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Abstract

We consider a family of chaotic skew tent maps. The skew tent map is a two-parameter, piecewise-linear, weakly-unimodal, map of

the interval Fa;b. We show that Fa;b is Markov for a dense set of parameters in the chaotic region, and we exactly ®nd the probability

density function (pdf), for any of these maps. It is well known (Boyarsky A, G�ora P. Laws of chaos: invariant measures and dynamical

systems in one dimension. Boston: Birkhauser, 1997), that when a sequence of transformations has a uniform limit F, and the cor-

responding sequence of invariant pdfs has a weak limit, then that invariant pdf must be F invariant. However, we show in the case of a

family of skew tent maps that not only does a suitable sequence of convergent sequence exist, but they can be constructed entirely

within the family of skew tent maps. Furthermore, such a sequence can be found amongst the set of Markov transformations, for

which pdfs are easily and exactly calculated. We then apply these results to exactly integrate Lyapunov exponents. Ó 2000 Elsevier

Science Ltd. All rights reserved.

1. Introduction

Let Fa;b denote the two-parameter piecewise-linear map on the interval �0; 1� satisfying

Fa;b�x� � b� ��1ÿ b�=a�x if 06 x < a;
�1ÿ x�=�1ÿ a� if a6 x6 1

�
�1:1�

with 0 < a < 1 and 06 b6 1. It has been shown that [2] in the following region of the parameter space,

D � f�a; b� : b < 1=�2ÿ a� and ��b < 1ÿ a� or �b P 1ÿ a and b > a��g; �1:2�
Fa;b has chaotic dynamics, and in the parameter subset

D0 � f�a; b� : b < 1=�2ÿ a� and �b < 1ÿ a�g; �1:3�
chaotic dynamics occur on the entire interval 06 x6 1. See Bassein [2] for a complete classi®cation of the
dynamics in parameter space, �a; b� 2 �0; 1� � �0; 1�.

We will show that Fa;b is Markov for a dense set of �a; b� in D0. This is interesting because the probability
density function for any Markov transformation in this set can be found exactly to be a piecewise-constant
function. We can use these exact results to approximate the probability density function (pdf) for any other
transformation in D0. We also show that Lyapunov exponents can be calculated exactly on the Markov set,
and therefore, e�ciently approximated on all of D0.
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In Section 2, we review a su�cient condition for a piecewise-linear map on the interval to be Markov,
and we discuss symbolic dynamics for this type of map. Then, we prove that Markov maps are dense in the
parameter set D0. Illustrating the simpli®cations of Markov maps, we discuss in Section 3 the techniques
used to exactly ®nd the pdf and the Lyapunov exponent. We conclude the discussion of Markov maps with
an explicit example in Section 4. In Section 5, we ®nish with a proof that the properties of the remaining
maps in the parameter set D0 can be approximated su�ciently by members of the dense set of Markov
maps.

We chose the form of Fa;b from [2], wherein can be found a concise discussion of the full range of to-
pological dynamics in the parameter space �a; b� 2 �0; 1� � �0; 1�. The form of the skew tent map we study,
Eq. (1.1), is topologically conjugate to the skew tent map in the topological studies of Misiurewicz and
Visinescu [3,4]. Piecewise-linear transformations on the interval have been widely studied, and under dif-
ferent names as well: broken linear transformations [5], weak unimodal maps [6]. Other closely related areas
in the study of the chaotic behavior of these maps include the stability of the associated Frobenius±Perron
operator [7], the topological entropy [4], and kneading sequences [8].

2. Markov transformations

In this section, we classify the Markov partitions which are prominent in calculations in section 3. In the
special, but important, case that a transformation of the interval is Markov, the symbol dynamics is simply
presented as a ®nite directed graph. A Markov transformation is de®ned as follows.

De®nition 2.1 ([1]). Let I � �c; d� and let s : I ! I . Let P be a partition of I given by the points
c � c0 < c1 < � � � < cp � d. For i � 1; . . . ; p, let Ii � �ciÿ1; ci� and denote the restriction of s to Ii by si. If si is
a homeomorphism from Ii onto some connected union of intervals of P, then s is said to be Markov. The
partition P is said to be a Markov partition with respect to the function s.

The following result describes a set in D0 for which Fa;b is Markov.

Theorem 2.2. For a given �a; b� 2 D0, if x0 � 1 is a member of a periodic orbit, then Fa;b is Markov.

Proof. Set F � Fa;b. Assume x0 � 1 is a member of a period-n orbit �n > 1�. Next, form a partition of �0; 1�
using the n members of the periodic orbit. The two endpoints of the interval are included since 8�a; b� 2 D0,
F �1� � 0. Order these n points so 0 � c0 < c1 < � � � < cnÿ1 � 1, regardless of the iteration order. For
i � 1; . . . ; nÿ 1, let Ii � �ciÿ1; ci� and denote the restriction of F to Ii by Fi.

For a given Ii � �ciÿ1; ci�, the endpoints ciÿ1 and ci will map exactly to two members of the partition
endpoints by de®nition of the periodic orbit. Let these points be cj and ck, with cj < ck and
j; k 2 f0; . . . ; nÿ 1g. The only turning point of the map is x � a, and 8�a; b� 2 D0, F �a� � 1. Therefore
x � a must always be part of the period orbit and a member of the partition endpoints, implying each Fi is
linear and hence, a homeomorphism. Also Fi�Ii� � �cj; ck�, a connected union of intervals of the partition.
By de®nition, F is Markov. �

At this point, symbolic notation becomes useful. The point x � a is the critical point at the ``center'' of
the interval, denoted by the letter C. All a < x6 1 is right of a, represented by R, and all 06 x < a is left of
a, represented by L. Represent each step of the iteration map by one of these three symbols. All parameter
sets for which F �x� is Markov must have a period-n orbit containing the point x � a and be of the form
fa; . . . ; F nÿ1�a�; . . .g. For example, the period-3 orbit has the form fa; 1; 0; . . .g and occurs for any pa-
rameter set �a; b� on the curve b � a. It repeats the pattern CRL, which we call the kneading sequence
K�Fa;b� � �CRL�1.

If a periodic orbit contains the point x � a and a 6� b, the point x � b will either be greater or less than
a. For a period-4 orbit with a > b, the symbolic sequence must repeat CRLL, or if a < b, CRLR.
Therefore, a period-4 is found two ways. See Fig. 1 for a cobweb diagram of an example period-4 CRLL
orbit.
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Repeating this method for period-5 and higher, we see that there are 2nÿ3 possible combinations of the
C±L±R sequences for a period-n orbit which includes the critical point. The exponent nÿ 3 re¯ects the
necessary 3-step pre®x CRL. A full binary tree with 2nÿ3 leaves on each tier is possible, each implying a
condition on the parameters and forming a countable set of curves in parameter space [4]. We can now
restate Theorem 2.2 in terms of kneading sequences.

Corollary 2.3. If K�Fa;b� is periodic, then Fa;b is Markov.

We now prove that the function Fa;b�x� (1.1) is Markov on a dense set of curves in D0 (1.3). De®ne R2 as
the space of symbol sequences containing the full family of kneading sequences for two symbols. De®ne the
kneading sequence r � r0r1r2 . . . ; the metric d�r; r̂� �P1

i�0 jri ÿ r̂ij=2i, and the norm krk �P1
i�0 ri=2i � r0 � �r1=2� � �r2=22� � � � �

Lemma 2.4. Periodic r are dense in R2.

Proof. 8e > 0 and given WOLOG / � /0/1/2 . . . which is not periodic, 9N > 0 large enough so that
ri � /i, i6N and r � �/0/1 . . . /N�1 for krÿ /kR2

< e: �

3. Probability density function and Lyapunov exponents

Another bene®t of the set of Markov chaotic functions is that the pdfs can be determined quite easily. In
fact, expanding piecewise-linear Markov transformations have piecewise-constant invariant probability
density functions.

Theorem 3.1 [1, Theorem 9.4.2]. Let s : I ! I be a piecewise-linear Markov transformation such that for
some k P 1,

Fig. 1. Numerical calculation of the PDF (histogram bars) compared to the exact solution (solid line). The calculation used 50000

iterations and 50 intervals.
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j�sk�0j > 1;

wherever the derivative exists. Then s admits an invariant �probability� density function which is piecewise-
constant on the partition P on which s is Markov.

Using the Frobenius±Perron operator P, the ®xed-point function h satis®es the de®nition PF h � h, im-
plying that h is the pdf for a measure that is invariant under F. Since F is a piecewise-monotone function,
the action of the operator is simply

PF h�x� �
X

z2fFÿ1�x�g

h�z�
jF 0�z�j :

The periodic orbit formed by the iteration of x � a forms a partition of the domain �0; 1� on which h is
piecewise-constant. On each interval Ii, call the corresponding constant hi � hjIi

.
The pdf admits an absolutely continuous invariant measure on the Markov partition. This measure can

be used to ®nd the Lyapunov exponent, and therefore quantify the average rate of expansion or contraction
for an interval under iteration. Set F � Fa;b for some �a; b� 2 D0 and form a partition of �0; 1� using the n
members of the periodic orbit, so 0 � c0 < c1 < � � � < cnÿ1 � 1. Assume ck � a, for some k 2 f1; . . . ; nÿ 2g.
Note jF 0�x�j � �1ÿ b�=a if x < a, and jF 0�x�j � 1=�1ÿ a� if x > a.

Ka;b �
Z 1

0

ln jF 0�x�jh�x�dx

�
Z c1

c0

ln jF 0�x�jh1 dx� � � � �
Z cnÿ1

cnÿ2

ln jF 0�x�jhnÿ1 dx

� ln
1ÿ b

a

���� ����Xk

i�1

�ci ÿ ciÿ1�hi � ln
1

1ÿ a

���� ���� Xnÿ1

i�k�1

�ci ÿ ciÿ1�hi: �3:1�

4. Following the left branch

As an example, in this section we will derive the probability density function for F �x� when it is Markov
and has a periodic orbit of the pattern CRL; CRLL; CRLLL; . . ., following the left branch of the binary
tree. In the discussion below, x � a is part of a periodic orbit of period p � n� 3 and n represents the
number of Ls after the initial CRL in the symbolic representation of that periodic orbit.

fa; 1; 0; b; F �b�; F 2�b�; . . .g ) CRL LLL . . .|����{z����}
n

z����������}|����������{p

�4:1�

Proposition 4.1. The general relation of a and b in the period p � n� 3 in Eq. (4.1) is

1ÿ b
a

� �n�1

� 1ÿ a
b

: �4:2�

Proof. Rename the branches of the piecewise-de®ned function, fL on 06 x < a and fR on a6 x6 1. Using
the geometric series expansion, express f n

L�b� as

f n
L�b� �

Xn

k�0

b
1ÿ b

a

� �k

�
b 1ÿ ��1ÿ b�=a�n�1
� �

1ÿ ��1ÿ b�=a� : �4:3�
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The parameter sets for each of these periodic orbits is found by solving f n
L�b� � a, where the period is n� 3.

By using Eq. (4.3), we have the implicit relation (4.2). �

It now seems quite natural for the CRL orbit to occur on the parameter set b � a. The equations relating
a to b for the di�erent periodic orbits form a pattern in parameter space, and limit to b � 0.

On these curves in the chaotic region, an invariant density function h can be found in closed form. It is a
piecewise-de®ned function on its associated Markov partitions. Therefore, h�x� has the form

h�x� �
h1 if 0 < x < b;
h2 if b < x < F �b�;
..
.

hpÿ1 if a < x < 1:

8>>><>>>: : �4:4�

Then the action of the Frobenius±Perron operator is

Pf h�x� � h�f ÿ1
L �x��

f 0L f ÿ1
L �x�� �j j v�a;1��x� �

h f ÿ1
R �x�

ÿ �
f 0R f ÿ1

R �x�� �j j
� a

1ÿ b

� �
h f ÿ1

L �x�
ÿ �

v�a;1��x� � �1ÿ a�h f ÿ1
R �x�

ÿ �
: �4:5�

We use Eq. (4.5) to construct a system of equations to solve for h�x�. This system has the following form:

h1 � �1ÿ a�hpÿ1;

h2 � a
1ÿ b

� �
h1 � �1ÿ a�hpÿ1;

..

. �4:6�
hpÿ1 � a

1ÿ b

� �
hpÿ2 � �1ÿ a�hpÿ1:

For a proof, see the geometry of the inverse function. Note the recursion; the constant h1 depends only on
hpÿ1. From the monotonicity of the inverse of fL and fR, each constant, hk, depends on hkÿ1 and hpÿ1.

Proposition 4.2. The system of Eq. (4.6) is underdetermined for the variables h1; h2; . . . ; hpÿ1. The determinant
is 0 precisely when the parameters satisfy Eq. (4.2).

Proof. This is proved by induction. Base case: n � 0 and p � 3:

h1 � �1ÿ a�h2; �4:7�
h2 � a

1ÿ b
h1 � �1ÿ a�h2: �4:8�

This set of equations can be rewritten as the homogeneous system

1 ÿ�1ÿ a�
ÿa=�1ÿ b� 1ÿ �1ÿ a�

� �
h1

h2

� �
� 0

0

� �
: �4:9�

To ®nd if there is a unique solution, ®nd the determinant M0:

M0 � 1 ÿ�1ÿ a�
ÿa=�1ÿ b� 1ÿ �1ÿ a�
���� ���� � 1ÿ �1ÿ a� ÿ �1ÿ a� a

1ÿ b
: �4:10�

Substituting Eq. (4.2) for n � 0, bÿ a � 0 implies that M0 � 0. To prove Mj�1 � 0, use the relation

Mj � 1ÿ �1ÿ a�
Xj

k�0

a
1ÿ b

� �k
; �4:11�
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and assume Eq. (4.2) is true for n � j. Therefore,

Mj�1 � 1ÿ �1ÿ a�
Xj�1

k�0

a
1ÿ b

� �k

� 1ÿ �1ÿ a� 1ÿ �a=�1ÿ b��j�2

1ÿ �a=�1ÿ b��

 !

� a�1ÿ a�
1ÿ aÿ b

� �
a

1ÿ b

� �j�1
�

ÿ b
1ÿ a

� ��
: �4:12�

Substituting Eq. (4.2) for n � j, Mj�1 � 0: �

The freedom implied by Proposition 4.2 is expected, since the density function must be normalized. Set
the area under the curve to 1:Z 1

0

h�x�dx � 1: �4:13�

Using the partition, 0 � c0 < c1 < � � � < cpÿ1 � 1, we know cnÿ2 � a and

ck � f k
L�0� � b

Xk

i�0

1ÿ b
a

� �i

for k � 1; . . . ; p ÿ 3: �4:14�

Therefore, Eq. (4.13) simpli®es to the following:

�c1 ÿ c0�h1 � � � � � �cpÿ1 ÿ cpÿ2�hpÿ1 � 1; �4:15�

b
Xpÿ3

i�0

1ÿ b
a

� �i

hi�1 � �1ÿ a�hpÿ1 � 1: �4:16�

With this additional constraint, the system of equations has dimension p � �p ÿ 1�.

S

h1

h2

..

.

hpÿ1

0BBB@
1CCCA �

0

..

.

0
1

0BB@
1CCA; �4:17�

de®ning the coe�cient matrix S of Eq. (4.17) as the mostly banded matrix

S �

ÿ1 . . . 0 �1ÿ a�
a=�1ÿ b� ÿ1 ..

. �1ÿ a�
a=�1ÿ b� ÿ1 �1ÿ a�

. .
. . .

. ..
.

..

.
a=�1ÿ b� ÿ1 �1ÿ a�

0 . . . a=�1ÿ b� ÿa
b b��1ÿ b�=a� . . . b��1ÿ b�=a�pÿ3 �1ÿ a�

0BBBBBBBBBBB@

1CCCCCCCCCCCA
: �4:18�

The next step is to prove that this new system has rank p. Name the rows in the coe�cient matrix S as
R1;R2; . . . ;Rp. Using the de®nition of linear dependence, there must exist a set of constants that multiply the
rows of the matrix so that they sum to 0:

R1k1 � R2k2 � � � � � Rpkp �~0: �4:19�
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Solving for these constants, we ®nd

kpÿi � kpÿ1

a
1ÿ b

� �i
� kpb�iÿ 1� a

1ÿ b

� �iÿp�2

for i � 2; . . . ; p ÿ 1;

kpÿ1 � 1ÿ a
a

Xpÿ2

i�1

ki

 
� 1

!
:

There is only one degree of freedom and the system has rank p ÿ 1. There is a unique solution to the system,
if one exists.

The closed forms for the constants hi in the probability density function are

hi � 1ÿ b
1ÿ bÿ ab�p ÿ 1� 1

�
ÿ a

1ÿ b

� �i
�

for i � 1; . . . ; p ÿ 2; �4:20�

hpÿ1 � 1ÿ aÿ b
�1ÿ a��1ÿ bÿ ab�p ÿ 1�� : �4:21�

We show this calculation in Appendix A.

Example. The CRLL family illustrates the previous results. The Markov partition is formed by the period-4
orbit �0; b; a; 1�. See Fig. 1 for a cobweb diagram of a speci®c period-4 orbit. In parameter space, the family
occurs on the curve a � fL�b�, or

b � 1� aÿ ��������������������������
1� 2aÿ 3a2
p

2
: �4:22�

Note that the other branch of the solution occurs outside the parameter domain, �a; b� 2 �0; 1� � �0; 1�.
Eq. (4.5) produces the system of equations

h1 � 1� ÿ a�h3;

h2 � a
1ÿ b

� �
h1 � 1� ÿ a�h3; �4:23�

h3 � a
1ÿ b

� �
h2 � 1� ÿ a�h3:

To normalize h, set the area under the curve to 1,

bh1 � �aÿ b�h2 � �1ÿ a�h3 � 1: �4:24�
Hence, the invariant density function is

h�x� �
1ÿaÿb

1ÿbÿ3ab if 06 x < b;
�1ÿb�2ÿa2

�1ÿb��1ÿbÿ3ab� if b6 x < a;
1ÿaÿb

�1ÿa��1ÿbÿ3ab� if a6 x6 1:

8><>:
See Fig. 1 for a comparison of this exact result to a histogram generated by a ``typical'' orbit.

Of particular use, the invariant measure can be used to exactly calculate the Lyapunov exponent for any
set of parameters �a; b� along the curves described by Eq. (4.2) in D0. WOLOG, assign ck � a and k � p ÿ 2.
Use Eqs. (3.1), (4.20), and (4.21) to derive the following:

Ka;b � ln
1ÿ b

a

���� ����Xk

i�1

�ci ÿ ciÿ1�hi � ln
1

1ÿ a

���� ���� Xpÿ1

i�k�1

�ci ÿ ciÿ1�hi

� ln
1ÿ b

a

���� �����1ÿ �1ÿ a�hpÿ1� � ln
1

1ÿ a

���� �����1ÿ a�hpÿ1

� ln
1ÿ b

a

���� ����� ln
a

�1ÿ a��1ÿ b�
���� �����1ÿ a�hpÿ1

� ln
1ÿ b

a

���� ����� ln
a

�1ÿ a��1ÿ b�
���� ���� 1ÿ aÿ b

1ÿ bÿ ab�p ÿ 1�
� �

: �4:25�
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Example. Continuing the period-4 CRLL example from above, we derive the Lyapunov exponent exactly.
Set p � 4 and in Eq. (4.25)

Ka;b � ln
1ÿ b

a

���� ����� ln
a

�1ÿ a��1ÿ b�
���� ���� 1ÿ aÿ b

1ÿ bÿ 3ab

� �
: �4:26�

In parameter space, the family occurs on the curve derived in Eq. (4.22). Therefore, set
b � �1� aÿ ��������������������������

1� 2aÿ 3a2
p �=2, which makes the Lyapunov exponent a function of one parameter, a. See

Fig. 2 for a graph of Eq. (4.26) as a function of a. Because the Lyapunov exponent is positive for 0 < a < 1,
Fa;b must be chaotic on this entire curve, not just in the region D0 of Eq. (1.3) (see Fig. 3).

5. Non-Markov transformations

In this section, we prove that Markov maps are dense in D0. Then, recalling results concerning weak
limits of invariant measures of a sequence of transformations, we note that the Markov techniques can be
applied, in a limiting sense, to describe statistical properties for all Fa;b with a; b 2 D0. We begin by noting
previous work on the map. The following is the proof that the map fk;l studied in [4] is conjugate to the
piecewise-linear, interval map Fa;b we are studying.

fk;l�x� � 1� kx if x < 0;
1ÿ lx if x P 0:

�
with k6 1, l > 1, 0 < a < 1, and 06 b6 1.

Using the conjugacy #�x� � �xÿ a�=�1ÿ a�, show that #ÿ1 � fk;l � #�x� � Fa;b�x�. Since #�x� is a linear
function of x, it is a homeomorphism and #ÿ1 is uniquely de®ned as #ÿ1�x� � �1ÿ a�x� a.

#ÿ1�f �#�x��� � �1ÿ ak� � kx if x < a;
�1� al� ÿ lx if x P a:

�
�5:1�

Let k � �1ÿ b�=a and l � 1=�1ÿ a�. Then

1ÿ ak � 1ÿ a
1ÿ b

a

� �
� b; �5:2�

Fig. 2. The Lyapunov exponent as a function of the parameter a, where x � 0 is a member of a period-4 orbit.
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1� al � 1ÿ l
1

1ÿ a

� �
� 1

1ÿ a
: �5:3�

Therefore, #ÿ1 � fk;l � #�x� � Fa;b�x� by the homeomorphism # and the two maps Fa;b and fk;l are topo-
logically conjugate.

Call M the class of sequences M which occur as kneading sequences of Fa;�1ÿ2a�=�1ÿa� for 0 < a6 1=2, also
known as the primary sequences. Misiurewicz and Visinescu proved the following theorems:

Theorem 5.1 [4, Theorem A]. If �a; b�, �a0; b0� 2 D and �a; b� > �a0; b0� then K�a; b� > K�a0; b0�.

Theorem 5.2 [4, Theorem B]. If �a; b� 2 D then K�a; b� 2M.

Theorem 5.3 [6, Intermediate value theorem for kneading sequences]. If a one-parameter family Gt of
continuous unimodal maps depends continuously on t and h�Gt� > 0 for all t then if K�Gt0� < K < K�Gt1� and
K 2M then there exists t between t0 and t1 with K�Gt� � K.

Using these previous results, we can prove the following:

Theorem 5.4. 8�a; b� 2 D0, one of the following is true:
1. Fa;b is Markov.
2. 9�a�; b��D0 such that Fa�;b� uniformly approximates Fa;b.

Fig. 3. The line through parameter space associated with the numerical approximation of the pdf shown in Fig. 4, a � 0:9ÿ b. The

points are the exact parameters for the period-3 through period-8 Markov maps.
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Proof. If Fa;b is Markov, we are done. Otherwise, choose Fa0;b0
such that K�Fa0;b0

� is non-periodic. Given a
small e > 0, let a0 � a� and b1 � b0 � e. By Theorem 5.1, K�Fa�;b0

� < K�Fa�;b1
� and by Theorem 5.2, K�Fa�;b0

�,
K�Fa�;b1

� 2M. WOLOG, we choose indices of b0 and b1 to create this ordering. Recall by Lemma 2.4, that
periodic sequences are dense in R2. Therefore, we may choose a sequence M 2M such that
K�Fa�;b0

� < M < K�Fa�;b1
�. Since Fa;b does vary continuously with parameters a and b, then Theorem 5.3

implies an intermediate value b� such that b0 < b� < b1, and this intermediate map has the decimal
kneading K�Fa�;b� � � M . Therefore, in any given neighborhood of a non-Markov map in D0, there exists a
Markov map M. �

Hence, we can construct a sequence, in D0, of Markov maps that converges to any Fa;b with �a; b� 2 D0.
Considering our Theorem 5.4, and the following result [1], we conclude that any transformation Fa;b with
�a; b� 2 D0 is either a member of the Markov set which we constructed, and the invariant density function
can be calculated directly as described earlier in this paper, or if Fa;b is not in that set, then a sequence of
uniformly convergent Markov transformations, Fai ;bi ! Fa;b and �ai; bi� ! �a; b�, each have easily calcu-
lated invariant densities which converge to the invariant density of Fa;b.

De®ne Q be the set fc0; c1; . . . ; cpÿ1g and P be the partition of I into closed intervals with endpoints
belonging to Q : I1 � �c0; c1�; . . . ; Ipÿ1 � �cpÿ2; cpÿ1�.

Theorem 5.5 [1, Theorem 10.3.2]. Let f : I ! I be a piecewise-expanding transformation, and let ffngn P 1 be
a family of Markov transformations associated with f. Note Q�0� � Q, and

Q�k� �
[k
j�0

f ÿj�Q�0��; k � 1; 2; . . .

Moreover, we assume that fn ! f uniformly on the set

In
[

k P 0

Q�k�

and f 0n ! f 0 in L1 as n ! 1. Any fn has an invariant density hn and fhngn P 1 is a precompact set in L1. We
claim that any limit point of fhngn P 1 is an invariant density of f.

6. Conclusion

For the two-parameter family of skew tent maps, we have shown that there is a dense set of parameters
in the chaotic region for which the maps are Markov and we exactly ®nd the pdf for any of these maps. It is
known, [1], that when a sequence of transformations has a uniform limit, and the corresponding sequence
of invariant probability density functions has a weak limit, then the limit of the pdfs is invariant under the
limit of the transformations. We construct such a sequence entirely within the family of skew tent maps
amongst the set of Markov transformations. Numerical evidence that this is possible can be seen in Fig. 4.
The graph represents an approximation of how the pdf (over the interval �0; 1�) changes as a function of the
parameter b, when a � 0:9ÿ b. The ``jumps'' or ``steps'' vary continuously with the parameter, and we have
highlighted the example symbolic pattern CRL;CRLL;CRLLL; . . ., for which the results were derived
exactly in Section 4. We also presented an application of this work in the exact calculation of Lyapunov
exponents.
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Appendix A. Probability density function calculation

From Eq. (4.6), we see the pattern

hi � hpÿ1�1ÿ a�
Xiÿ1

j�0

a
1ÿ b

� �j
for i � 1; . . . ; p ÿ 2

� hpÿ1�1ÿ a� 1ÿ �a=�1ÿ b��i
1ÿ �a=�1ÿ b��

� �
� hpÿ1

�1ÿ a��1ÿ b� 1ÿ �a=�1ÿ b��iÿ �
�1ÿ aÿ b� : �A:1�

Substitute this expression for hi in Eq. (4.16).

b
Xpÿ3

i�0

1ÿ b
a

� �i

hi�1 � �1ÿ a�hpÿ1 � 1;

bhpÿ1

Xpÿ3

i�0

�1ÿ a��1ÿ b�
�1ÿ aÿ b� 1

�
ÿ a

1ÿ b

� �i�1
�

1ÿ b
a

� �i

� �1ÿ a�hpÿ1 � 1;

hpÿ1

b�1ÿ a��1ÿ b�
�1ÿ aÿ b�

Xpÿ3

i�0

1ÿ b
a

� �i
 

ÿ a
1ÿ b

� �!
� �1ÿ a�hpÿ1 � 1;

hpÿ1

�1ÿ a��1ÿ b�
�1ÿ aÿ b�

Xpÿ3

i�0

b
1ÿ b

a

� �i
 

ÿ
Xpÿ3

i�0

ab
1ÿ b

� �!
� �1ÿ a�hpÿ1 � 1; �A:2�

hpÿ1

�1ÿ a��1ÿ b�
�1ÿ aÿ b� a

�
ÿ ab�p ÿ 2�

1ÿ b

� ��
� �1ÿ a�hpÿ1 � 1;

hpÿ1

a�1ÿ a��1ÿ bÿ b�p ÿ 2��
�1ÿ aÿ b� � �1ÿ a�hpÿ1 � 1:

Fig. 4. A numerical approximation of the probability density function as a function of the parameter b with a � 0:9ÿ b. The red lines

are the exact solutions for the period-3 through period-8 orbits.
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Solving this equation for hpÿ1, we ®nd

hpÿ1 � a�1ÿ a��1ÿ bÿ b�p ÿ 2��
�1ÿ aÿ b�

�
� �1ÿ a�

�ÿ1

� �1ÿ aÿ b�
�1ÿ a��a�1ÿ bÿ b�p ÿ 2�� � �1ÿ aÿ b��

� �1ÿ aÿ b�
�1ÿ a��1ÿ bÿ ab�p ÿ 1�� : �A:3�

Therefore, hi can be expressed as

hi � 1ÿ b
1ÿ bÿ ab�p ÿ 1� 1

�
ÿ a

1ÿ b

� �i
�

for i � 1; . . . ; p ÿ 2: �A:4�
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