context of Chaos theory, see Ref. [52]) (see e.g. [36] pp. 79, or
pp. 306 for review). We now discuss these implications in this section.

We conjecture that the Hausdorff dimension of the supportS (and the measureµu) coincide with all of the
generalized Renyi (multifractal) dimensionsDq [36], and hence we write

D0 = Dq = ln(1 + M)

ln 2
. (35)

In [35], we find the relationshipD1 = hKS/ ln 2, directly linking theinformation dimensionproportionally to the KS
entropy, and this corresponds to the Kaplan–Yorke conjecture [36], formulated in a different setting. The dimension
is thus proportional to entropy and displays the same devil staircase like dependence on the parameterε.

Next we consider the nature of this map as a dynamical system on the unit interval, whose invariant set is an
unstable chaotic saddle. Therefore, the initial conditions which are not on this invariant set, escape to infinity. In
the analogy to [35,38], we conjecture that iteratingfε, on an initially uniform measure, causes the mass of points to
decay exponentially with the number of iterations, according to exp(−Rn). From such an exponential decay model
follows the exponentR,

R = ln 2 − hKS = ln

[
2

1 + M

]
. (36)

Furthermore, this escape rateR describes the exponential convergence of the seriesMn, in Eq. (12). Note that the
numberM(ε), in Eq. (11), defines the limit of this sequence, as well its convergence rate.

There is a striking similarity between the topological entropy devil’s staircase function offε, and the similar
devil’s staircase topological entropy of the logistic mapfr = rx(1 − x) on the parameterr [26,54]. This follows
immediately from the fact that in both models, we are monotonously nonincreasing the kneading sequence, with
the parametersε andr respectively. However, in the case of the tent gap-mapfε, the setG of ε values which are
not contained in the flat stepsBmk is of zero Lebesgue measure [22] and has a fractal structure [38]. In contrast,
the set ofr values which lead to chaotic motion (not contained in the “periodic windows” of a constant topological
entropy) has a positive Lebesgue measure [55].

It is natural to investigate the homogeneity and the local pointwise dimensionDl of the setG ⊂ [0, ε∗] of ε

valuesnot contained in the flat stepsBmk. Consider a fixed value ofε and a setS of dimensionDε which supports
the invariant measureµ∗(ε) of the system. We perturb the size of the gap,ε′ = ε + δ, and we find that in the limit
δ → 0 the measureµ∗(ε′) converges weakly toµ∗(ε). As we have already discussed that Eq. (14) of Proposition 1
implies that entropy changes only if the integral (11) changes, which occurs as the integration borders sweep across
the fractal setS, but not when we sweep the gapsS̄.

Therefore we conjecture that the setG is nonhomogeneous and its local point dimensionDl depends on the size
of the gap according to [38],

Dl(G(ε)) = D(ε) = ln(1 + M(ε))

ln 2
. (37)
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Table 2
NumberIL of periodic orbits of lengthL creating a plateau in the entropy dependenceK(ε) for ε ∈ 10 = (0, 1/6). Total length of these plateaus
equalsTL. Cumulative number of plateausItot = ∑L

k=3IL, while WL = 1/6− ∑L
k=3TL represents the total volume of the parameter spacenot

includedin the plateaus

3 1 1 0.03175 0.13492
4 1 2 0.00784 0.12708
5 3 5 0.01759 0.10948
6 3 8 0.00781 0.10167
7 9 17 0.01086 0.09080
8 13 30 0.00659 0.08421
9 28 58 0.00720 0.07701

10 45 103 0.00522 0.07179
11 93 196 0.00528 0.06651
12 161 357 0.00412 0.06238
13 315 672 0.00396 0.05842
14 567 1239 0.00330 0.05512
15 1091 2330 0.00307 0.05205
16 2018 4348 0.00267 0.04938
17 3855 8203 0.00247 0.04692

Remark 5. The intervals1n := [εn, εn+1] are similar in the sense that any plateau in the interval10, associated
with the polynomialα, has a corresponding plateau in each of the intervals1n and these descendent plateaus are
represented by polynomialsUn

1 (α).

Example 8. An orbit CRLRRR is associated with the polynomial [+ − − + −+] = U1([+ − −]), so the cor-
responding plateau is localized in12 and its entropy is equal to [ ln(1 + γ )]/2 ≈ 0.240606. Another descendent
plateau, determined byU1([+ − −−]), and corresponding to the orbit of the length 8, is marked in Table 1 by the
letter ‘D’.

Despite the similarity emphasized above, the entropy devil’s staircase is not self-similar in the intervals1n. It is
not possible to linearly rescale the interval1n by a constant factor to get the dependencehT(ε) in the next interval
1n+1. This corresponds to the fact that the setG is not homogeneous and its local dimension varies withε.

Remark 6. The numberIL of plateaus generated by periodic orbits of the lengthL in the first interval10 are
listed in Table2. We do not count those orbits, which produce plateaus embedded in longer plateaus generated
by shorter orbits. The columnTL represents the total width of all plateaus generated by all orbits of the length
L, while the last columnWL represents the total volume of the parameter space in10 not contained in the
sum of the plateausTL. A naive exponential fit givesWL = a + be−cL with a positivea ∼ 0.03, but if G

is indeed a fractal contained in the interval, then this approximation can not be true sincea should be zero.
Comparison with a similar table obtained for logistic map[54] shows that the number of flat steps in the entropy
dependence on the parameter, which correspond to periodic orbits of a fixed length, are almost the same. On the
other hand, the relative Lebesgue measure of the plateaus in the parameter space is much smaller for the logistic
map.

9. Pragmatic conclusions

We have performed a detailed measure theoretic based analysis of the devil’s staircase topological entropy function
of the gap-tent map whose invariant set is an unstable chaotic saddle invariant set of the tent map. The point was
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to further analyze the trade-off between channel capacity and noise-resistance in designing dynamical systems to
pursue the idea of communications with chaos. One may reduce the effects of an external noise by introducing a gap
into the system (i.e. by not using parts of the phase space close to the partition lines). We explicitly demonstrate that
some levels of noise are better than others for this purpose. For the simple tent-gap map model system (2x tent map)
the noise gapε = 1/7 provides the same maximal information transmission rate (topological entropy) as the gap
ε = 1/9 and offers 128% larger immunity against noise. In general, for this system the gapsε = (2k−1)/(2m+3−1)

(at the right edges of the plateausBmk), are more useful than whenε = (2k −1)/(2m+3 +1) (at the left edges of the
plateaus), with fixed natural numbersm andk. Our analysis can also be applied to investigate the effects of noise
in measurements performed by electronic devices, in which the result of measurement is determined by a symbolic
sequence describing a chaotic trajectory [56].

We would like to mention, in Appendix B, a brief description for our future research, by which the measured
statistical properties of deterministic dynamical systems are linked to an appropriately chosen stochastic system by
the so-called iterated function systems theory.
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Appendix A. Kneading sequences and polynomials for the gap tent map

If the trajectory of the critical point is periodic the topological entropy of the gap tent mapfε can be expressed as
a logarithm of largest root of some polynomial, with all coefficients equal to±1. Even though this fact follows from
the kneading theory of Milnor and Thurston [23,24], we give here a brief derivation of this result and introduce the
polynomials and notation used in this paper.

Our reasoning is based on the fact that two conjugate maps share the same topological entropy [36]. For the
mapfε (or for other unimodal maps) it is sufficient to find such a value of the slopes of the tent mapfs(x) :=
s(1/2 − |x − 1/2|), that the kneading sequences are identical. Then the entropy of the analyzed map is equal to
ln s – the entropy offs [42]. For the simple orbit CR of length 2 the conditionf 2

s (1/2) = 1/2 leads to following
equations(1 − s/2) = 1/2. It can be rewritten as(s − 1)P2(s) = 0, with P2(s) = (−s + 1) represented by
[−+].

Proceeding inductively, we assume that a sequence Q of lengthL corresponds to the polynomialPL = [cL−1, . . . ,

c1, c0]. Extending the kneading sequence by one symbol, Q→ QX, the descendent polynomialPL+1(s) reads

PL+1(s) =
{

sPL(s) + 1, for X = L,

−sPL(s) + 1, for X = R.
(A.1)

Therefore, every coefficient of any polynomial is equal to±1. Since multiplication of all coefficients of a given
polynomial by−1 does not influence its roots, we can arbitrarily define the leading coefficient,cL−1, to be+1. This
corresponds to the initial symbol C (strictly speaking it should be L for left end of the plateau and R for the right
one). The next sign of the polynomial is determined by the next symbol of the kneading sequence: when the symbol
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is an L, the sign is the same as the previous sign, while the sign changes when the symbol is an R. More precisely,

cL−1 = +1 andcj =
L−2∏
i=j

gi for j = 0, . . . , L − 2, (A.2)

wheregi(L) = +1 andgi(R) = −1 [23,24]. See several examples collected in Table 1.
Any entropy plateau occurring forε ∈ Bmk may be related with a concrete periodic orbit. Consider, for example,

εm1 = 1/(2m+3 + 1), which corresponds to left edges of plateausBm1 defined in Eq. (22). The orbit starting at
x = 2εm1 is periodic with the lengthL = m + 3, and its kneading sequence reads CRLL. . . L. The corresponding
polynomial [+ − − · · · − −] can be found independently by the companion matrix [57] which is equal to the
topological transition matrix of the systemfεL

. The largest eigenvalues of the topological transition matrices can
be used to find the topological entropy – see e.g. [43,48,49].

Let us order entropy plateausBm,k, corresponding tomth preimages of the gapA10, according to decreasing
entropy. When we increase the gap widthε, we decrease the critical pointxc = (1 − ε)/2. Since the real line is
ordered monotonically with the order of kneading sequences [23,24,47] (and polynomials), thekth plateauBm,k

corresponds to thekth periodic orbit of the lengthL = m + 3 (ordered according to decreasing entropy). In other
words, the periodic orbit represented by the polynomial [cL−1, cL−2, . . . , c1, c0] is kth in the family of orbits of
lengthL, where

k = 1 +
L−2∑
j=0

2j (cj + 1)/2. (A.3)

Thus, this orbit corresponds to the plateauBL−3,k, which occurs for the gap sizes,ε, determined by Eq. (22) – see
Table 1.

Appendix B. Gap-tent map and iterated function system

We describe here a technique of generating invariant measures for dynamical systems via appropriate IFS as
applied in Refs. [59–62]. In chaos, the initial condition is chosen randomly, albeit in a small ball, (e.g. machine
precision indoubleis typically a ball of radius≈ 10−16), and the sensitive dependence to initial conditions, of the
nonetheless deterministic dynamical system, amplifies this randomness. The deterministic chaos problem, can be
traded for an appropriately chosen truly stochastic process, which evolves (supposedly exact) initial conditions by
a random dynamical system, whose randomness mimics the chaos.

Barnsley’s Iterated Function Systems (IFS) [58] are an appropriate formalism by which we may accurately
exchange the deterministic problem for the right stochastic problem. In simplest form, an IFS of the first kind
involves an iterationxn+1 = Fi(xn), where the function actually used at each step is chosen randomly with place
dependent probabilities{pi(x)}ki=1,

∑
pi(x) = 1, amongstk possible functions{Fi(x)}ki=1.

For the tent gap-map model, we define an IFS consisting of two functions with place dependent probabilities:
{X = [2ε, 1− ε], F1(x) = x/2, F2(x) = 1− x/2;p1 = 0 for x < 4ε andp1 = w for x ≥ 4ε;p2 = 1−p1}, where
the relative weightw is a free parameter. Since there exist points transformed by one function with probability one
(p2 = 1 for x ∈ [2ε, 4ε)), the standard assumptions [58–60] sufficient to prove existence of a unique attracting
invariant measure are not fulfilled for this IFS.

Nonetheless we conjecture:
(a) for every value ofw ∈ (0, 1) there exist an attracting invariant measureνw of the IFS and it is localized on the
same supportS as the measureµSRB.
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(b) for every value ofε, there existw = w(ε) such that the induced invariant measure of the IFS,νw, and the SRB
measure of the tent map with the gap, are equal:µSRB = νw.

(c) the spectrum of entropiesKq and the generalized dimensionsDq for IFS(ε, w(ε)) and the tent map with a gap
fε are identical for any fixed value ofε.
Let us consider the simplest case with the gap of the widthε = 1/7 for whichM = γ (compare to Example

1). Since the interval(4/7, 6/7) of the massM is transformed by this IFS, with probabilityw, into the interval
(2/7, 3/7) of mass 1− M, the relative weightw is equal to(1 − M)/M = (1 − γ )/γ = γ . More generally, for
ε ∈ Bm1 the above relation is fulfilled forw = 1/λm1, so in the limit of no gapε → 0 one has limm→∞λm1 = 2
and the IFS becomes symmetric(w = p1 = p2 = 1/2).
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[62] W. Słomczýnski, J. Kwapién, K.Życzkowski, Multifractals and entropy computing, preprint chao-dyn 9804006.


