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We present a method that we name the constrained invariant manifold method, a visualization tool to
construct stable and unstable invariant sets of a map or flow, where the invariant sets are constrained to lie on
a slow invariant manifold. The construction of stable and unstable sets constrained to an unstable slow
manifold is exemplified in a singularly perturbed model arising from a structural-mechanical system consisting
of a pendulum coupled to a viscoelastic rod. Additionally, we extend the step and stagger method #D. Sweet,
H. Nusse, and J. Yorke, Phys. Rev. Lett. 86, 2261 !2001"$ to calculate a % pseudoorbit on a chaotic saddle
constrained to the slow manifold in order to be able to compute the Lyapunov exponents of the saddle.
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I. INTRODUCTION

The dynamics of multiscale systems are of current signifi-
cant interest in fields, such as weather modeling #1$ and con-
tinuum mechanics #2$. Examples exist on a wide variety of
length scales and over a diverse range of disciplines, such as
control in biological systems with delay #3$, neural networks
#4$, reaction-diffusion and convection-diffusion systems
#5,6$, multimode lasers #7$, and engineering structures #8$. In
addition, there are experiments with multiscale structural
systems which demonstrate both low- and high-dimensional
dynamics #9$. Examples of more restricted models fall into
the generalized synchronization class #10$, where patholo-
gies of smoothness of chaotic motion on constrained mani-
folds are examined.
Such multiscale models often involve systems of partial

or partial and ordinary differential equations, and are posed
in infinite-dimensional spaces. However, it is well known
that the global dynamics of such systems are often con-
strained to a finite-dimensional subspace, and thus one would
like to obtain a finite-dimensional description of the dynam-
ics. In one common situation, there is a gap in the spectrum
of natural frequencies of the system, and the problem can be
recast as a singularly perturbed problem, and well-known
analytic methods exist to obtain a reduced dimension model
of such a system. In the regime where the high-frequency
components of the system damp out, the global dynamics of
the singularly perturbed system reside on a lower-
dimensional manifold !a slow manifold" embedded in the
full phase space. An extensive constructive theory exists for
such problems, for example, Refs. #11,12$. In addition, when
a multiscale system cannot be cast in a singular perturbation
framework, other techniques exist for obtaining a dimen-
sional reduction of multiscale dynamics #13$.
The transition to chaotic dynamics !via the period dou-

bling route or crisis, for example" has been extensively stud-
ied. Less well understood, however, is the transition from
low-dimensional chaotic to high-dimensional chaotic behav-
ior. Such a transition has been recently observed in multi-
scale systems between low-dimensional chaos that resides on
a slow manifold and high-dimensional chaos which exists in

a larger subspace containing the slow manifold #2$, and this
transition is moderated by the strength of the coupling be-
tween various time-scale components. It is thus of interest to
understand the system dynamics constrained to the slow
manifold, as well as the location of structures on the slow
manifold which have unstable dynamics transverse to the
slow manifold.
In this paper, we present a method, called the constrained

invariant manifold !CIM" method, to compute an approxima-
tion of invariant sets of a multiscale system that are restricted
to an invariant slow manifold. The method is easy to imple-
ment and should be applicable to multiscale systems exhib-
iting mixed fast and slow motion in a chaotic !or pre-chaotic"
regime for which a slow manifold approximation can be
found. The ‘‘constrained invariant sets’’ consist of the stable
and unstable manifolds of a chaotic saddle on the slow mani-
fold.
The CIM method is useful for visualizing the structure of

constrained invariant sets, but it is not possible to compute
statistical measures, such as Lyapunov exponents, directly
from the results of the CIM method. Hence, we present a
modification of the stagger and step method #14$ to approxi-
mate a chaotic saddle constrained to the slow manifold,
which allows for the possibility of computing the Lyapunov
exponents of the saddle with respect to the full phase space.
Several methods exist to approximate dynamic invariants,

be they !un"stable manifolds or chaotic saddles. Some ex-
amples include the ‘‘sprinkler’’ method #15$ for computing
!un"stable invariant manifolds, which is easy to implement
for certain systems, but is limited in scope. The stagger and
step method #14$ can find chaotic saddles in arbitrary dimen-
sion, while the proper interior maximum !PIM"-triple
method #16,17$ works well for tracking manifolds when the
dimension of the unstable manifold is one. The methods of
Krauskopf and Osinga #21,22$ can be used to ‘‘grow’’ two-
dimensional invariant manifolds in three-dimensional vector
fields. See also Ref. #19$. Box methods have also been de-
veloped which attempt to cope with uneven growth rates.
See, for example, Ref. #18$. Recently, the semihyperbolic
partial differential equation corresponding to the invariant
manifold condition has been solved by the particularly effi-
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cient fast marching methods by Guckenheimer and Vladimir-
sky #20$. However, to the best of our knowledge, no methods
exist to approximate invariant manifold structures when
these structures are constrained to a slow invariant manifold,
particularly when they are unstable with respect to the global
dynamics of the full system #23$.
The paper proceeds as follows. We describe the CIM

method in Sec. II, and review briefly the theory of slow
manifolds for singularly perturbed systems on which the
method is applicable. We then introduce a viscoelastic linear
structural/nonlinear mechanical system in Sec. III, trans-
forming the system from a coupled nonlinear ordinary and
linear partial differential equation to a singularly perturbed
system of ordinary differential equations on which we then
apply the CIM method and calculate approximations of the
constrained stable and unstable invariant sets. In Sec. IV we
briefly present an extension of the step and stagger method
of Ref. #14$, which allows one to compute a pseudoorbit on
a chaotic saddle constrained to a slow manifold, from which
we can approximate the Lyapunov exponents of the saddle
with respect to the full phase space. We finish with a discus-
sion and conclusions in the last two sections, and we present
the technical details of a transformation of the coupled me-
chanical system in the Appendix.

II. THE CIM METHOD: CALCULATING CONSTRAINED
INVARIANT SETS

When considering a multiscale system, low-dimensional
complex dynamics have been observed, where the dimension
of the dynamics is classified by, for example, the number of
Karhunen-Loève !KL" modes #24$ which are needed to carry
some specified !large" percentage of the system energy. As
some critical coupling parameter between two subsystems
with different characteristic time scales is varied, the system
may undergo a ‘‘dimensionality bifurcation,’’ which may be
defined as a sudden increase in the number of KL modes that
are required to satisfy the energy threshold. The structure of
the invariant sets on the submanifold carrying the low-
dimensional dynamics may give an indication of the mecha-
nism underlying the dimensionality bifurcation.
One particularly important class of multiscale models are

the singularly perturbed systems. Such systems consist of a
system of ordinary differential equations, in which a small
parameter or parameters #the singular parameter!s"$ multiply
some of the derivatives. Transients of such a system with a
stable equilibrium, for example, exhibit different relaxation
time scales, moving through a hierarchy of subsystems from
fast to successively slower subsystems governed by the small
parameter!s". In describing the CIM method, we will restrict
ourselves to such singularly perturbed models. Note, how-
ever, that the CIM method should be applicable to multiscale
systems for which an approximation of the slow dynamics
can be obtained, provided the system exhibits mixed fast and
slow motion. We briefly review singularly perturbed systems
and center manifold theory in Sec. II A, and develop the
CIM method in Sec. II B. The CIM method depends on two
parameters, and we discuss their choice in Sec. II C.

A. A brief review of singularly perturbed systems
and center manifold theory

Consider the singularly perturbed system

ẋ! f !x ,y ;&",

& ẏ!g!x ,y ;&", !1"

where x!Rm, y!Rn, f and g are sufficiently smooth func-
tions of their arguments, the singular parameter is & , i.e., 0
"&#1, and overdot denotes differentiation with respect to
time. When &!0, Eq. !1" reduces to an ordinary differential
equation plus the algebraic constraint g(x ,y ;0)!0. Solving
the constraint for y yields an expression of the form y
!H0(x). The graph of H0 is referred to as a slow manifold,
and we label this graph M0. A reduced dimension system is
obtained using H0,

ẋ! f „x ,H0!x ";0…, !2"

which models the slow dynamics constrained to M0.
It is possible that the slow manifold will not be globally

single valued; it may, in fact, consist of several sheets. This
reduction technique provides local information on a subre-
gion of the slow manifold. However, for the present discus-
sion, we assume that M0 is global. The reduced system of
Eq. !2" determines the dynamics constrained to the subspace
y!H0(x). The so-called fast dynamics, motion off of M0,
are obtained by changing to the stretched variable '!t/& in
Eq. !1" and then setting & to zero,

x!!0,

y!!g!x ,y ;0 ", !3"

where !(d/d' . For fixed x!x0, there is an equilibrium of
the second equation of system !3" at ye!H0(x0). The linear
stability of ye is determined by the real parts of the eigen-
values of Dyg(x ,y ;0)!x!x0 ,y!ye, which we assume have
nonzero real parts. Considering Eqs. !1" and !3", the reason
for the nomenclature ‘‘slow’’ and ‘‘fast’’ becomes apparent:
Eq. !2" evolves on an O(1) time scale while Eq. !3" evolves
on an O(1/&) time scale.
A typical approach to singular perturbation problems such

as Eq. !1" is to obtain so-called matched asymptotic solu-
tions. Such a solution is obtained by solving the slow prob-
lem !2" and fast problem !3" and matching the resulting so-
lutions at their common asymptotic boundary #25,26$. Here
we adopt a geometric viewpoint, and consider the fast and
slow invariant subspaces in their entirety. The above discus-
sion applies only in the case &!0, but we now consider the
situation when & is nonzero but small.
When & is small, based on an implicit function theorem

argument, one expects the slow invariant manifold to persist.
Indeed, when 0"&#1, a slow invariant manifold persists if
M0 is a normally hyperbolic invariant manifold #27$. We
label this manifold M& , and it is given by the graph of a
function which we label as y!H&(x). Using the invariance
properties of Eq. !1", one obtains an asymptotic expansion of
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the form H&(x))H0(x)$&H1(x)$&2H2(x)$••• , which
converges as &→0. The leading order term H0(x) in the
expansion of H&(x) is simply the term H0(x) introduced in
the discussion above for the case &!0. For more back-
ground on geometric singular perturbation theory and slow
manifolds, including how H& is calculated, see, for example,
Refs. #11,12,28,29$.
For the purposes of this paper, we consider a system of

form !1" with the following assumptions. First, assume the
real parts of the eigenvalues of Dyg(x ,y ;0)!x!x0 ,y!ye are
negative for all x0, so that M0 is linearly stable. We also
assume that, for & sufficiently small, the only attractor in the
full phase space lies on M& . Additionally, assume that M0
is single valued, and therefore, global. Under these hypoth-
eses, Eq. !2" will model the dynamics in the asymptotic limit
&→0. Then, for 0"&#1 and sufficiently small, M& will
be globally attracting, so that after any fast transients have
died out, orbits will lie exponentially close to the slow mani-
fold M& . We also assume that the dimension of the slow
subspace is m*3, and that a chaotic attractor !or saddle"
exists on M& .
As & is increased M& may lose asymptotic stability, so

that global dynamics of the system are no longer carried on
M& , and nontrivial fast motions occur. In the transition
from purely slow motion to mixed fast and slow motion, it is
useful to understand the structure of dynamic invariants on
M& . For convenience, we define the M&-relative invariant
to be the set of points on M& which remain on M& under
action of the flow. Note that for & sufficiently small, the
M&-relative invariant is just M& itself, but as & increases,
the M&-relative invariant becomes a more complex subset
of M& .

B. Description of the CIM method

We now present a method to approximate the
M&-relative invariants. We start with a singularly perturbed
system of form !1". For & sufficiently small, there is a slow
manifold M& , which we assume to be given by the graph
y!H&(x) over the slow variables x in some region D!Rm,
chosen to contain the slow dynamics of interest. We also
assume that system parameters are chosen such that the dy-
namics of the full system are characterized by either a cha-
otic attractor or chaotic saddle on M& . We also suppose that
& is chosen large enough that M& is not asymptotically
stable, in the sense that there exist initial conditions nearM&
which do not converge asymptotically to M& .
The idea of the method is that points in the stable

M&-relative invariant will by definition never leave M& .
An approximation of this set is then obtained by finding
those points on M& which remain ‘‘near’’M& for a ‘‘speci-
fied length’’ of time. We discuss the issue of what we mean
by near and specified length in the following section. Like-
wise an approximation of the unstable M&-relative invariant
is obtained by finding points on M& remaining near M& for
a specified length of time in the time-reversed system. We
outline the CIM method and follow with the details of the
method below.

!1" Construct a mesh of initial values si on an approxima-
tion to the slow manifold M& .
!2" Evolve each initial value si forward !backward" under

Eq. !1" to some fixed time T$(%T%).
!3" If the solution si(t) remains within some +$ (+%) of

the slow manifold approximation for all time t!#0,T$$ (t
!#%T%,0$), then si(0)!M &

S #si(0)!M &
U$ , where M &

S

(M &
U) is defined to be the stable !unstable" M&-relative

invariant approximation.
The CIM method can also easily be applied to maps by

replacing time T& with iterate N& above.
We define a given initial condition on M& to be an

+T-resolved point if it remains within + of M& for time T
under action of the flow. To be precise, let s be an initial
condition chosen on the approximated slow manifold M& .
At each time step th!t0$h,t of the integration, we mea-
sure the distance

d(!-
i!1

n

!yh ,i%Hh ,i"
2,

of the fast variables in the numerically integrated solution
.xh ,yh/(.x(t!th),y(t!th)/ from the point Hh(H&(xh)
on the slow manifold approximation, computed at the slow
variables xh of the integrated solution, where we recall that n
is the number of fast components in Eq. !1". If for all time
steps up to and including T, d"+ , then s is an +T-resolved
point.
Step 1. For each component xi , i!1, . . . ,m of the slow

variable x, choose xi ,L and xi ,U such that for all t*0, xi ,L
"xi"xi ,U . Then let D!Rm be the box defined by D
(#x1,L ,x1,U$'#x2,L ,x2,U$'•••'#xm ,L ,xm ,U$ , and choose
a rectangular mesh of Pm values,

S( " x!D!xi!xi ,L$,xi j , j!0, . . . ,P%1,

i!1, . . . ,m , ,xi(
xi ,U%xi ,L
P%1 # .

!The mesh may also be defined in other ways, such as from
a random distribution." A mesh on an approximation of the
slow manifold is then given by Ŝ(.(x ,y)!x!S ,y
!H&(x)/.
Step 2. For each initial condition s! Ŝ , system !1" is in-

tegrated with a stiff solver such as a Gear method, to time
T&.
Step 3. Surround the domain D by an + neighborhood N,

where distance is taken in the Euclidean norm. The size of
the + neighborhood +$ (+%) is chosen small enough so that
most initial conditions leave N for t!#0,T$$ , but not
smaller than O(&), the size of the singular perturbation pa-
rameter !see also the remark below". If s is an +T-resolved
point for (+$ ,T$), then s!M &

S . Likewise, if s is an
+T-resolved point for (+% ,T%), then s!M &

U .
Remark. There is another, more efficient way to compute

the points si!M &
U . For any si!M &

S , the image of si under
the time T$ flow map of Eq. !1", pT$((xT$,yT$), approxi-
mates the unstable invariant set M &

U , since by definition the
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solution with pT$ as an initial condition remains near M&

for t!#%T$,0$ . Thus, only points in M &
S need be com-

puted explicitly. However, there is one disadvantage to this
approach: It is not practical to examine a subregion of M &

U ,
since the points pT$ will tend to spread out across the entire
unstable invariant set.
Some observations of the above method are important to

note.
!1" To obtain a higher level of detail of the structure of the

!un"stable M& invariants, one may simply impose a finer
mesh on some subregion of D of interest and reapply the
CIM method.
!2" Under the assumptions stated above, and for & suffi-

ciently small, the global attractor of the system is contained
in a trapping region which contains M& . Thus, in the time-
reversed system, orbits will tend to move away from M&
and off to infinity. When considering the time-reversed map
to approximate the unstable M&-relative invariant, it is
therefore necessary to set +%(+$ , and it may also be nec-
essary to decrease the required residence time T% as well.

C. Choosing "Á and TÁ

The choice of T& and +& must be made in a problem-
dependent fashion. The diameter of the box surrounding D
should be small enough so that orbits of the system will
escape the box. On the other hand, if the diameter is taken to
be too small, then most initial conditions will quickly leave
the box, and the resulting approximation will be poor. The
smallest value for T& which sufficiently distinguishes be-
tween points that approximate the constrained stable set from
those that leave the slow manifold should be used. These
statements describe desirable properties that the parameters
will satisfy, but do not indicate how to choose the method
parameters. We now present an approach to choosing +& and
T&.
When choosing +& it is useful to examine a time series of

the ‘‘bursting variable’’ , i!!Zi%H(Zi)!, where Z denotes
the fast variables and H is the slow manifold approximation,
and which measures the distance of the fast components
from the slow manifold. As a general guide, we found that
choosing +& to be initially around !5–10"% of the maximum
amplitude of the fast bursts works well as a starting guess. It
is advisable to use a somewhat coarse initial mesh when fine
tuning the method parameters, and then to refine the mesh to
increase the resolution of the approximation.
Figure 1 shows the results of applying the CIM method to

a coupled structural and mechanical system, to be introduced
in the following section. If the resulting CIM approximation
of the invariant sets contains localized gaps of missing infor-
mation #as seen in Fig. 1!a"$, then increasing +& fills in the
missing information. If on the other hand, the invariant set
appears to be globally sparse #as seen in Figs. 1!g–i"$, then
decreasing the value of T& reduces the sparseness of the set.
One could also refine the mesh in order to obtain an im-
provement in the approximation, however, this will add sub-
stantially to the computation time. If however the resulting
approximations consist of a number of simply connected
components, with no apparent fractal structure #as seen in

Figs. 1!a–c"$, then T& should be increased.
We found that the best method for tuning the method

parameters was to first set T& to a relatively small value and
then set +& as described above to obtain a set that appears to
be reasonably filled out. T& may then be increased until the
finer details of the set are observed. Additionally, the mesh
can be refined to fill in finer details, or a submesh can be
employed on a subregion of interest. Note also that when
refining the mesh, it may be possible to decrease the value of
T&, which will make the computations somewhat more eco-
nomical. We also note here that the CIM method is simple to
implement on a parallel or distributed computing platform,
and this greatly speeds the computations. See Sec. VI for
further comments.
There are a number of challenges to obtaining a rigorous

error analysis of the approximated constrained invariant set.
In addition to roundoff error, there is an error introduced in
the approximation of the slow manifold, as well as an error
that depends on the coarseness of the mesh used. A backward
error analysis is the subject of current investigation.

III. EXAMPLE: COUPLED VISCOELASTIC
STRUCTURAL-MECHANICAL SYSTEM

In order to demonstrate the CIM method, we consider a
specific mechanical system consisting of a vertically posi-
tioned viscoelastic linear rod of density 0r , with cross sec-
tion Ar , and length Lr , with a pendulum of mass Mp and
arm length Lp coupled at the bottom of the rod, and where
the rod is forced from the top harmonically with frequency
1 and magnitude 2 #2$. The rod obeys the Kelvin-Voigt
stress-strain relation #30$ and Er and Cr denote the modulus
of elasticity and the viscosity coefficient, while Cp is the
coefficient of viscosity !per unit length" of the pendulum and
g is the gravitational constant of acceleration. The pendulum
is restricted to a plane, and rotational motion is possible. The
system is modeled by the following equations:

MpLp3̈$Mp#g% ẍA% üB$sin!3"$CpLp3̇!0,

Ar0rü!x ,t "%ArEru"!x ,t "%ArCru̇"!x ,t "%Ar0r!g% ẍA"!0,
!4"

where ˙(4/4t , and !(4/4x , with boundary conditions

u!x!0,t "!0, ArEr
4u
4x !x!Lr!ArEr

4uB
4x !Tpcos!3",

and where

Tp!MpLp3̇2$Mp!g% ẍA% üB"cos!3"

denotes the tension acting along the rigid arm of the pendu-
lum. The variable u(x ,t) denotes the displacement field of
the uncoupled rod with respect to the undeformed configu-
ration, relative to the point A, while uB denotes the relative
position of the coupling end B of the rod with respect to
point A. See Fig. 2 for a schematic of the rod and pendulum
system.
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Equation !4" is nondimensionalized by the following vari-
able rescalings:

5!
x
Lr
, '!6pt ,

XA!
xA
Lp
, U!

u
Lp
, UB!

uB
Lp
,

and parameter rescalings

&!
6p

61
, &m!

61
6m

!
1

2m%1 , 7!
Mp

Ar0rLr
,

8p!
1
26p

Cp

Mp
, 8r!

1
261

92Cr

4Lr
20r

,

where

6p!! g
Lp
, 6m!

9!2m%1 "
Lr

!Er

0r
, m!1,2, . . . ,:

FIG. 1. The results of applying the CIM method to the structural-mechanical system presented in Sec. III, showing the effect the choice
of method parameters +$ and T$ has on the approximation of the resulting stable constrained invariant set. The columns correspond from
left to right to +$!.0.01,0.05,0.1/ and the rows correspond from top to bottom to T$!.2.0,4.0,6.0/.
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are the natural frequency of the uncoupled pendulum and the
spectrum of natural frequencies of the uncoupled flexible
rod, respectively, while 8p and 8r denote their damping fac-
tors.
The stable and unstable static equilibrium configurations

of the coupled rod and pendulum system are given by
(3c ,Û) and (3S&

,Û), where

3c!0, 3S&
!&9 ,

Û!
&292

2 #2!1$7"5%52$ .

The normalized equations are thus

3̈$#1%V̈B!'"%ẌA!'"$sin!3"$28p3̇!0,

&292V̈!5 ,'"%V"!5 ,'"%88r&V̇"!5 ,'"!%&292ẌA!'",

V!5!0,'"!0, V!!5!1,'"!%&2792#1%T cos!3"$ ,
!5"

where

V!5 ,'"!U!5 ,'"%Û!5", 0;5;1, %:"'"$: ,

and we note that we redefine ˙(4/4' , and !!4/45 for the
remainder of the paper.
In carrying out our analysis, we will consider a reduction

of the system !5". This reduction is obtained by performing a
modal expansion of the rod equation, second equation of !5",
where the displacement V is expanded as V(5 ,')
!-m!1

: <m(')=m(5). This results in an infinite system of
coupled oscillators,

3̈!%$1$-
j!1

:

!%1 " j$1<̈ j%ẌA!'"%sin!3"%28p3̇ ,
Lm!3"<̈ j!%

<m
4<2<m

2 $28r
<̇m
&&m

2

%!%1 "m$127#3̇2cos!3"%sin2!3"$

%$4&m

9
$!%1 "m$127 cos2!3"% ẌA!'", !6"

equivalent to Eq. !4", where Lm(3) is the infinite linear op-
erator

Lm!3"(-
j!1

:

#%mj$!%1 "m$ j27 cos2!3"$ .

See the Appendix for the details of this transformation.
Finally, consider the finite set of ordinary differential

equations obtained from Eq. !6" by truncating to the first N
rod modes and applying the additional rescalings .>1 ,>2/
!.3 , 3̇/, and .&2&m

2 Z2m%1 ,&&m
2 Z2m/!.<m ,<̇m/, obtain-

ing

>̇1!>2 ,

>̇2!%$1%-
j!1

N

!%1 " j$1 f N!> ,Z "%2>4%
'sin!>1"$28p>2 ,

>̇3!%291>4 ,

>̇4!291>3 ,

&Ż2m%1!Z2m ,

&&m
2 Ż2m! f N!> ,Z ",

m!1,2, . . . ,N , !7"

where

f N!> ,Z "!Lm ,N
%1 !>1"" %

1
4 Z2m%1$28rZ2m

%!%1 "m$127#>2
2cos!>1"%sin2!>1"$

%$4&m

9
$!%1 "m$127 cos2!>1"%2>4#

and Lm ,N
%1 (3) is the inverse of the N'N truncation of opera-

tor Lm(3). Note that we have changed to an autonomous
system by introducing the cyclic variables >3 and >4 to
account for the periodic forcing, which we recall has period

θ

x

Lp

pM

B

A
A

rL

0

Bu

x+u x

Forcing

FIG. 2. A schematic of the rod and pendulum system. The ex-
tensible viscoelastic linear rod is sufficiently stiff relative to the
pendulum that it evolves on a fast time scale, while pendulum mo-
tion is slow. The coupled system is driven from the top with a
periodic forcing function. The rod moves only in the vertical direc-
tion, and the pendulum is planar and is free to undergo rotational
motion.
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1 . However, only one additional variable is realized, due to
the relation >3$>4!1. For this paper, we consider the
truncated system obtained by taking N!1. For the param-
eter regimes we consider here, we also considered system !7"
with N!2 and N!10, and found qualitatively similar re-
sults.
The primary parameter governing the coupling between

the rod and pendulum is the ratio of the natural frequency of
the pendulum to the frequency of the first rod mode, &
(6p /61. In the limit 61→: , the rod is perfectly rigid, &
→0, and the system reduces to a forced and damped pendu-
lum. For 0"&#1 sufficiently small, system motion is con-
strained to a slow manifold, and the !fast" linear rod modes
are slaved to the slow pendulum motion #12$. For nonzero 2
!the amplitude of the periodic forcing" the slow manifold is a
nonstationary !periodically oscillating" two-dimensional sur-
face.
We note that for 0"&#1, Eq. !7" is a singularly per-

turbed system of the form of Eq. !1", and there exists a slow
manifold M& for Eq. !7". The pendulum variables !plus the
periodic forcing" are the slow variables, while the rod vari-
ables are the fast variables. Using the invariance properties
of the vector field, we obtained an analytic approximation of
the slow manifold of Eq. !7" to O(&2): Z!H&(>)
!H0(>)$&H1(>)$&2H2(>). Due to the complexity of
the vector field and the fact that we consider an O(&2) ap-
proximation, we used MATHEMATICA #31$ to compute the ex-
pressions for the components Hi .
By strobing Eq. !7" at the period of the drive, one obtains

the map

G0!> ,Z "(=0$T!> ,Z ",

where = t(> ,Z) is the flow of Eq. !7", T is the period of the
cyclic variable >4, and 0!#0,29$ is the phase of >4. We
then apply the CIM method developed in Sec. II to this map.
Under action of the map, the slow manifold M& , which has
codimension 2, corresponds to a family of two-dimensional
invariant surfaces S& ,0 of G0 .

IV. MODEL RESULTS

In this section, we examine the transition of the rod and
pendulum model from low-to high-dimensional chaos, as the
coupling parameter & is increased. We first examine how the
Lyapunov values change as a function of & , and find a criti-
cal value at which a second positive Lyapunov exponent de-
velops. We then apply the CIM method to the coupled rod
and pendulum model !7" with N!1, and show that the struc-
ture of the constrained invariant sets develops for & well
below the critical value at which the second positive
Lyapunov exponent appears. Unless otherwise noted, simu-
lation parameters are as follows: &!0.05, 7!0.5, 8r!8p
!0.01, 2!2.153 367, and 1!2.0.
We first consider the effect of increasing & on the

Lyapunov exponents. In the case where 0"&#1 is suffi-
ciently small that S& ,0 is invariant under the action of the
map G0 . This situation corresponds to global slow motion in
the associated flow, hence the global attractor lies on S& ,0 ,

and a solution evolved from any initial condition x0 not on
S& ,0 , converges asymptotically to S& ,0 under action of G0
and remains there. A reduced dynamic description of the
model is obtained in this case by considering system !7" with
the change of variable Z!H&(>). When the amplitude 2 of
the periodic forcing is large enough, the system is chaotic
and motion is still constrained to the slow manifold, and
there is one positive Lyapunov exponent. However, as & is
increased sufficiently, a second positive Lyapunov exponent
develops at &)0.142. Thus, it is clear that dynamic modes
transverse to the slow manifold are excited. See Figs. 3 and
4 for a plot of the Lyapunov exponents as a function of the
forcing & . Note that a fixed value for 2 is chosen, and there
are & values for which stable periodic orbits exist, explain-
ing the window of all-negative Lyapunov values.
We next directly examine the effect of varying & on the

form of the solutions of Eq. !7", and in particular, demon-
strate how the solution transitions from motion on the slow
manifold to higher-dimensional motion about the slow mani-
fold. In Figs. 5!a–d", we plot the difference between the
computed solution (>̃ ,Z̃) of the ordinary differential equa-
tion !7" and the slow manifold approximation „>̃ ,H&(>̃)…,
as a function of time. In Fig. 5!a", &!0.001, and the initial
condition is chosen off of the slow manifold. After a brief
transient motion, the solution converges to the slow mani-
fold, indicating that rod motion is slaved to the !slow" pen-
dulum motion. Again, 2 is chosen large enough that system
motion is chaotic, but the chaotic attractor lies on S& ,0 .
As & is increased, system motion is no longer constrained

to the slow manifold, as seen in Fig. 5!b", where &!0.05. In
this case, an initial condition located far from the slow mani-
fold still approaches the slow manifold. However, thereafter

FIG. 3. !Color online" Five finite time Lyapunov exponents of
Eq. !7" as a function of & . Note that the most negative Lyapunov
exponent is not shown. The second positive Lyapunov exponent
!blue" appears near &!0.142, well after the onset of bursting. The
brief window of all-negative Lyapunov exponents occur due to the
appearance and disappearance of stable periodic orbits.
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the orbit oscillates in an O(1) neighborhood aboutM& . The
rod-displacement dynamics exhibit a bursting character,
which is illustrated in greater detail in Fig. 5!c". A burst
event develops as a sudden, large-amplitude excursion away
from the slow manifold, followed by a rapid relaxation os-
cillation back on to the slow manifold. Physically, a burst is
characterized as the sudden onset of a large-amplitude rapid
vibration of the rod, superimposed over the slow rod motion
due to its slaving to the pendulum, which then quickly damps
out. Note that this is well below the parameter &)0.142 at
which a second positive Lyapunov exponent appears.
Though nontrivial transverse dynamics have developed, sta-
tistically, the slow dynamics dominate the fast dynamics.
We apply the CIM method for &!0.05, in which bursting

of O(1) amplitude is observed #see Figs. 5!b,c"$. As noted
above, the global attractor of the system is no longer con-

fined to S& ,0 . Instead, there exist solutions with initial con-
ditions near S& ,0 which do not remain on S& ,0 , but which
wander in a neighborhood of S& ,0 . For the remainder of this
section, without loss of generality, we consider the phase 0
!0. We set the threshold +$ of the method to 0.1 and T$

!5 1 . Thus, we require orbits to remain within 0.1 of the
slow manifold for five iterates of G0. All other parameters
are as stated in the first paragraph of this section.
In Fig. 6!a", we show the computed approximations of the

stable and unstable sets of S& ,0 in green and red, respectively,
superimposed over the approximation of the slow manifold,
in blue. Analogously with the definitions M &

S and M &
U ,

which we recall are the M&-relative invariant stable and
unstable sets, we call the stable and unstable approximations
S& ,0
S and S& ,0

U , respectively. Additionally, we show the ap-
proximation of the M& invariants projected onto the
(>1 ,>2) plane. Note the fractallike structure of the sets.
The stable set S& ,0

S !green" approximates the set of points on
S& ,0 which remain on S& ,0 under action of the map G0, while
the unstable set S& ,0

U !red" approximates the set of points
which remain on S& ,0 under action of the map G0

%1. Using
S& ,0
S as initial conditions for Eq. !7" and integrating to 51 ,
we find that the resulting orbits remain within +!0.1 of the
!time dependent" slow manifold M& . Thus, S& ,0

S !M &
S . By

extension, S& ,0
S !M &

S for all 0!(0,29). Additionally, more
detail on the structure of the invariant set can be obtained by
simply applying the CIM method to a mesh on a subregion
of the domain D. See Fig. 7.
The bursts do not appear to be correlated in time. How-

ever, we have spatially correlated the onset of a burst to a
localized ‘‘escape’’ region of the slow manifold, correspond-
ing to the region where the pendulum is situated near vertical
(>1mod 29)0) and the pendulum velocity >2 is near a
local extremum, where solutions with initial conditions in
this region immediately leave the slow manifold. Note that
this region is located away from the approximated con-
strained invariant sets approximated with the CIM method.
Physically this region corresponds to a large momentum
transfer from the pendulum to the rod. Figure 5!d" shows the
correlation between bursts and the pendulum position/
velocity. We found that, for the parameters chosen, a burst is
observed when !>2!()3.
At a critical value &c)0.142, another positive Lyapunov

exponent is born, and high-dimensional chaos develops. For
values of & slightly above &c , the system still bursts, but the
bursts have large amplitude and lose the relaxation character
observed when &"&c . However, the approximated con-
strained invariant sets are qualitatively the same as in the
case &!0.05. We speculate that the structures that give rise
to the instability transverse to the slow manifold do not in-
tersect the constrained invariant set. In fact, in the following
section, we will show that the chaotic saddle associated with
the constrained invariant set has only one positive Lyapunov
exponent, even for &(&c .
As & increases further toward the value &!1/2, where

the rod and pendulum have a 2:1 resonance, it might be
expected that the multiscale character of the system would be
lost. However, a time series indicates a difference in scales,

(a)

(b)

FIG. 4. !Color online" The bifurcation diagram showing the fast
rod displacement vs & , and the two finite time positive Lyapunov
exponents of Eq. !7", on the same interval of & values.
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albeit, with the ‘‘slow’’ variation having a much larger am-
plitude than for the values of & already considered. Applying
the CIM method with +$!400, it is possible to obtain an
approximation of the ‘‘stable set.’’ See Fig. 8, which also
shows a typical time series in this parameter regime. Though
the amplitude of the solution is much larger than away from
resonance, the difference in scales, as exhibited in the occa-
sional large-amplitude burst, is apparent. In this regime,
points in M &

S #Fig. 8!b"$ exhibit only ‘‘small-amplitude’’
bursting for a long time, where here small amplitude is rela-
tive to the large-amplitude bursts pictured in Fig. 8. Clearly
the approximation shown in Fig. 8!b" will have a large error
bound, due to the size of & , and the approximation will not
exhibit good quantitative agreement with the underlying in-
variant set. However, we expect the approximation to give a
good qualitative approximation.

In addition to the various forms of chaotic bursting de-
scribed above, fast periodic bursting is also observed. For
example, when &!0.05 but 2 is reduced to 1.745, a long
chaotic transient is observed, which eventually develops into
a fast periodic orbit, distinguished by the fact that the peri-
odic orbit lies off the slow manifold, and is characterized by
a rapid and repeating high-frequency vibration of the rod.
Figure 9 shows the fast rod motion representing three periods
of such a solution. The role the fast periodic orbits play in
organizing the global bursting dynamics !if any" is not yet
understood, but is the subject of an ongoing investigation.
We additionally ran simulations for several other values

of the parameters. In particular, we experimented with vary-
ing the mass-ratio term 7 , the coupling strength & !while
maintaining it in the small parameter regime", the rod and
pendulum damping terms 8r and 8p , and the amplitude 2 of

FIG. 5. !Color" Figures indicate the fast motion of the rod. Each figure shows a part of the time series resulting from the integration of
Eq. !7". The difference between the first fast component Z1 and its projection H&(>) onto the slow manifold is plotted. In !a", &
!0.001, and the system exhibits only slow motion, after the fast transient has died out. In !b", &!0.05, and after an initial fast transient,
a bursting behavior is observed. The boxed region is shown in greater detail in !c". !d" Also corresponding to the boxed region of !b", shows
the correlation between fast bursting and the pendulum position >1 and velocity >2, where >1 is plotted in green and >2 is plotted in blue.
Note that bursts are observed where >2 has a local extremum with !>2!()3, and >1mod 29 !0.

CONSTRUCTING CONSTRAINED INVARIANT SETS IN . . . PHYSICAL REVIEW E 68, 056210 !2003"

056210-9



the periodic forcing. In all cases in which we observed burst-
ing off of the slow manifold, the resulting approximation
generated with the CIM method yielded qualitatively similar
results to those presented here, and we do not display their
results !but see Fig. 1, showing the projected results of ap-
plying the CIM method where the model parameters &
!0.05, 7!0.25, 8r!0.02, 8p!0.005, and 2!2.5 were
used".

V. COMPUTING CHAOTIC SADDLES: EXTENSION
OF STEP STAGGER

The step and stagger method #14$ provides a highly accu-
rate way to compute chaotic saddles of maps or flows of

arbitrary dimension. Here we modify the step and stagger
method to compute the chaotic saddle constrained to the
slow manifold of the rod and pendulum system !7".
The CIM method of Sec. II allowed us to compute an

approximation of the stable and unstable manifolds of the
chaotic saddle, and an approximation of the saddle would
therefore be obtained by considering the intersection of the
stable and unstable M&-invariant approximations. However,
it is not possible to compute the Lyapunov exponents of the
chaotic saddle using the CIM method, since it calculates
points that approximate the chaotic saddle independently of
one another, while the step and stagger method computes an
approximation of an orbit on the chaotic saddle.
The step and stagger method works by computing a %

FIG. 6. !Color" The computed stable invariant set S& ,0
S !green" and unstable invariant set S& ,0

U !red" on the slow manifold !blue". !b" The
same invariant sets projected onto the (>1 ,>2) plane. The boxed region is shown in Fig. 7. The parameters are &!0.05, 2!2.133 67,
8r!8p!0.01, and 1!2.
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pseudotrajectory on a chaotic saddle. First, the chaotic saddle
is surrounded by a transient region R, containing no attractor.
The pseudoorbit is then computed by finding points inside R
that remain in R for a set number of iterates. If a point p
escapes from R under action of the flow !or map", a pertur-
bation p$% is chosen, for % small, such that p$% remains in
R for the required number of iterates. The perturbation % is
chosen from what is called an exponential stagger distribu-
tion. Briefly, the distribution is defined as follows: Let %
(0 and let a be such that 10%a!% . Pull s from a uniform
distribution between a and 15 !assuming computations are
done to 15 digits of precision". Finally, choose a random unit
direction vector u!Rd from a uniform distribution on the set
of unit vectors and define r!10%su . For the details of the
step and stagger algorithm, see Ref. #14$.
The implementation of the step and stagger method for

the rod and pendulum problem !7" is almost the same as
described in Ref. #14$, but with the following differences:
We let the % neighborhood of the slow manifold introduced
above be the transient region R defined in Ref. #14$. Region
R is not actually a transient region, since orbits continually
reenter R. However, we simply modify the method to look
for the first escape time from R. At each iteration of the step
and stagger method

.xn$1 ,yn$1/!" F„xn ,H&!xn"… !step"
F„xn$r ,H&!xn$r "… !stagger",

!8"

we project the iterate yn$1 back on to the slow manifold, so
that the resulting step-stagger trajectory lies near the actual
slow manifold M& . Additionally, since the solution is con-
strained to lie on M& , the small parameter % of the step and
stagger routine cannot be chosen to be less than the order of
the slow manifold approximation, which is of O(&2) in the
coupled rod and pendulum example presented above.

A. Applying the modified step and stagger algorithm
to the rod and pendulum system

We apply the modified step and stagger algorithm to ap-
proximate the chaotic saddle associated with the constrained
invariant sets computed in Sec. IV. The model parameters,
other than & , are as stated in the first paragraph of Sec. IV.
Figure 10 shows the results of a calculation of the stable and
unstable invariant sets calculated with the CIM method,

FIG. 7. !Color online" A detailed portion of the approximation
of the stable invariant set S& ,0

S of system !7" for 0.4;>1;2 and
3;>2;4.2 #the boxed region of Fig. 6!a"$. The level of detail was
increased by using a finer mesh. The parameters are the same as in
Fig. 6.

Ψ
1

2
Ψ

(a)

(b)

FIG. 8. !Color online" The figure on the top shows part of a time
series of the fast motion of the rod in the case &!0.5, where the
pendulum and rod are in resonance. Note there are mixed small-
and large-amplitude bursts, but that there is a total loss of the
relaxation-oscillation character of the bursting. The figure on the
bottom shows part of the ‘‘stable set’’ calculated by the CIM
method, indicating that despite the fact the system is at the edge of
the singular perturbation regime, a definite structure can still be
obtained using the method. The method parameter +$ is 400.
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combined with the calculation of the chaotic saddle using our
modification of the step and stagger method. In the figure,
&!0.05.
We computed the Lyapunov exponents of the chaotic

saddle for the rod and pendulum system with &!0.05, using
the modified step and stagger algorithm, and found one posi-
tive Lyapunov exponent ?u!2.06&0.01. Increasing & to
0.148, where there are two positive Lyapunov exponents of
the full solution, we still found that the chaotic saddle has
only one positive Lyapunov exponent ?u)1.5. This implies
that the high-dimensional dynamics observed in the model
does not arise from the chaotic saddle. This result is not
surprising, given that the transverse unstable dynamics were
found in Sec. IV to be localized away from the constrained
invariant sets. We surmise that the chaotic saddle #which is a
chaotic attractor in the constrained model, Eq. !2"$ organizes
the low-dimensional chaotic dynamics, while the emergent
higher-dimensional dynamical behavior arises due to some
other structure transverse to the slow manifold. The location
of structure responsible for the transverse dynamics is the
subject of continuing study.

VI. DISCUSSION

We present a brief discussion on an alternate viewpoint
that might be taken to construct constrained stable and un-
stable invariant sets, as well as some difficulties that may
arise with such an approach.
The traditional approach to constructing stable and un-

stable manifolds of a periodic orbit is based on the stable
manifold theorem. One might argue that stable and unstable
manifolds of some high-period invariant orbit constrained to
the slow manifold could be found, which would approximate
the stable and unstable manifolds of an invariant set con-
strained to the slow manifold. This in turn would approxi-

mate the closure of all such embedded periodic orbits, and
their stable and unstable manifolds. However, there are dif-
ficulties with this approach.
We describe the problem in terms of the stroboscopic map

G0 of the coupled rod and pendulum problem over one pe-
riod of the drive, and consider a high-period periodic orbit z
constrained to the slow manifold. One would calculate the
local unstable space Eu(z) as a hyperplane through z,
spanned by the unstable eigenvectors vu ,1 ,vu ,2 , . . . ,vu ,m ,
corresponding to eigenvalues ?u ,1*?u ,2*•••*?u ,m(0 of
the Jacobian matrix DG0!z which, by the stable manifold
theorem, can be continued from a local manifold to a global
unstable manifold Wu(z). However, there are significant and
now well-known computational difficulties due to uneven
growth rates of an initial sphere in Eu(z), due to unbalanced
instabilities in the typical case that ?u ,i(?u , j(0.
For the problem considered, and for many high-

dimensional problems, the unstable manifold of a periodic
orbit will often be a two or greater dimensional surface trans-
verse to the invariant slow manifold. In such a case, once the
spanning vectors .vu ,1 ,vu ,2/ of Eu(z) are found, it is neces-
sary to project onto the tangent space DH&!> of the graph of
the slow manifold, Z!H&(>). However, there are signifi-
cant computational challenges to constraining the growth of
such a one-dimensional subunstable manifold to the slow
manifold. Likewise, locating a large number of periodic or-
bits within the slow manifold would also be computationally
challenging. Construction of the stable manifold embedded
in the slow manifold exhibits similar challenges. Thus, we
hope that our method will be useful to explore the still little
understood transition from low- to high-dimensional chaotic
dynamics.

VII. CONCLUSION

The transition from simple dynamics, such as periodic
behavior, to chaotic dynamics has been well studied, and a
great deal of theory has been developed. Much less is known
about the transition from low-dimensional to high-
dimensional chaos. Such an understanding is important to
provide a deeper understanding of systems such as the
coupled viscoelastic structural-mechanical system we pre-
sented in Sec. III, which can exhibit startling transitions from
low-dimensional chaotic dynamics, consisting of slow cha-
otic pendulum motion, with rod motion slaved to the pendu-
lum, to higher-dimensional behavior, where fast rod modes
are excited independent of the pendulum. A principal benefit
of the tool we have introduced is that since it is possible to
isolate the slow invariant sets, regions on the slow manifold
with transverse instabilities may be located. Once these re-
gions are known, it becomes possible to predict transitions
from slaved to nonslaved !low- to high-dimensional" dynam-
ics. In addition we are working on finding the specific struc-
tures on the slow manifold which have transverse instabili-
ties. If such structures can be understood, it might be hoped
that the problem can be recast in terms of a normal form,
thus providing a powerful theoretical underpinning to ex-
plain the chaotic to hyperchaotic transitions often seen in
diverse physical systems.

FIG. 9. !Color online" The rod displacement from slow motion
!as described in the caption to Fig. 5" showing three periods of a
burst observed in system !7" for 2!1.745, &!0.05, and all other
parameters as enumerated in the text.
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Finally, we remark that the algorithm is easy to parallel-
ize, since the method relies on ‘‘painting’’ the phase space
with a grid of points, and each such point is computationally
independent of the others. We implemented the CIM method
in FORTRAN90, using the MPICH !message passing interface
for connected hardwaare" #32$ implementation of the Mes-
sage Passing Interface specification #33$ on a Beowulf clus-

ter consisting of 32 AMD Athlon processors organized into
16 nodes, of which typically 24 processors were used. Typi-
cal runs were of the order of minutes for a parallel run versus
hours for a serial implementation and only approximately 20
additional lines of code were necessary to implement the
parallel version of the code. In addition, we found that T$

can be quite small and the resulting image is still quite de-

FIG. 10. !Color" The upper figure shows the result of the modified step and stagger calculation of system !7", consisting of a %
pseudoorbit of about 96 000 points, projected onto the slow variables (>1 ,>2). The lower figure shows a zoom of the same data, along with
pieces of the stable and unstable manifold of the saddle, computed with the CIM method. All parameters are as stated in the text.
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tailed. For example, in Fig. 6, we took T$!61 !where we
recall that 1 is the period of the drive >4) and so the status
!reject or keep" of each trial initial condition could be
quickly computed. Taken together, this implies that one can
adjust parameters !be they system or algorithm parameters"
and almost immediately determine the effect on the resulting
approximations. In addition, subregions of the phase space
can be examined in more detail simply by employing a finer
mesh. Moreover, in contrast to many other approaches, our
method is global and independent of manifold dimension,
making it applicable to a wide variety of problems.
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APPENDIX: TRANSFORMATION OF THE COUPLED
ROD-PENDULUM SYSTEM TO A SYSTEM

OF COUPLED OSCILLATORS

We present the transformation of the coupled system !5"
to a system of coupled oscillators. The treatment closely fol-
lows Appendix A of Ref. #2$, and we note that we have
introduced here corrections to expressions !47", !51", !54",
and !57b" of that paper.
We introduce the coupling present in the boundary condi-

tions into the partial differential equation !PDE". The dis-
placement V admits the representation

V!5 ,'"!Vh!5 ,'"$v!5 ,'", !A1"

where Vh is the solution of the boundary value problem with
homogeneous boundary conditions,

&292V̈h!5 ,'"%Vh"!5 ,'"%28r&V̇h"!5 ,'"!%&292ẌA!'",

Vh!5!0,'"!0, Vh!!5!1,'"!0. !A2"

The displacement v ,

v!5 ,'"!%&2792#1%T cos!3"$

is unique and satisfies the boundary conditions. The shape
functions and the natural frequencies of the homogeneous
boundary value problem associated with Eq. !A2" are

=m!5"!sin& !2m%1 "9
2 5 ' , 6̂m

2 !
1

&2&m
2 ,

&m(
1

2m%1 .

The displacements in Eq. !A1" are expanded as

V!5 ,'"!-
m!1

:

<m!'"=m!5",

Vh!5 ,'"!-
m!1

:

@m!'"=m!5",

v!5 ,'"!-
m!1

:

Am!'"=m!5".

Furthermore, we define the inner product

BV!5 ,'",=!5"C(2(
0

1
V!5 ,'"=!5"d5 .

Since V"!Vh" , PDE, second equation of Eq. !5", becomes

&292V̈!5 ,'"%V"!5 ,'"%88r&V̇"!5 ,'"!%&292ẌA!'".

Projecting this onto =m , we obtain the modal oscillator

<̈m$
@m

4&2&m
2 $28r

<̇m
&&m

2 !%
4&m

9
ẌA!'". !A3"

In view of the following relations:

@m!<m%Am ,

Am!Bv!5 ,'",=m!5"C!!%1 "m87&2&m
2 #1%T cos!3"$ ,

T! 3̇2$#1%ẌA!'"%V̈B!'"$cos!3",

V̈B!'"!-
j!1

:

!%1 " j$1<̈ j!'",

modal equation !A3" is reduced to a relation involving only
the modal amplitude <m . Finally, the coupled system !5" is
equivalent to the infinite set of coupled oscillators,

3̈$$1%-
j!1

:

!%1 " j$1<̈ j%ẌA!'"%sin!3"$28p3̇!0,

Lm!3"<̈ j$
<m

4&2&m
2 $28r

<̇m
&&m

2 %!%1 "m$127#3̇2cos!3"

%sin2!3"$!%$4&m

9
$!%1 "m$127 cos2!3"% ẌA!'",

where Lm , an infinite linear operator depending nonlinearly
on 3 , is given by

Lm!3"(-
j!1

:

#%mj$!%1 "m$ j27 cos2!3"$ .
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