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Abstract—To understand the role of time-varying net-
work topologies for stability of coupled systems, we examine
sometimes-coupled oscillators where the network topology that
describes oscillator coupling is time-varying. We show that if the
network of oscillators synchronizes for the static time-average
of the topology, then the network will synchronize with the
time-varying topology if the time-average is achieved sufficiently
fast. Although this sufficient condition appears to be very
conservative, it provides new insights about the requirements
for synchronization when the network topology is time-varying.
In particular, it can be shown that networks of oscillators
can synchronize even if at every point in time the frozen-
time network topology is insufficiently connected to achieve
synchronization.

I. INTRODUCTION

Since Huygen’s early observations of weakly coupled

clock pendula [24], synchronization has been found in a

wide variety of phenomena, ranging from biological systems

that include fire flies in the forest [11], [31], animal gates

[13], descriptions of the heart [23], [46], [21], and improved

understanding of brain seizures [33], to chemistry [28],

nonlinear optics [47], and meteorology [16]. See one of the

many excellent reviews now available, including [8], [38],

[12], [44], [20], [32].

Despite the very large literature to be found, the great

majority of research activities have been focused on static

networks whose connectivity and coupling strengths are con-

stant in time. For example, static networks are assumed for

the analysis of [35], [36], [3]. However, there are applications

where the coupling strengths and even the network topology

can evolve in time. Recent work such as [43], [25], [49]

are amongst the few to consider time-dependent couplings.

See also [26] in which a so-called “function dynamics” gives

rise to networks that evolve according to a dynamical system,

somewhat similarly to our networks.

It can be argued that this work has strong connections to

ad hoc communication systems and control systems on time

varying networks. Fundamental connections between chaotic

oscillations and proof of synchronization through symbolic

dynamics [42], [37] and control [14], [9], [22] and even

definition of chaos through symbolic dynamics suggest this

work is rooted in a description of information flow in the

network.
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Coordinated control for platoons of autonomous vehicles

can also be addressed using network concepts [15], [39],

[17]. Each vehicle is represented by a node, and commu-

nication or mutual sensing is represented by connections

between nodes. In [17] the average position of a platoon

of vehicles is regulated, and the graph Laplacian is used

to describe communication between vehicles. It is shown

that the spectrum of the graph Laplacian can be used to

indicate stability of the controlled system. As pointed out in

[39], the use of a graph Laplacian is not entirely common

since it appears naturally for only a limited class of control

objectives. The simplified model form explored in this paper,

Eq. (3), is inspired by these problems where there seems to

be a notion of average information propagation in a network.

The main result of this work comes from the fields of

switched systems, and specifically builds on the concept

of fast switching. Switched systems are a class of systems

whose coefficients undergo abrupt change, for example,

consider the linear state equation

ẋ(t) = Aρ(t)x(t) (1)

where ρ(t) : R !→ Z+ is a switching sequence that selects

elements from a family of matrix-valued coefficients Θ =
{A1, A2, . . .}. When each element of Θ is Hurwitz, stability

of (1) is guaranteed if ρ(t) switches sufficiently slowly.
Further restrictions on elements of Θ, such as existence of
a common Lyapunov function, can guarantee stability for

arbitrary switching functions, including those that are not

slow. An excellent overview of the field of switched systems

and control is presented in [30] and in the book [29].

Even when the elements of Θ are not all Hurwitz, stability

of (1) is still possible, although the class of switching func-

tions is further restricted. For example, in [48] a stabilizing

switching sequence is determined by selecting elements of

Θ based on the location of the state x(t) in the state space.
This is essentially a form of state feedback.

When no elements of Θ are Hurwitz, which is the case

that is considered herein, stability of (1) can sometimes

be guaranteed if the switching sequence is sufficiently fast.

Loosely speaking, it can be shown that

ẋ(t) = Aρ(t/ε)x(t) (2)

is asymptotically stable if there exists a constant T such that

the time-average

1
T

∫ t+T

t
Aρ(τ)dτ

is Hurwitz for all t, and if ε is sufficiently small. This fact
has been established in [27], [4], [45] for several classes



of linear systems related to (2). Similar results have been

presented in [2], [1] for classes of nonautonomous nonlinear

systems where time is parameterized by t/ε as in (2). In this
case, stability of a specific average system implies stability

of the original system if ε is sufficiently small. In addition,
this work requires the existence of a Lyapunov function that

is related to a certain average of the system but which is

not a function of time. This requirement is too restrictive for

the class of linear time-varying systems considered herein. A

new fast switching stability condition, presented in Section

III, is derived in order to assess local stability of networked

oscillators about the synchronization manifold.

Recent complementary results have been authored by

V. Blykh, I. Belykh, and M. Hasler, in [5] and [6]. They de-

veloped a method called “connection graph stability method”

whereby even for networks of time-varying connections, a

bound is established based on explicitly considering the total

length of all paths through edges on the network connection

graph. Their bound links average path length in a way which

allows them to consider a small-world regular 2k-nearest

lattice with long range connections which are switched

on and off with a certain probability p during short time
intervals τ . They also conclude synchronization thresholds
not dissimilar to ours relating the switching time of the

necessary (long-range) connections which must be small

relative the synchronization time. However the specifics of

their methods, rooted explicitly in graph theory, are different

from ours, which are rooted in the field of switched systems

from control engineering. Consequently, the specific details

of both hypothesis and conclusions are not the same between

our work and [5], [6].

II. PRELIMINARIES

We consider a network of coupled oscillators consisting

of r identical oscillators,

ẋi(t) = f(xi(t)) + σB
r∑

j=1

lij(t)xj(t), i = 1, . . . , r (3)

where xi(t) ∈ Rn is the state of oscillator i, B ∈ Rn×n,

and the scalar σ is a control variable that sets the coupling
strength between oscillators. This model is inspired by the

applied questions discussed in the introduction in that it

has time varying connections which still allow for enough

connectionism to for global synchronization, and it is of a

sufficiently simplified form to admit a complete and rigorous

analysis. The scalars lij(t) are elements of the graph Lapla-
cian of the network graph and describe the interconnections

between individual oscillators. Let G(t) be the time-varying
graph consisting of r vertices vi together with a set of

ordered pairs of vertices {vi, vj} that define the edges of
the graph. In this work, we assume that {vi, vi} ∈ G(t)
for i = 1, . . . , r. Let G̃(t) be the r × r adjacency matrix
corresponding to G(t), then G̃i,j(t) = 1 if {vi, vj} is an
edge of the graph at time t and G̃i,j(t) = 0 otherwise. The
graph Laplacian is defined as

L(t) = diag(d(t))− G̃(t) (4)

where the ith element of d(t) ∈ Rr is the number of vertices

that vertex i is connected to, including itself. Note that
solutions of (3) must be interpreted in the weak sense of

Carathéodory. Indeed, the presence of a switching network

leads to nonsmooth solutions, i.e. piecewise differentiable

solutions which are smooth only between switching instants.

For existence and uniqueness theorems for such nonlinear

systems, one may refer to [18], [41].

Synchronization can be assessed by examining local

asymptotic stability of the oscillators along the synchroniza-

tion manifold. Linearizing each oscillator (3) about the tra-

jectory xo(t), which is assumed to be on the synchronization
manifold, yields

żi(t) = F (t)zi(t) + σB
r∑

j=1

lij(t)zj(t) (5)

where,

zi(t) = xi(t)− xo(t), (6)

and F (t) = Df evaluated at xo(t). Let L(t) be the

r × r matrix composed of entries lij(t), then the system
of linearized coupled oscillators is written

ż(t) = (Ir ⊗ F (t) + σ(In ⊗B)(L⊗ Ir)) z(t)
= (Ir ⊗ F (t) + σL⊗B) z(t)

(7)

where ‘⊗’ is the Kronecker product and z(t) =
[zT

1 (t), . . . , zT
r (t)]T . Standard properties of the Kronecker

product are utilized here and in the sequel, including: for

conformable matrices A, B, C, and D, (A⊗B)(C ⊗D) =
AC ⊗BD. Notation throughout is standard, and we assume
that ‖ · ‖ refers to an induced norm.
It has been shown in [35], [36] that the linearized set of

oscillators (7) can be decomposed into two components: one

that evolves along the synchronization manifold and another

that evolves transverse to the synchronization manifold. If

the latter component is asymptotically stable, then the set of

oscillators will synchronize.

The claimed decomposition is achieved using a Schur

transformation. We briefly describe the decomposition since

it plays a central role in our assessment of synchronization

under time-varying network connections. Let P ∈ Rn×n be

a unitary matrix such that U = P−1LP where U is upper

triangular. The eigenvalues λ1, . . . , λr of L appear on the

main diagonal of U . The transformation is not unique, in
that the triangular structure of U can be obtained with the

eigenvalues of L in any order along the diagonal. A change

of variables ξ(t) = (P ⊗ In)−1 z(t) yields

ξ̇(t) = (P ⊗ In)−1 (Ir ⊗ F (t) + σL⊗B) (P ⊗ In) ξ(t)
= (Ir ⊗ F (t) + σU ⊗B) ξ(t)

(8)

Due to the block-diagonal structure of Ir ⊗ F (t) and the
upper triangular structure of U , stability of (8) is equivalent
to stability of the subsystems,

ξ̇i(t) = (F (t) + σλiB)ξi(t), i = 1, . . . , r (9)



where λ1, . . . ,λr are the eigenvalues of L. Note that since
the row sums of L are zero, the spectrum of L contains

at least one zero eigenvalue. We assign λ1 = 0, which
is consistent with particular choices of the transformation

matrix P . Thus
ξ̇1(t) = F (t)ξ1(t)

evolves along the synchronization manifold, while (9) with

i = 2, . . . , r evolves transverse to the synchronization

manifold [35]. Since the oscillators are assumed identical,

the (identity) synchronization manifold is invariant for all

couplings, the question being its stability. The set of coupled

oscillators will synchronize if the synchronization manifold

is stable, if (9) with i = 2, . . . , r is asymptotically stable.

III. MAIN RESULT

For a given static network, the master stability function

characterizes values of σ for which a set of coupled oscil-

lators (7) synchronizes [35], [3], [19]. The graph Laplacian

matrix L has r eigenvalues, which we label,

0 = λ1 ≤ . . . ≤ λr = λmax. (10)

The stability question reduces by linear perturbation analysis

to a constraint upon the eigenvalues of the Laplacian:

σλi ∈ (α1,α2) ∀i = 2, . . . , r (11)

where α1,α2 are given by the master stability function

(MSF), a property of the oscillator equations. For σ small,

synchronization is unstable if σλ2 < α1; as σ is increased,
instability arises when,

σλmax > α2. (12)

By algebraic manipulation of (11), if,

λmax

λ2
<

α2

α1
=: β, (13)

then there is a coupling parameter, σs, that will stabilize
the synchronized state. For some networks, no value of

σ satisfies (11). In particular, since the multiplicity of the

zero eigenvalue defines the number of completely reducible

subcomponents, if λ2 = 0, the network is not connected, and
synchronization is not stable. However, even when λ2 > 0,
if the spread of eigenvalues is too great, then synchronization

may still not be achievable.

For the case of a time-varying network topology, repre-

sented by L(t), our principal contribution is to show that the
network can synchronize even if the static network for any

frozen value of t is insufficient to support synchronization.
Specifically, we show that the time-average of L(t), not the
frozen values of L(t), is an indicator of synchronization. If
the time-average of L(t) is sufficient to support synchroniza-
tion, then the time-varying network will synchronize if the

time-average is achieved sufficiently fast.

Theorem 3.1: Suppose a set of coupled oscillators with

linearized dynamics

żs(t) =
(
Ir ⊗ F (t) + σL̄⊗B

)
zs(t) (14)

has an asymptotically stable synchronization manifold, re-

garding z(t) → 0 in Eq. (6). Then there exists a positive
scalar ε∗ such that the set of oscillators with linearized
dynamics

ża(t) = (Ir ⊗ F (t) + σL(t/ε)⊗B) za(t) (15)

and time-varying network connections L(t) is also asymp-
totically stably synchronized, again regarding z(t) → 0 in
Eq. (6), for all fixed 0 < ε < ε∗, if there exists a constant
T such that L(t) satisfies

1
T

∫ t+T

t
L(τ)dτ = L̄ (16)

and the column sums of L(t) are all zero for all t.
Remark 3.2: Since L(t) represents a time-varying net-

work, we may assume that for each value of t, L(t) is a
graph Laplacian as defined in (4). Thus the time-average L̄
in (16) is not a graph Laplacian. In other words, L̄ does not

necessarily correspond to a particular network topology and

arises only as the time-average of L(t). However, L̄ does

inherit the zero row and column sum property of L(t).
A preliminary lemma is required to prove Theorem 3.1, the

proof of which appears in the Appendix.

Lemma 3.3: Suppose there exists a constant T for which

the matrix-valued function E(t) is such that

1
T

∫ t+T

t
E(τ)dτ = Ē (17)

for all t and

ẋ(t) = (A(t) + Ē)x(t), x(to) = xo, t ≥ to (18)

is uniformly exponentially stable. Then there exists ε∗ > 0
such that for all fixed ε ∈ (0, ε∗),

ż(t) = (A(t) + E(t/ε))z(t), z(to) = zo, t ≥ to
(19)

is uniformly exponentially stable.

Proof of Theorem 3.1:

First we show that the Schur transformation that decomposes

the set of oscillators (14) with static L̄ also induces a similar
decomposition for (15) with time-varying L(t). Then we
apply Lemma 3.3 to show that the modes of the system that

evolve transverse to the synchronization manifold are stable

if ε is sufficiently small.
Let P ∈ Rr×r be a unitary matrix such that Ū = P−1L̄P

where

Ū =
[

0 Ū1

0(r−1)×1 Ū2

]

is the Schur transformation of L̄, and Ū2 ∈ R(r−1)×(r−1)

is upper triangular. Without loss of generality, we have

assumed that the left-most column of P is the unity norm

eigenvector
[√

1/r, . . . ,
√

1/r
]T

corresponding to a zero

eigenvalue. The change of variables ξs(t) = (P ⊗ I)−1zs(t)
yields the decomposition ξs = [ξs1, ξs2]T where ξs1 ∈ Rn,

ξs2 ∈ Rn(r−1), and ξs2 satisfies

ξ̇s2(t) =
(
Ir−1 ⊗ F (t) + σŪ2 ⊗B

)
ξs2(t) (20)



As discussed in Section II, (20) is asymptotically stable by

hypothesis.

We now consider the same change of variables applied to

(15). First, note that

U(t) = P−1L(t)P =
[

0 U1(t)
0(r−1)×1 U2(t)

]

since the column sums for L(t) are zero for all t. The
change of variables ξa(t) = (P ⊗ I)−1za(t) yields the
decomposition ξa = [ξa1, ξa2]T where ξa1 ∈ Rn evolves

along the synchronization manifold and ξa2 ∈ Rn(r−1)

evolves transverse to the synchronization manifold. To verify

that the oscillators synchronize, it is sufficient to show that

˙ξa2(t) = (Ir−1 ⊗ F (t) + σU2(t/ε)⊗B) ξa2(t) (21)

is asymptotically stable when ε is sufficiently small. Since

Ū = P−1L̄P =
1
T

∫ t+T

t
U(τ)dτ

we conclude that

Ū2 =
1
T

∫ t+T

t
U2(τ)dτ (22)

Thus the desired result is obtained by direct application of

Lemma 3.3 along with (20), (21), and (22). !

IV. ILLUSTRATION

To illustrate fast switching concepts applied to synchro-

nization of a set of oscillators, we consider a set of r Rössler
attractors

ẋi(t) = −yi(t)− zi(t)− σ
r∑

j=1

lij(t/ε)xj(t)

ẏi(t) = xi(t) + ayi(t)
żi(t) = b + zi(t)(xi(t)− c)

(23)

where i = 1, . . . , r, a = 0.165, b = 0.2, c = 10, and σ = 0.3.
Oscillators are coupled through the xi variables via lij(t).
Coupling between subsystems (nodes) is defined by a time-

varying graph G(t), with corresponding adjacency matrix
G̃(t). The graph Laplacian L(t), with entries lij(t) is defined
as in (4).

For the purposes of illustration, we choose a set of five

graphs and corresponding adjacency matrices G̃1, . . . , G̃5

with the property that none of them are fully connected. That

is, each graph contains pairs of nodes that do not have a path

between them. However, the union of vertices over all five

graphs yields a fully connected graph with the longest path

between nodes containing no more than two other nodes.

All five graphs and the union of graph vertices are shown in

Figure 1.

A simple strategy is chosen for switching among graph

Laplacians associated with the set of graphs. We choose the

T -periodic L(t) defined over one period by

L(t) =
5∑

i=1

Liχ[(i−1)T/5, iT/5)(t)

where χ[t1, t2)(t) is the indicator function with support

[t1, t2). The time-average of L(t) is

L̄ =
1

εT

∫ εT

0
L(t/ε)dt =

1
5

5∑

i=1

Li (24)

Toward computing the upper bound for ε given by (36),
the set of coupled oscillators (23) with coupling defined by

(24) are integrated. The x-coordinate for each oscillator is
shown in Figure 2. The x-coordinates clearly synchronize.
Asymptotic stability of the oscillators with respect to the

synchronization manifold is suggested by plotting the sum-

square deviation of the states
r∑

i=1

(xi(t)−µx(t))2+(yi(t)−µy(t))2+(zi(t)−µz(t))2 (25)

about the averages

µx(t) =
1
r

r∑

i=1

xi(t)

where µy(t) and µz(t) are defined similarly. Approximately
exponential decay of (25) is evident in Figure 3, indicating

that the oscillators synchronize.

The linear time-varying system (7) corresponding to the

set of coupled Rössler attractors is computed from the

Jacobian of the right-hand side of (23) evaluated at the

solutions shown in Figure 2.

As described in the proof of Lemma 3.3, a Schur transfor-

mation U that diagonalizes L̄ is computed and used as a state
transformation to decompose the linear time-varying system

(7) into a component that evolves along the synchronization

manifold and another component that evolves transverse to

the synchronization manifold. The upper bound for ε given
in Theorem 3.1 is computed from the component of the

linear system that evolves transverse to the synchronization

manifold,

ξ̇a2(t) = (Ir−1 ⊗ F (t) + σU2 ⊗B)ξa2(t)

We now estimate the constants α, ρ, η, and µ needed to

compute the right-hand side of (36) in the proof of Lemma

3.3 (see Appendix). This is used to compute an maximum

value of ε. The constant α is computed from (29), while the

transition matrix is computed from

Φ̇(t, τ) = (Ir−1⊗F (t)+σU2⊗B)Φ(t, τ), Φ(τ, τ) = I

The norm of the transition matrix ‖Φ(t, τ)‖ is shown in
Figure 4. The initial time τ is chosen to be 40 seconds

to ensure that the states of (23) are reasonably close to

the synchronization manifold. An upper bound that satisfies

‖Φ(t, τ)‖ ≤ γe−λ(t−τ) is also shown in Figure 4. The

coefficients ρ, µ and η in (33) are computed from γ and

λ when evaluating the right-hand side of (36). Choosing

T = 1, the right-hand side of (36) is evaluated for this
example, and we determine that the set of coupled oscillators

will synchronize if ε < 3.3 × 10−7. This shows that our

bound is exceedingly conservative. For example, empirically

the oscillators will synchronize with ε = 1, as shown in
Figure 5.
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Fig. 1. (a)-(e) are graphs G1 through G5, respectively, while (f) is the
union of graphs.
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Fig. 2. The x-coordinate for the set of coupled Rössler attractors using
the average graph Laplacian.
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Fig. 3. Sum-square deviation in (25) for the set of coupled Rössler attractors
using the average network L̄.
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Fig. 4. Norm of the transition matrix Φ(t, τ) along with an exponentially
decaying upper bound.
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Fig. 5. The x-coordinate for the set of coupled Rössler attractors using
the switched network where ε = 1.

V. APPENDIX

Proof of Lemma 3.3

Since (18) is uniformly exponentially stable, there exists

a symmetric matrix function Q(t) and positive scalars η, ρ,
and µ such that the Lyapunov function

v(x(t), t) = xT (t)Q(t)x(t)

satisfies

η‖x(t)‖2 ≤ v(x(t), t) ≤ ρ‖x(t)‖2 (26)

d

dt
v(x(t), t) ≤ −µ‖x(t)‖2 (27)

for all t. To establish uniform exponential stability of (19),

we will show that v(z(t), t) is also a Lyapunov function
for (19) if ε is sufficiently small. This claim is achieved by

showing that for sufficiently small values of ε,

∆v(z, t + εT, t) ≡ v(z(t + εT ), t + εT )− v(z(t), t) (28)

is negative definite for all t. Expanding (28) yields

∆v(z, t + εT, t) = zT (t + εT )Q(t + εT )z(t + εT )
− zT (t)Q(t)z(t)

= zT (t)
(
ΦT

E(t + εT, t)Q(εT + t)ΦE(t + εT, t)−Q(t)
)
z(t)

where ΦE(t, t0) is the transition matrix corresponding to
A(t) + E(t/ε), i.e., z(t) = ΦE(t, t0)z0 is the solution to

(19), as discussed for example in [40]. Similarly denoting

the transition matrix for A(t) + Ē as ΦĒ(t, t0), we define

H(t + εT, t) = ΦE(t + εT, t)− ΦĒ(t + εT, t)



By hypothesis,
∫ t+εT

t
E(σ/ε)dσ = εTĒ

which implies that the Peano-Baker series representation of

the transition matrices can be used to write

H(t + εT, t) =
∞∑

i=2

∫ t+εT

t
A(σ1) + E(σ1/ε)

∫ σ1

t
· · ·

· · ·
∫ σi−1

t
A(σi) + E(σi/ε)dσi · · · dσ1

−
∞∑

i=2

∫ t+εT

t
A(σ1) + Ē

∫ σ1

t
· · ·

· · ·
∫ σi−1

t
A(σi) + Ēdσi · · · dσ1

Defining

α ≡ sup
t≥0

(
max

(
‖A(t) + Ē‖, ‖A(t) + E(t/ε)‖

))
(29)

a bound for H(t + εT, t) is computed

‖H(t + εT, t)‖ ≤ 2
(
eεTα − 1− εTα

)
(30)

Noting that ΦE = ΦĒ + H , ∆v is expressed

∆v(z, t + εT, t)

= zT (t)
(
ΦT

Ē(t + εT, t)Q(t + εT )ΦĒ(t + εT, t)Q(t)
)
z(t)

+ zT (t)
(
ΦT

Ē(t + εT, t)Q(t + εT )H(t + εT, t)

+ HT (t + εT, t)Q(t + εT )ΦĒ(t + εT, t)

+ HT (t + εT, t)Q(t + εT, t)H(t + εT, t)
)
z(t)

(31)

The task now is to compute an upper bound for ∆v(z, t +
εT, t) and show that this bound is negative if ε is suf-

ficiently small. Several well-known relationships that are

consequences of (26), (27), and uniform exponential stability

of (18) are utilized (see for example [40] pages 101 and 117,

or [10], page 202). Namely,

‖Q(t)‖ ≤ ρ (32)

‖ΦĒ(t, to)‖ ≤
√

ρ/ηe−
µ
2ρ (t−to) (33)

v(x(t), t) ≤ e−
µ
ρ (t−to)v(x(to), to) (34)

for t ≥ to.
To compute an upper bound for the first term on the right-

hand side of (31) we note that if x(t) = z(t) is chosen as
the initial condition of (18) at time t, then

zT (t)
(
ΦT

Ē(t + εT, t)Q(t + εT )ΦĒ(t + εT, t)−Q(t)
)
z(t)

= v(x(t + εT ), t + εT )− v(x(t), t)

From (34) and (26),

v(x(t + εT ), t + εT )− v(x(t), t) ≤ (e−µεT/ρ − 1)v(x(t), t)
≤ ρ(e−µεT/ρ − 1)‖x(t)‖2

Thus,

zT (t)
(
ΦT

Ē(t + εT, t)Q(t + εT )ΦĒ(t + εT, t)−Q(t)
)
z(t)

≤ ρ(e−µεT/ρ − 1)‖z(t)‖2
(35)

Combining (30), (32), (33), and (35) yields the desired upper

bound

∆v(z, t + εT, t) ≤
(
ρ(e−µεT/ρ − 1)

+ 4ρ(
√

ρ/ηe−
µεT
2ρ )(eεTα − 1− εTα)

+ 4ρ(eεTα − 1− εTα)2
)
‖z(t)‖2

(36)

Defining the continuously differentiable function g(ε, x)
to be the right-hand side of (36), it can be shown that

g(0, z) = 0 and ∂
∂εg(0, z) = −µT‖z‖2 < 0. Thus

since g(ε, z) → ∞ as ε → ∞, there exists ε∗ such that
g(ε∗, z) = 0 and g(ε, z) < 0 for all ε ∈ (0, ε∗) and z -= 0.
Thus ∆v(z, t + εT, t) < 0 for all ε ∈ (0, ε∗) and z -= 0.

To show that negative-definiteness of ∆v(z, t + εT, t) is
sufficient to establish stability of (19). Choose ε and γ > 0
that satisfy

∆v(z, to + εT, to) = v(z(to + εT ), to + εT )− v(z(to), to)
≤ −γ‖z(to)‖2

for all to. From (26), v(z(to), to) ≤ ρ‖z(to)‖2, which
implies that

v(z(to + εT ), to + εT )− v(z(to), to) ≤ −(γ/ρ)v(z(to), to)

Thus

v(z(to + εT ), to + εT ) ≤ (1− γ/ρ)v(z(to), to)

Repeating this argument yields

v(z(to + kεT ), to + kεT ) ≤ (1− γ/ρ)kv(z(to), to)

for any positive integer k. Thus v(z(to+kεT ), to+kεT ) → 0
as k → ∞ which implies that z(to + kεT ) → 0 as k →
∞. Since the limiting behavior is valid for any to, uniform
exponential stability of (19) is established. !
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