Anatomy of leadership in collective behaviour
Joshua Garland, Andrew M. Berdahl, Jie Sun, and Erik M. Bollt

Citation: Chaos 28, 075308 (2018); doi: 10.1063/1.5024395
View online: https://doi.org/10.1063/1.5024395
View Table of Contents: http://aip.scitation.org/toc/cha/28/7
Published by the American Institute of Physics

Chaos

An Interdisciplinary Journal of Nonlinear Science

Fast Track Your Research



http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1908776651/x01/AIP-PT/Chaos_ArticleDL_0618/Chaos_1640x440Banner_2-18.jpg/434f71374e315a556e61414141774c75?x
http://aip.scitation.org/author/Garland%2C+Joshua
http://aip.scitation.org/author/Berdahl%2C+Andrew+M
http://aip.scitation.org/author/Sun%2C+Jie
http://aip.scitation.org/author/Bollt%2C+Erik+M
/loi/cha
https://doi.org/10.1063/1.5024395
http://aip.scitation.org/toc/cha/28/7
http://aip.scitation.org/publisher/

CHAOS 28, 075308 (2018)

Anatomy of leadership in collective behaviour

Joshua Garland,"® Andrew M. Berdahl,'? Jie Sun,®*56 and Erik M. Bollt>67

LSanta Fe Institute, Santa Fe, New Mexico 87501, USA

2School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington 98195, USA
3Department of Mathematics, Clarkson University, Potsdam, New York 13699, USA

4Departmem of Physics, Clarkson University, Potsdam, New York 13699, USA

3Department of Computer Science, Clarkson University, Potsdam, New York 13699, USA

Clarkson Center for Complex Systems Science, Clarkson University, Potsdam, New York 13699, USA
"Department of Electrical and Computer Engineering, Clarkson University, Potsdam, New York 13699, USA

(Received 31 January 2018; accepted 30 May 2018; published online 18 July 2018)

Understanding the mechanics behind the coordinated movement of mobile animal groups (collective
motion) provides key insights into their biology and ecology, while also yielding algorithms for bio-
inspired technologies and autonomous systems. It is becoming increasingly clear that many mobile
animal groups are composed of heterogeneous individuals with differential levels and types of influ-
ence over group behaviors. The ability to infer this differential influence, or leadership, is critical
to understanding group functioning in these collective animal systems. Due to the broad interpreta-
tion of leadership, many different measures and mathematical tools are used to describe and infer
“leadership,” e.g., position, causality, influence, and information flow. But a key question remains:
which, if any, of these concepts actually describes leadership? We argue that instead of asserting
a single definition or notion of leadership, the complex interaction rules and dynamics typical of a
group imply that leadership itself is not merely a binary classification (leader or follower), but rather,
a complex combination of many different components. In this paper, we develop an anatomy of lead-
ership, identify several principal components, and provide a general mathematical framework for
discussing leadership. With the intricacies of this taxonomy in mind, we present a set of leadership-
oriented toy models that should be used as a proving ground for leadership inference methods going
forward. We believe this multifaceted approach to leadership will enable a broader understanding
of leadership and its inference from data in mobile animal groups and beyond. © 2018 Author(s).
All article content, except where otherwise noted, is licensed under a Creative Commons Attribution
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When observing the collective motion of animal groups
(e.g., schooling, herding, or flocking), an immediate ques-
tion is, what is the leadership structure? Who (if anyone)
is in charge and who is following, and does such structure
stay the same or change over time? Recent technolog-
ical advances in image processing and animal-mounted
sensors make it possible to record the simultaneous move-
ment trajectories of individual animals in a group. Such
abundance of data makes the present a promising time to
progress in understanding leadership structure in mobile
animal groups. Despite the availability of data and the cen-
tral importance of understanding leadership in collective
motion, there is surprisingly little explicit mathematical
description or even a consistent and well-defined approach
to this subject. Here, as a first step toward addressing
this deficiency, we construct a framework for discussing
and potentially inferring leadership in collective motion.
We review various sources and characteristics of leader-
ship to provide an anatomy and a language for describing
the multifaceted aspects of leadership across a variety of
animal societies. We then present a suite of leadership-
focused toy models, which can be used as a proving ground
for any proposed leadership inference method, before
being naively applied to (empirical) data. Together, this
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lays the groundwork for a principled exploration of a
perennial question: how is control of a collective system
distributed? Such understanding will not only contribute
to the ecology and conservation of group-traveling species
but will also aid in the design of control strategies and
algorithms for emerging distributed technologies.

. OVERVIEW

Mobile animals groups (e.g., flocks, herds, schools,
swarms) are ubiquitous in nature. In such collective systems,
the interactions between individuals may be as important as
characteristics of the individuals themselves.! Insight into
these interactions and their impact on the group dynamics is
of fundamental importance for our understanding of both the
ecology of these systems” and design and control principles
underlying general complex systems.’

A key challenge in the study of collective animal behav-
ior is understanding how groups of organisms make deci-
sions as a whole,* for example, about where® or when®’ to
go. Group decision-making processes range from despotic
to shared,® although even in systems with shared or dis-
tributed decision making there are likely inter-individual dif-
ferences (e.g., sex, rank, personality, size, nutritional state,

© Author(s) 2018.
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informational state) that produce asymmetry in influence.
Models suggest that such heterogeneity is potentially impor-
tant to group-level dynamics,”'® but inferring differential
influence and leadership from empirical data, though often
attempted, is an open challenge. As we elaborate in some
detail in this paper, a key step toward tackling this chal-
lenge lies in the recognition that the notion of leadership is
not merely a simple, unidimensional concept. Instead, a rich
palette of different types and forms of leadership often coex-
ists, even for the very same system. Thus, we argue that a
precursor step to the “correct” inference of leadership is the
clarification of what (type of) leadership is sought. With-
out such, any inferred leadership can potentially be deemed
inappropriate.

The need to distinguish between the definition and infer-
ence of leadership is standing out as a central problem partly
because of the acceleration of technical progress that enabled
collection of “big” data. For example, new technologies to
collect the simultaneous trajectories of all members of a
mobile animal group,!' along with increases in computing
power, make the near future a fruitful time to meet this chal-
lenge. Will having a large amount of real-world data alone
be sufficient to address questions about leadership, or do
we (still) need conceptual advances? As recently reviewed
by Strandburg-Peshkin et al.,'> most efforts to infer leader-
ship have used position within a group'*'¢ (e.g., leaders are
assumed to be at the front), initiator-follower dynamics,”’18
or time-delayed directional correlations.'”>* Information
theoretic measures provide additional, potentially more
powerful and less subjective, tools to infer leadership and
influence.’*2% However, a central viewpoint of this paper is
that any measurement of leadership needs to start by clari-
fying the particular type or form of leadership one is after.
Without such clarification, the “leadership” resulted from the
application of any inference method can be subject to misin-
terpretation, and perhaps more seriously, lead to fundamen-
tally flawed conclusions about the interaction mechanisms of
an animal system.

To illustrate the many facets of leadership and thus
the need to distinguish between its definition and measure-
ment, consider, for example, the case of migrating caribou.
Older, more experienced individuals are thought to guide
the migration-scale movements;>’ however, pregnant or nurs-
ing females might have increased nutritional requirements?
and thus guide movements along that path towards habitat
with better forage opportunities.”” Therefore, who is lead-
ing depends on the time- and length-scale of the movements
considered. Additionally, for some populations fall migration
coincides with the rut, so mating behaviors drive social inter-
actions: a dominant male may attempt to herd females or drive
other males away. Such a male is certainly influential, but per-
haps should not always be considered a leader, at least in the
context of the migration. Finally, whether or not an individual
is a leader might depend on who (or which group) one is con-
sidering as a potential follower. A nursing (and thus infertile)
female might be ignored by the libidinous male but will be
closely followed by her calf.>* Because there are many scales
and types of influence/leadership, we argue that one should
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begin such explorations with a clear question and carefully
select analytical methods to match.

The central goal of this paper is to develop a formal
language and multifaceted framework for defining and (poten-
tially) inferring the many aspects of leadership. In addition,
we aim to provide a set of leadership-oriented toy models to
serve as a proving ground for leadership inference methods.
Thus, our work here offers a practical language and set of
tools for researchers hoping to match questions about lead-
ership with the appropriate methods while avoiding potential
pitfalls. We hope that the combination of mathematical rigor,
biological intuition, together with several real and synthetic
examples will make our framework accessible and interesting
to both biologists and applied mathematicians.

Il. GENERAL MATHEMATICAL FRAMEWORK

To capture various forms of leadership, consider dynam-
ics of individuals (with potential interactions among them via
a network) together with dynamics of the group determined
by the individuals, modeled by the general form of ordinary
differential equations (ODEs):

xi =fISa(Ox1(D), ..., Su@®x,@); p,(); ;)]
y(@® =hix;(@),...,x,(0].

In this general model class, x;(r) represents the state of the
i-th individual at time ¢ (i = 1,...,n), § = [S;j(!)],xn is the
(time-dependent) adjacency matrix (also known as the social-
ity matrix) of a network encoding the structure of interactions,
where S;; # 0 if it is possible for j to (directly) impact the state
of i. Furthermore, u;(f) denotes the parameter (vector) asso-
ciated with i, and &;(¢) is noise. Here, a “parameter” can be
anything that describes the heterogeneity of the individuals in
the group. For example, in the Viscek model,’' the parameter
I; can represent the preferred direction an individual takes,
or it can also be used to represent the speed of an individual
that might differ from one to another, or both by associating
a parameter vector to each individual. The function f models
how the dynamics of each individual depends on their own
state and parameter(s), the state of others in the network, and
noise. Finally, the state of the group, y(¢), is determined by the
state of the individuals through the function k; for example,
taking h[x,(?),...,x,(t)] = %Z?zl |x;(t)| defines the group
state as the average of the individual states.

A separate and complementary perspective is to
model/represent the individual and group dynamics as a
multivariate stochastic process, focusing on stationary vari-
ables X;(¢) and Y (¢). From this perspective, the relationship
between the group variable and the variables is encoded in the
conditional distribution function

pO@ [ x1(17),x2(t7), ..., xa(17)), 2

where 1~ = (t — 7,1) denotes time history of the system,
taking into account a time lag of 7 € (0, 00).

We point out that there is intimate connection between
a dynamical system [such as one defined by Eq. (1)] and a
stochastic process, generally through an underlying (ergodic)
measure, 2 where the uncertainty associated with the state of

ey
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the variables is generally related to the distribution of initial
conditions and noise in addition to the coupled dynamics. For
a deterministic system, the randomness initiates exclusively
from (experimental) imperfection of choosing and determin-
ing the initial condition, and the evolution of uncertainty
can be treated as a stochastic process. Thus, entropy meth-
ods are naturally associated even with otherwise determin-
istic dynamical systems Eq. (1) in terms of the associated
stochastic process.

From the stochastic representation (2) of the dynam-
ics, we can define an individual’s (observed) influence on
the group using various forms of conditional mutual infor-
mation (CMI). For example, the (unconditioned) mutual
information (MI)

I(xi(t7):y(0)), 3

measures the apparent influence of i on the group, aggregated
over both direct and indirect factors. On the other hand, after
factoring out indirect factors, the “net” influence of i on the
group can be measured by the conditional mutual information
(CMI)

I(xi(17);(0) | %;(17)), “

where [ = {1,...,i—1,i+1,...,n}. As suggested recently
by James et al.,>> Eq. (4) may not capture influence entirely;
therefore, care should be taken when quantifying net influence
in this way.

Note that Eq. (1) itself does not uniquely determine
the distribution in Eq. (2), due to the possibly different
states/trajectories the system can follow depending on initial
conditions, parameters, and other factors; ergodicity and fixed
parameters are possible assumptions if we wish to discuss
uniqueness. Equation (1) can be interpreted as modeling the
possible interactions among the individuals, although these
interactions may or may not be realized in a particular set-
ting depending on the states the system operates in; on the
other hand, the PDF in Eq. (2) encodes (intrinsic) dependence
between the group variable and those of the individual vari-
ables without necessarily matching the structural information
in Eq. (1), even if such dependence comes from dynamics of
Eq. (1).

Next, we distinguish between intrinsic states of the sys-
tem versus observed states, as a key aspect in mathematical
interpretation of any process, including group roles of lead-
ership, is the concept of measurement of observables, from
the underlying process. In fact, the concept of leadership and
information flow can be dramatically obscured depending on
the details of the observables (extrinsic variables) relative to
the underlying system (intrinsic variables). We use x;(¢) to
represent the observed state regarding x;(¢), and similarly, y(z)
for the observed state regarding y(#). We represent the obser-
vations over a finite time window, producing observational
data

{Xi(); (@) }rez )

Proper characterization and interpretation of leadership
requires the (subjective) identification of a “reference frame,”
namely, choosing the (observable) variables, groups, as well
as time and spacial scales. That is, we argue that defining such
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a frame needs to include making at least the following three
choices:

1. Variables (e.g., position, velocity, acceleration, direction
of motion, or some combination of these). Depending on
the choice of variables, different types of leadership can
be defined and (potentially) identified.

2. Temporal resolution and time lag. What is the temporal
resolution of the actions of interest (e.g., seconds, days,
or years)? Additionally, there is an issue of time lag. How
far into the future is an action thought to have potential
impact? If the time lag is larger than the time-scale of
the typical response to an individual’s action, then each
individual will appear to have a similar random influence
on the others. On the other hand, too small of a time lag
might prevent detection of the (time-delayed) dynamics
of the group in response to an individual’s actions.

3. Definition of a group and what it represents. For example,
a group can contain everyone within a spatial domain, or
can be a certain class of individuals based on age, gender,
etc.

lll. PRINCIPAL COMPONENTS OF LEADERSHIP

In broad terms, we define leadership as an individual hav-
ing asymmetric potential to impact the trajectory of agents
in the group. As we explore below, the source of this asym-
metrical impact or influence may be due to group structure,
individual information or emerge from social interaction rules
alone. Further, the distribution and time and length scales of
the resulting leadership may vary considerably. In this section,
we construct a series of informative classifications which we
will refer to as the components of leadership. We further
divide these components into sources and characteristics of
leadership.

A. Sources of leadership
1. Structural leadership

Structural leadership encompasses a wide range of lead-
ership types which fundamentally relies on the structure of the
animal society. This structure could be an explicit dominance
hierarchy, or more subtly due to unequal social influence due
to semi-persistent traits (e.g., age, gender, reproductive sta-
tus). Depending on the particular taxa, the driving mechanism
for such asymmetric interactions differs, and deriving such
a mechanism is not the purpose of this article. For simplic-
ity, we assume that all of this rich societal structure has been
pre-encoded in the sociality matrix defined in Eq. (1). In par-
ticular, S;; # 01if and only if j has the capacity to lead i directly,
where “capacity to lead” is defined by the particular society.

To formalize this component of leadership, let G be the
directed graph associated with the sociality matrix S, where
there exists an edge from j to i if S;; # 0. For each node
£ € G, denote the reachability set of node ¢ as F,. In partic-
ular, node k is a member of F; if there exists a directed path
from £ to k in G. If F; # @, then £ is defined to have capac-
ity for structural leadership. We define the set of individuals
with non-zero capacity to exhibit structural leadership (have
a nonempty reachability set on the sociality matrix) as £. Of
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course, the degree to which an individual is a structural leader
exists on a continuum. Quantifying the strength of such lead-
ership is a highly non-trivial and potentially system-specific
task (e.g., Refs. 34-36). However, to first order, individuals
with many individuals downstream of them and fewer indi-
viduals upstream of them in the sociality matrix will tend to
play a stronger leadership role, or at least have the potential to
do so.

In our caribou example from the Introduction, we might
expect to find strong hierarchical relationships between males
during the rut. With these hierarchies encoded in the social-
ity matrix, the dominant males would be labeled as strong
structural leaders and the weaker males would be members
of various reachability sets. In the same example, if a nurs-
ing offspring closely followed their mother, then the mother
would exhibit structural leadership over her calf. Finally, note
that while the mother is a structural leader to the calf, she
may be influenced by a dominant male; making this mother
a structural leader and a follower simultaneously and making
the male an indirect structural leader of the calf. Therefore, a
binary classification of “leader vs. follower” is generally not
appropriate.

To further illustrate this point, consider the canonical
example of hierarchical dynamics in pigeon flocks from Nagy
et al."® depicted in Fig. 1. In this example, assuming that this
empirically measured network is the result of structural lead-
ership, nodes C and J have no structural leadership capacity
as they have empty reachability sets. All other nodes, how-
ever, have the capacity to lead at least one other individual and
thus all have some degree of structural leadership capacity.
Notice that with the exception of node A, each of the remain-
ing individuals both lead and follow, i.e., they have non-empty
reachability sets and are also members of others’ reachability
set. The strength of their structural leadership would roughly
mirror their vertical position in Fig. 1.

Structural leadership is simply the capacity for a member
of an animal society to lead other members of that society as
dictated by the society rules. In this sense, structural leader-
ship should really be seen more as a necessary but not suffi-
cient condition for leadership to occur within a mobile animal
group. However, in reality this component of leadership is
quite important because it encodes the potential heterogene-
ity in interactions between specific pairs of individuals and
more generally hierarchies in the group.

2. Informed leadership

Informed leadership arises when a subset of the group is
differentially informed and motivated to act on that informa-
tion, e.g., a subset of the group senses a resource,’’*® or has
information about a migration route.>>° Such leaders may be
anonymous’ or may indicate that they have information, for
example, by changing speed*” or signaling.*!

In the case of our migrating caribou, both the experienced
individuals leading the long-scale migration movement and
the individuals responding to local food and predation cues
provide complementary examples of informed leadership.

Informed leadership generally arises from some underly-
ing intent or motivation, e.g., hunger or fear. For this reason,
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FIG. 1. Hierarchical leadership in pigeon flocks. Directed edges point from
influential individuals to the individuals that they influence, as defined by
Nagy et al.'” For example, L tends to lead J, and J leads no one.

while the concept of informed leadership is intuitively sen-
sible, from a mathematical standpoint it is both difficult to
define and perhaps impossible to accurately infer without
additional knowledge of the system.

3. Target-driven leadership

Target-driven leadership is a specific subset of informed
leadership. A target-driven leader is an informed leader
(“informed by target”) that uses a series of deliberate con-
trol inputs such as calls and explicit motions to guide a group
toward a particular target state or set of target states. How-
ever, not all informed leadership is target-driven. For example,
when an individual from a group of animals detects a preda-
tor, that individual becomes “informed” and tries to move
away, and such abrupt change of motion may cause the rest
of the group to follow. In this case, the first-reacting individ-
ual exhibits informed-leadership, but its sole “target”, if any,
is to move away from the predator instead of trying to lead
the entire group away from the predator.

To be more precise, we characterize a target-driven leader
as an individual that not only influences the group but deliber-
ately controls the group toward some target state. In addition,
the removal of such an individual should result in the group
not going towards the target state. Mathematically, we define
this component as follows. Given that A is a set of target
states, then individual i is a target-driven leader (with respect
to A) if the net influence of i on the group [see Eq. (4)] is
nonzero and

y(t) - Aast — oo. (6)
That is, the individual directly influences the group as a whole

and that influence results in the group progressing toward the
target states.



075308-5 Garland et al.

An example of a target-driven leader is a sheep dog.
These dogs runs behind a group of sheep and through an inten-
tional series of signals such as barking, eye contact and body

posture the dog deliberately controls the sheep herd toward a
given target state such as a barn or field.

4. Emergent leadership

Asymmetrical influence, and thus leadership, may arise
from social interaction rules alone, in the absence of social
structure or differential information; we term this emergent
leadership. This would be the case if animals used anisotropic
social interaction rules. For example, when individuals are
more influenced by other individuals that are in front of them,
then individuals in more frontal positions of the group are
more influential, even if they have no additional information,
motivation, or status. Such emergent leadership has recently
been shown to be the case in our migratory caribou example.*

Alternately, if individuals are more influenced by faster-
moving group-mates,*? then those faster-moving individuals
will have more influence. If those individuals are moving
more quickly in response to information, or to signal dom-
inance, then this would be informational or structural lead-
ership, respectively, but if the increased speed is purely a
function of the group dynamics, this would be an example of
emergent leadership.

B. Characteristics of leadership
1. Distribution of leadership

In animal groups decisions range from full distributed
among all group members (‘“democratic”) to dominated by a
single or a few individuals (“despotic”).>!? It can be infor-
mative to quantify the number of individuals involved in a
leadership role within the group. Similar to Ref.12, we refer
to this as the distribution of leadership which we define on
a continuum that lies between centralized and distributed
leadership.

At the scale of the entire herd, we might expect our
migrating caribou to fall somewhere on this spectrum, book-
ended by primate societies with an alpha individual on one
end and leaderless fission-fusion fish schools on the other. If
we consider the mother-calf pairs as subgroups, we would
expect the mother to be a centralized leader. However,
in a larger group containing many such pairs, we would
expect distributed leadership shared between the mothers.
The pigeon example in Fig. 1 illustrates that many systems
fall somewhere between these two extremes. In this example,
nearly all of the individuals have some influence, yet it has a
clear hierarchy so it is not fully decentralized; it therefore lies
somewhere between centralized and distributed.

2. Temporal scale of leadership

A leader may not be actively influencing the motion of
other agents at all times and it is thus useful to quantify
and understand the time scales for which a leader quali-
fies as a leader under any of the components of leadership.
Here, we consider two notions of time scales—consistency
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and granularity. For the following discussion consider dynam-
ics of individuals, represented by discrete-time observations
)L,

Consistency of leadership is simply defined as the propor-
tion of the observation window for which a leader qualifies
as a leader. More specifically, we classify leaders as persis-
tent over the observation window if it is identified as a leader
for the entire time window. Conversely, we classify a leader
as ephemeral if it only qualifies as a leader for some small
time window [#,¢ 4 t], with T < 7. A similar temporal lead-
ership scale is presented in Ref.12 which ranges from variable
to consistent but attempts to capture the same notion.

The granularity of leadership concerns the resolution of
time steps for which an individual acts as a leader. For exam-
ple, a leader for daily activities might be different from one
that is for seasonal activities. We can check for granularity
by altering the time step we examine the dynamics under.
In particular, quantify leadership using only the observations
{xi(kt)}th/g (k > 1) for a large range of k. If a leader only acts
on a coarse basis, then they may not register as a leader for
small k but may then register as a leader for some larger k. In
contrast, a fine-scaled leader may register for small k.

In our migrating caribou example, the experienced indi-
viduals leading the broad migration path exhibit leadership
that is persistent, but perhaps has coarse granularity. In con-
trast, the leadership of those animals responding to resources
or predation threats along the way is ephemeral and has fine
granularity.

Time scales present several challenges for those attempt-
ing to infer leadership roles from a time series. If the gran-
ularity or observation window length do not correspond well
to the natural time-scales of leadership, then leadership events
may be completely missed or misclassified. For example, con-
sider a structural leader £ with the property that 7(x;(7); y(¢) |
x;(t7)) = 0, i.e., a structural leader that does not directly influ-
ence the group—although it has the potential to. Regardless
of the inference method, such a potential leader will always
be misclassified. Similarly, consider an informational leader
that only leads when they are within some radius to a known
resource. Say that this event only occurred for a very short
time window [z, + t], with t <« T. If one only considers
leaders that lead for the entire observation window, most
aggregate measures will “wash out” such an ephemeral lead-
ership event. For these reasons, carefully considering both
consistency by studying subsamples of the data set and granu-
larity by down sampling the data and retesting, one will likely
be able to obtain a much clearer picture of the leaders that are
present in a mobile animal group.

3. Reach of leadership

The reach of a leader quantifies the members of the group
that the leader has potential influence over, directly and indi-
rectly through subsequent interactions. Formally, we define
the reach of a leader as the members of that leaders’ reach-
ability set on a graph associated with a particular source of
leadership. In particular, let G be a graph where there exists
a directed edge from node j to node i if j has the capacity
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FIG. 2. Reach of agent G. Each node with a red circle is within the
reachability set and thus the reach of agent G.

to lead i, where capacity to lead may be structural, emer-
gent, or informed leadership. Then the reach of agent i is the
reachability set of i on G.

Consider Fig. 2, where the graph represents the potential
for structural leadership. In this example, individual G has a
reachability set of {D,B,H,L,I,C,J} and thus those 7 agents
are within the reach of structural leader G. Reach naturally
lies on a continuum between local and global. If an agent
exemplifies some form of leadership over all individuals, this
would be global reach; if an individual only leads some small
subset of the group, then this leader is considered local. In
Fig. 2, agent A has global reach and agent I has local reach.

In the case of our migrating caribou, the experienced
migrants leading the entire herd on its broad migration path
would have global reach, while the mother leading her calf
on a finer-scale would have local reach.

4. Observability of leadership

When we observe an animal society, we do so imper-
fectly, mainly in two ways. First, any observed quantity is
subject to noise and measurement errors. Second, and perhaps
more importantly, there may be elements of the society which
go unobserved. Such hidden variables and states may in turn
play a role in our interpretation and inference of leadership.
In fact, the strongest leadership might not be detectable if the
data are not appropriate. Across various taxa, leaders may use
vocal cues, % gestures,45 or movements that are too fine to
be picked up by GPS (e.g., pre-flight flapping*®) to initiate or
control movement. If the resulting movement is synchronized,
leadership inference based on trajectories will most likely fail.
Worse, if in the resulting movement, the least dominate indi-
viduals respond first to the cues, it could appear as though
those individuals are leading.
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In the case of our migrating caribou, lead animals may
stand up to signal departure or motivate others to start mov-
ing. This would not be captured by GPS tags and so would be
hidden to inference methods based on trajectories alone.

Quantification of hidden leadership in practice is quite
difficult by definition. Namely, if one has detected leadership,
it was observed. Doing this in theory, however, is quite triv-
ial. As defined in Sec. II, we define the full system dynamics
via x, y, S (and/or some mix of these). When the system is
being observed, the observed variables, denoted X, ¥, and S,
can differ from the true ones. We term an individual’s lead-
ership role “hidden” if it exhibits leadership defined in terms
of the intrinsic variables (x,y,S) but Eloes not appear to do
so given the observed variables (X,y,S); a leader that is not
hidden is then called an observable leader.

C. Real world animal behavior and the anatomy of
leadership

Here, we discuss real world animal interactions, and
we do so in a manner to emphasize the terminology of our
anatomy of leadership taxonomy.

We expect to find structural leadership in relatively
stable animal groups, often having complex social hierar-
chies, such as cetaceans, wolves, wild dogs, elephants, and
primates.'>*’->" The canonical example is the so-called alpha
individual in a primate society, who has some level of control
over an entire group over a long period of time (assuming the
society is stable).’! In our taxonomy, this dominant individ-
ual would be a persistent, centralized, structural leader with
a large reach. It is important to note that in such societies,
structural leadership may very well be correlated with infor-
mational leadership. For example, a matriarch elephant may
have better information about rarely visited water holes, as
well as greater per-capita influence to lead her group to them.

We expect informed leadership to dominate in animal
groups composed of unrelated individuals and unstable mem-
bership (i.e., fission-fusion dynamics), such as fish schools
and bird flocks. A single arbitrary member of a fish school
may perceive a respond to a threat, causing those around
it to also startle, or the entire group to make an evasive
maneuver.’2 This is an example of centralized, ephemeral,
informational leadership with a limited or global reach,
depending on how much of the group responded. Similarly,
some fraction of the same school might have information
about where or when a food resource might occur and lead the
entire school to that time-space location.>”3>3 In our terms,
those fish are distributed, ephemeral, informational leaders
with global reach.

Informed leadership is also common for movement at
long length scales. In flocks of pigeons, better informed indi-
viduals act as leaders during homing flights.** (However, it
should be noted that pigeons also exhibit a structural hierarchy
t0o.'”) During migratory movements, older, more experi-
enced, birds guide groups on efficient migration routes.>* In
both of these examples, the informed birds are centralized,
persistent, target-driven, informational leaders with global
reach.
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In migrating white storks, some individuals actively seek
thermal updrafts, which are necessary for them to get efficient
lift to complete the migration, while others tend to copy, by
moving towards individuals who are already in thermals.>
This is a specific example of a general phenomenon called
emergent sensing,’ in which a group spans an environmental
gradient and individuals in the “preferred” end of the gradient
alter their behaviour (purposefully or not) in a way that causes
the entire group to climb the gradient.*'*° In general, such
leadership would be distributed and ephemeral (although
could be persistent if, like in the storks, the same individu-
als always find the thermals) informed leadership with global
reach.

IV. A MODEL SANDBOX FOR VALIDATING
LEADERSHIP-INFERENCE METHODS

Ultimately one would like to develop methods to infer
and classify leadership from empirical data. This is of course
a long-standing and non-trivial challenge, and a pragmatic
approach is to first test inference methods on simulated
data where the leadership type and distribution is known
because it is programmed in explicitly. For mobile ani-
mal groups, an obvious starting point is to modify classic
flocking/schooling/herding models (e.g., Refs. 31, 57, 58) to
include known leadership structures. In this section, we first
describe a canonical model of collective motion—the so-
called zonal model.>>® Following that, we modify the model
to incorporate the various leadership sources and characteris-
tics described in this paper.

A. Basic collective motion model

Following Couzin et al.,’>® for each agent, numbered
i=1,..,N, and each time ¢, a position vector ¢;(¢), a direction
vector v;(¢), and a speed s; are maintained. At each time step,
agent i computes a desired direction d;(t) based on neighbors
in three different zones, depicted in Fig. 3.

The first zone to consider is called the repulsion zone and
is denoted by R. This zone ensures that “personal space” is
maintained for each agent. If any other agent is in the repul-
sion zone R, for focal individual j, then the desired direction
in the next time step is defined by

Ay G0 =)
di(t+ A1) = ;Ic/'(t)—ci(t)l' "
JER

This desired direction ensures that a collision will not occur at
time ¢t + At. However, if for the focal individual R = @, then
the focal individual attempts to get closer to agents in their
attraction zone A and orient with agents in their orientation
zone O. This is accomplished by choosing a desired direction
at time ¢ + At in the following way:

ci(t) —¢i(1)

di(t+Af)=aZ|cj(t)T(t)|

J#
jeA

T i ®)
i

;01

jeO
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FIG. 3. Schematic of zonal flocking model. The black triangle is the focal
individual. The red ring demarks the zone of repulsion R. The blue circle is
the orientation zone O, the focal individual attempts to align with the agents
in this zone (blue triangles in the figure). The outer ring is the attraction zone
A and the focal individual attempts to get closer to these agents (the green
triangles in the picture). The resulting desired direction is then the sum of the
green and blue vectors.

where « is a parameter that controls the relative strength
of attraction and alignment. For example, a flock of
geese—dominated by alignment—would have a relatively
low «, while a swarm of insects—dominated by attrac-
tion—would have a relatively high «.

Thq desired direction vector, d, is normalized to a unit
vector d(t + Ar) = %. Next, to represent uncertainty
stemming from limitations of sensory and cognitive abilities,
this unit vector is transformed into d” (¢ + Af) by rotating it
by a small angle drawn from a circular-wrapped Gaussian
distribution centered at zero. Finally, it is assumed that indi-
viduals can turn at a maximum rate of 6 radians per unit
time. Therefore, if the difference between an individual’s cur-
rent direction, v;(¢), and its desired direction for the next time
step, d; (t + At), is less than 6 At, then the desired direction is
achieved and v;(t + Ar) =d!(t + Ar). Otherwise, that indi-
vidual’s direction v;(t + Ar) is the result of rotating v;(f) by
6 At radians towards their desired direction d? ( + Ar).

After the heading is assigned, the position at # + At can
be computed by

ci(t+ At) =¢;(t) +v( + A)s;At, ®

where s; is the speed of individual i.

B. Explicitly adding sources of leadership

While this base model captures a wide variety of flock-
ing, swarming, and schooling behavior, it does not account
for leadership explicitly. In order to test leadership inference
methods, it is helpful to make a few simple modifications to
this base model: (1) add a sociality matrix>® (structural leader-
ship), (2) add “informed” individuals to the group9 (informed
leadership), and (3) make interaction rules isotropic®® (emer-
gent leadership).
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1. Structural leadership

To incorporate structural leadership, we introduce a
sociality matrix § = [S;Inxn. S;j # 0 if agent i can be influ-
enced by agent j. More generally, §;; is a continuous value
that gives the relative influence of individual j on individual
i. To take this into account, the desired-direction computation
is modified to weight the influence of each neighbor relative
to S;; rather than an equal weighting of everyone in .A and O),
ie.,

¢i(t) —¢i(1)
d; Af) = (A
R D O]
jeA
+1-0)Y s, AON (10)
‘=m0l
jeO

Adding this sociality matrix to the base model allows for
structural leadership to be explicitly built in. This is an advan-
tage as one can then see if post-facto if the structural lead-
ership placed in the model can be extracted by a candidate
inference method.

2. Informed leadership

To simulate informed leadership, a subset of the agents
are given “knowledge” of a preferred direction g (more gener-
ally each informed agent may be given their own not necessar-
ily equal preferred direction g;).” This preferred direction can,
for example, represent a migration route or the direction of a
prey or known resource. Non-informed group members have
no knowledge of g and may or may not know which individ-
uals are informed. Following Couzin et al.,’ to integrate this
into the model the informed individuals balance between the
social interactions and their preferred direction with a weight-
ing term w. In particular, informed individuals have a desired
direction d’, given by
di(t + AT + wg,
\di(t + A1) + wg,|
If w = 0, the preferred direction is completely ignored and
only social interactions are followed. As w increases toward
1, the influence of the preferred direction is balanced with

influence of the social interactions. With w > 1, the preferred
direction is favored over social interactions.

di(t+ Ar) = (11)

3. Emergent leadership

One way to make a test case for inferring emergent
leadership is to make interactions spatially asymmetric. In
particular, one can simply add “blind zones™® to the model
described in Egs. (7)—(9). In this case, the zones A and O are
missing wedges behind them and individuals in those wedges
are ignored. If these blind zones are large enough, individuals
are more influenced by individuals in front of them.*°

C. Testing characterizations of leadership
1. Distribution of leadership

Using the framework presented in the previous sec-
tions, one can explore a variety of distributions of leadership,
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ranging from centralized to distributed.'? For structural lead-
ership, the spectrum could range from a sociality matrix with
a hub structure (centralized) to a one with a random connec-
tivity, or even fully connected (decentralized). For informed
leadership, the fraction of the group having a non-zero value
of w would roughly span the spectrum of the distribution of
leadership. We note that the distributions of structural and
informed leadership are potentially orthogonal. For example,
a group could have highly centralized structural leadership
in tandem completely distributed informational leadership or
vice versa.

2. Temporal scale of leadership

Temporal consistency and granularity of leadership can
be built into this leadership model by making the model
parameters associated with leadership time dependent, e.g,
[S;i(®)], (1), and g(r). For example, one could remove or
change the preferred direction at regular time intervals by
defining time-varying w(f) and then see if an inference
algorithm could detect this change.

3. Reach of leadership

By setting specific examples of the sociality matrix, one
can experiment with a variety of leadership reach scenarios
and test the ability of various inference measures to recover
them.

4. Observability of leadership

There is a vast set of variations that could be made
to the framework presented here to encode potential for
leadership to be driven by non-trajectory based cues or
signals.#*~#6%0 One obvious example (which is also ubiqui-
tous in nature) is auditory signalling, which could provide
long-range interactions.*!

D. A potential pitfall: Influence vs. leadership

Consider a mobile-animal group where each member is
governed by Eq. (9) and the direction is decided by Egs. (7)
and (10). Furthermore, define S;;+1) = 1 and 0 otherwise for
ie{l,...,N —1} and let @ € [0, 1]. This describes a simple
chain topology, where each individual has the capacity for
structural leadership over at most one other agent. In particu-
lar, each agent directly orients and attracts to (follows) at most
one other agent in the group. However, it is important to note
that every agent avoids collisions with all other agents [the
sociality matrix applies to Eq. (10), but not Eq. (7)].

In this example, the incidental social interactions, such
as those resulting from repulsion, pose a serious challenge
for the majority of influence/causal inference algorithms. For
example, if one blindly applies optimal causation entropy>®
or transfer entropy®! to infer who leads whom, then these
algorithms would conclude an all-to-all leadership graph. By
construction, however, we know this is incorrect and that
the underlying influence graph is a simple chain. The issue
here is that these measures,2°! and causal inference from
information in general, are not explicitly measuring leader-
ship but reductions in uncertainty about a particular variable.
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In this example, the minor local repulsion interactions cause
enough “information flow” over time to trigger these algo-
rithms/measures. However, as discussed in the Appendix,
conflating influence, information flow, causality, and leader-
ship is a non-trivial challenge, which is nicely highlighted by
the present example.

V. AFTERWORD

Traditional approaches to leadership inference have
mainly focused on a single defining characteristic, e.g., posi-
tion within a group, social hierarchy, information flow, or
influence. We believe that, in general, none of these concepts
alone fully captures leadership. In this article, we show that a
multifaceted approach where multiple axes of leadership are
analyzed provides a more complete classification of the lead-
ership structure. This formalism should serve to link questions
about empirical systems with the appropriate analytical tools
to address those questions. While this taxonomy we provided
is surely not complete, we hope that this effort will serve as
a starting point for formalizing a multifaceted approach to
leadership definition and inference.

Multiple technological advances in sensors, computer
vision have led to the availability of more high-resolution col-
lective motion data than ever before.!! As such, the near future
is an opportune time to make meaningful advances in leader-
ship inference. Causal inference and information theory are
promising in this arena but as we have shown throughout this
article leadership is a highly intricate and multifaceted subject
and neither causal inference nor information theory may be up
for the task alone. We hope that as new inference algorithms
come to be the formal language and toy models developed
here will serve as a proving ground. We believe that being
able to carefully classify the components of leadership being
inferred will be invaluable for practitioners and theorists as
they begin to tackle all the high-resolution data as it becomes
available.
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APPENDIX: INFORMATION FLOW, CAUSALITY,
INFLUENCE, AND LEADERSHIP

Information theory provides sophisticated measures for
rigorously quantifying concepts like “the reduction in uncer-
tainty about the present state of X given past states of Y.”
As such, these measures are often associated with concepts
like information flow, causality, influence, and even leader-
ship—and often all of these terms are used interchangeably.
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These measures are often viewed as less subjective inference
methods because almost no assumptions need to be made
about the structure or dynamics of the system being observed.
As a result, information theory has become a popular tool
for inferring leadership from time series.'*2%%> However,
while influence, information flow, and causality are all closely
related to the notion of leadership, these concepts are inher-
ently different and therefore are not readily interchangeable.
Furthermore, recent work has begun to show that these infor-
mation measures fail to even capture information flow*’ let
alone leadership.

The following appendix discusses information flow,
causality, and influence and provides motivation for why we
do not believe any of these alone fully quantifies leadership.

Information flow and entropy, as we have argued in
previous mathematical works,”*3>%3 is a fundamental concept
in coupled (dynamical) systems, and the associated stochastic
processes. Information theory, as formulated upon Shannon
entropy and its variants, basically describes the average “sur-
prise” one should attribute to observing a specific value or
state of a random variable. More formally, such quantifica-
tion of surprise or (un)predictability is referred to as “entropy”
and can be defined rigorously as a function of the underlying
probability distributions. When the time evolution of mul-
tiple variables are considered, the state of a variable often
depends on the history of a set of related variables, and such
inter-variable dependencies can be viewed as “information
flow.” Explicit characterization of information flow in coupled
systems can be done by quantifying how informative (again
as a notion of surprise) one should be in measured obser-
vations conditioned on given previous observations, giving
rise to commonly used measures such as transfer entropy®’
and causation entropy.’®*% In other words, information flow
describes the reduction in uncertainty regarding forecasts for
predictions associated with conditioning on the past in various
combinations. Thus whether by Granger causality,® transfer
entropy,®! causation entropy,’®%4+6>67 or some other methods,
the idea is to ask if there is a reduction in uncertainty with
knowledge of the past of a perhaps coupled variable. Clearly,
this question is universally relevant from a wide range of sci-
entific fields of science or mathematics. However, part of the
theme of this paper is that these information flow concepts
themselves are not sufficient or equivalent as leadership.

Causation is a related but not identical concept as infor-
mation flow. The notion of causality has many interpreta-
tions, depending on the context, from philosophical,*~7" to
statistical,”’~”> to dynamical.5"-%+%67¢ Here, we will avoid
the philosophical direction entirely, but note that some of
these do coincide with the others. Statistical perspectives are
sometimes relevant to a stochastic process, especially from
the influential work of Pearl,”!"" associated with a calcu-
lus for understanding interventions, but not always relevant
to our context. We are more so interested in understanding
interpretations of causal influence, of a free running sys-
tem, that is, a system that is passively observed rather than
being actively probed. As such, this relates more closely,
almost synonymously to the concepts of information flow in
a stochastic process, but not quite identically. We take the
same perspective as Granger in his line of reasoning that
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eventually leads to the 2003 award of the Nobel Prize in Eco-
nomics; Grangers fundamental principles were that (1) cause
happens before effect and (2) a cause necessarily contains
unique information concerning future states of its effect.®® In
detail, the so-called Granger causality is a specific compu-
tation that assumes a linear stochastic process, and as such,
it was shown’® to be entirely equivalent to transfer entropy
computed by other means (in information theoretic by the
Kullback-Liebler divergence appropriately conditioned) in the
special case of a linear stochastic process with Gaussian noise.
So said, while the underlying principles of Granger are the
same, the details of computation may differ.

Influence can now be described within this formalized
framework as related to, but somewhat distinct from lead-
ership, depending on if we are relating interactions between
agents in terms of information theory, reduction of uncer-
tainty, or some other underlying principle, including the
potential goal of controlling the system. Consider that some
agents in a group may be leaders, with various ways to
interpret this phrase to be stated subsequently below. A mea-
sure of leadership may be associated with information flow
for example, or as a proxy for causal influences that lead-
ers may change states, before other agents, a concept which
will follow analogously to cause that comes before effect. An
influential member of a group is not necessarily interpreted
as a leader, although in some sense influence is a kind of
leadership de facto in the sense that influence is compara-
ble to the possibility to cause others to change their behavior
(dynamics).

So said then what is the difference between influence,
causation, and leadership, from the perspective of informa-
tion flow? In some interpretations then, influence or causation
over others and leadership are almost synonymous but with
important distinctions. When leadership is viewed through the
lens of reduction of uncertainty (thus measurable by causation
inference and information flow), then causation and influence
becomes a synonym for leadership. Therefore, if a leadership
action is active and observable, then causation and informa-
tion flow are central concepts that enable one to define and
empirically score the leadership. However, there are other
notions of leadership that are clearly beyond the scope of
information flow. In the main text, by using a taxonomy of
leadership, we expand beyond the typical causation and infor-
mation flow concepts®*>>37 to allow for those features which
may be missed through the narrow interpretation of entropy,
including structure, degree to which agents are informed, dis-
tribution, time and space scales, and target-drive are some of
the other aspects that we will discuss here.
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