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Abstract: Causal inference is perhaps one of the most fundamental concepts in science, beginning
originally from the works of some of the ancient philosophers, through today, but also weaved
strongly in current work from statisticians, machine learning experts, and scientists from many
other fields. This paper takes the perspective of information flow, which includes the Nobel prize
winning work on Granger-causality, and the recently highly popular transfer entropy, these being
probabilistic in nature. Our main contribution will be to develop analysis tools that will allow a
geometric interpretation of information flow as a causal inference indicated by positive transfer
entropy. We will describe the effective dimensionality of an underlying manifold as projected
into the outcome space that summarizes information flow. Therefore, contrasting the probabilistic
and geometric perspectives, we will introduce a new measure of causal inference based on the
fractal correlation dimension conditionally applied to competing explanations of future forecasts,
which we will write GeoCy!x. This avoids some of the boundedness issues that we show exist for
the transfer entropy, Ty!x. We will highlight our discussions with data developed from synthetic
models of successively more complex nature: these include the Hénon map example, and finally a
real physiological example relating breathing and heart rate function.

Keywords: causal inference; transfer entropy; differential entropy; correlation dimension; Pinsker’s
inequality; Frobenius–Perron operator

1. Introduction

Causation Inference is perhaps one of the most fundamental concepts in science, underlying
questions such as “what are the causes of changes in observed variables”. Identifying, indeed even
defining causal variables of a given observed variable is not an easy task, and these questions date
back to the Greeks [1,2]. This includes important contributions from more recent luminaries such
as Russel [3], and from philosophy, mathematics, probability, information theory, and computer
science. We have written that [4], “a basic question when defining the concept of information flow is to
contrast versions of reality for a dynamical system. Either a subcomponent is closed or alternatively
there is an outside influence due to another component”. Claude Granger’s Nobel prize [5] winning
work leading to Granger Causality (see also Wiener [6]) formulates causal inference as a concept
of quality of forecasts. That is, we ask, does system X provide sufficient information regarding
forecasts of future states of system X or are there improved forecasts with observations from system Y?
We declare that X is not closed, as it is receiving influence (or information) from system Y, when data
from Y improve forecasts of X. Such a reduction of uncertainty perspective of causal inference is
not identical to the interventionists’ concept of allowing perturbations and experiments to decide
what changes indicate influences. This data oriented philosophy of causal inference is especially
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appropriate when (1) the system is a dynamical system of some form producing data streams in time,
and (2) a score of influence may be needed. In particular, contrasting forecasts is the defining concept
underlying Granger Causality (G-causality), and it is closely related to the concept of information flow
as defined by transfer entropy [7,8], which can be proved as a nonlinear version of Granger’s otherwise
linear (ARMA) test [9]. In this spirit, we find methods such as Convergent Cross-Mapping method
(CCM) [10], and causation entropy (CSE) [11] to disambiguate direct versus indirect influences [11–18].
On the other hand, closely related to information flow are concepts of counter factuals: “what would
happen if ...” [19] that are foundational questions for another school leading to the highly successful
Pearl “Do-Calculus” built on a specialized variation of Bayesian analysis [20]. These are especially
relevant for nondynamical questions (inputs and outputs occur once across populations), such as a
typical question of the sort, “why did I get fat” may be premised on inferring probabilities of removing
influences of saturated fats and chocolates. However, with concepts of counter-factual analysis in mind,
one may argue that Granger is less descriptive of causation inference, but rather more descriptive of
information flow. In fact, there is a link between the two notions for so-called “settable" systems under
a conditional form of exogeneity [21,22].

This paper focuses on the information flow perspective, which is causation as it relates to
G-causality. The role of this paper is to highlight connections between the probabilistic aspects
of information flow, such as Granger causality and transfer entropy, to a less often discussed geometric
picture that may underlie the information flow. To this purpose, here we develop both analysis
and data driven concepts to serve in bridging what have otherwise been separate philosophies.
Figure 1 illustrates the two nodes that we tackle here: causal inference and geometry. In the diagram,
the equations that are most central in serving to bridge the main concepts are highlighted, and the
main role of this paper then could be described as building these bridges.

Geometry

- Dimensionality
- Information flow

structure
- Level sets

Causation (Granger)

- Transfer entropy
- Geometric

Causation

Equations (38), (35)

Figure 1. Summary of the paper and relationship of causation and geometry.

When data are derived from a stochastic or deterministic dynamical system, one should also be
able to understand the connections between variables in geometric terms. The traditional narrative
of information flow is in terms of comparing stochastic processes in probabilistic terms. However,
the role of this paper is to offer a unifying description for interpreting geometric formulations of
causation together with traditional statistical or information theoretic interpretations. Thus, we will
try to provide a bridge between concepts of causality as information flow to the underlying geometry
since geometry is perhaps a natural place to describe a dynamical system.

Our work herein comes in two parts. First, we analyze connections between information flow
by transfer entropy to geometric quantities that describe the orientation of underlying functions of
a corresponding dynamical system. In the course of this analysis, we have needed to develop a
new “asymmetric transfer operator” (asymmetric Frobenius–Perron operator) evolving ensemble
densities of initial conditions between spaces whose dimensionalities do not match. With this, we
proceed to give a new exact formula for transfer entropy, and from there we are able to relate this
Kullback–Leibler divergence based measure directly to other more geometrically relevant divergences,
specifically total variation divergence and Hellinger divergence, by Pinsker’s inequality. This leads to
a succinct upper bound of the transfer entropy by quantities related to a more geometric description of
the underlying dynamical system. In the second part of this work, we present numerical interpretations
of transfer entropy TEy!x in the setting of a succession of simple dynamical systems, with specifically
designed underlying densities, and eventually we include a heart rate versus breathing rate data
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set. Then, we present a new measure in the spirit of G-causality that is more directly motivated by
geometry. This measure, GeoCy!x, is developed in terms of the classical fractal dimension concept of
correlation dimension.

In summary, the main theme of this work is to provide connections between probabilistic
interpretations and geometric interpretations of causal inference. The main connections and
corresponding sections of this paper are summarized as a dichotomy: Geometry and Causation
(information flow structure) as described in Figure 1. Our contribution in this paper is as follows:

• In traditional methods, causality is estimated by probabilistic terms. In this study, we present
analytical and data driven approach to identify causality by geometric methods, and thus also a
unifying perspective.

• We show that a derivative (if it exists) of the underlining function of the time series has a close
relationship to the transfer entropy (Section 2.3).

• We provide a new tool called geoC to identify the causality by geometric terms (Section 3).
• Correlation dimension can be used as a measurement for dynamics of a dynamical system. We will

show that this measurement can be used to identify the causality (Section 3).

Part I: Analysis of Connections between Probabilistic Methods and Geometric Interpretations

2. The Problem Setup

For now, we assume that x, y are real valued scalars, but the multi-variate scenario will be
discussed subsequently. We use a shorthand notation, x := xn, x0 := xn+1 for any particular time
n, where the prime (0) notation denotes “next iterate”. Likewise, let z = (x, y) denote the composite
variable, and its future composite state, z0. Consider the simplest of cases, where there are two coupled
dynamical systems written as discrete time maps,

x0 = f1(x, y), (1)

y0 = f2(x, y). (2)

The definition of transfer entropy [7,8,23], measuring the influence of coupling from variables y
onto the future of the variables x, denoted by x0 is given by:

Ty!x = DKL(p(x0|x)||p(x0|x, y)). (3)

This hinges on the contrast between two alternative versions of the possible origins of x0 and is
premised on deciding one of the following two cases: Either

x0 = f1(x), or x0 = f1(x, y) (4)

is descriptive of the actual function f1. The definition of Ty!x is defined to decide this question by
comparing the deviation from a proposed Markov property,

p(x0|x) ?
= p(x0|x, y). (5)

The Kullback–Leibler divergence used here contrasts these two possible explanations of the
process generating x0. Since DKL may be written in terms of mutual information, the units are as any
entropy, bits per time step. Notice that we have overloaded the notation writing p(x0|x) and p(x0|x, y).
Our practice will be to rely on the arguments to distinguish functions as otherwise different (likewise
distinguishing cases of f1(x) versus f1(x, y).

Consider that the coupling structure between variables may be characterized by the directed
graph illustrated in Figure 2.
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yx

(2)Tx!y > 0 , @f2
@x 6= 0

(1)Ty!x > 0 , @f1
@y 6= 0

Figure 2. A directed graph presentation of the coupling stucture questions corresponding to
Equations (1) and (2).

In one time step, without loss of generality, we may decide on Equation (4), the role of y on x0,
based on Ty!x > 0, exclusively in terms of the details of the argument structure of f1. This is separate
from the reverse question of f2 as to whether Tx!y > 0. In geometric terms, assuming f1 2 C1(W1),
it is clear that, unless the partial derivative ∂ f1

∂y is zero everywhere, then the y argument in f1(x, y) is
relevant. This is not a necessary condition for Ty!x > 0, which is a probabilistic statement, and almost
everywhere is sufficient.

2.1. In Geometric Terms

Consider a manifold of points (x, y, x0) 2 X ⇥ Y ⇥ X0 as the graph over W1, which we label
M2. In the following, we assume f1 2 C1(W1), W1 ⇢ X ⇥ Y. Our primary assertion here is that the
geometric aspects of the set (x, y, x0) projected into (x, x0) distinguishes the information flow structure.
Refer to Figure 3 for notation. Let the level set for a given fixed y be defined,

Ly := {(x, x0) : x0 = f (x, y), y = constant} 2 W2 = X ⇥ X0 (6)

⌦1

⌦2

⌦3

M2

y = c

Ly

x

y

x0

(a)

⌦1

⌦2

⌦3

M2

y = c

Ly

x

y

x0

(b)
Figure 3. W2 = X ⇥ X0 manifold and Ly level set for (a) x0 = f1(x) = �0.005x2 + 100, (b) x0 =
f1(x, y) = �0.005x2 + 0.01y2 + 50. The dimension of the projected set of (x, x0) depends on the
causality as just described. Compare to Figure 4 and Equation (27)..
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When these level sets are distinct, then the question of the relevance of y to the outcome of x0

is clear:

• If ∂ f1
∂y = 0 for all (x, y) 2 W1, then Ly = Lỹ for all y, ỹ.

Notice that, if the y argument is not relevant as described above, then x0 = f1(x) better describes the
associations, but if we nonetheless insist to write x0 = f1(x, y), then ∂ f1

∂y = 0 for all (x, y) 2 W1. The
converse is interesting to state explicitly,

• If Ly 6= Lỹ for some y, ỹ, then ∂ f1
∂y 6= 0 for some (x, y) 2 W1, and then x0 = f1(x) is not a sufficient

description of what should really be written x0 = f1(x, y). We have assumed f1 2 C1(W1)
throughout.

2.2. In Probabilistic Terms

Considering the evolution of x as a stochastic process [8,24], we may write a probability density
function in terms of all those variables that may be relevant, p(x, y, x0). Contrasting the role of the
various input variables requires us to develop a new singular transfer operator between domains that
do not necessarily have the same number of variables. Notice that the definition of transfer entropy
(Equation (3)) seems to rely on the absolute continuity of the joint probability density p(x, y, x0).
However, that joint distribution of p(x, y, f (x, y)) is generally not absolutely continuous, noticing its
support is {(x, y, f (x, y)) : (x, y) 2 Wx ⇥Wy ✓ R2}, a measure 0 subset of R3. Therefore, the expression
h( f (X, Y)|X, Y) is not well defined as a differential entropy and hence there is a problem with transfer
entropy. We expand upon this important detail in the upcoming subsection. To guarantee existence,
we interpret these quantities by convolution to smooth the problem. Adding an “artificial noise” with
standard deviation parameter e allows definition of the conditional entropy at the singular limit e

approaches to zero, and likewise the transfer entropy follows.
The probability density function of the sum of two continuous random variables (U, Z) can be

obtained by convolution, PU+Z = PU ⇤ PZ. Random noise (Z with mean E(Z) = 0 and variance
V(Z) = Ce2) added to the original observable variables regularizes, and we are interested in the
singular limit, e ! 0. We assume that Z is independent of X, Y. In experimental data from practical
problems, we argue that some noise, perhaps even if small, is always present. Additionally, noise is
assumed to be uniform or normally distributed in practical applications. Therefore, for simplicity of
the discussion, we mostly focused on those two distributions. With this concept, Transfer Entropy can
now be calculated by using h(X0|X, Y) and h(X0|X) when

X0 = f (X, Y) + Z, (7)

where now we assume that X, Y, Z 2 R are independent random variables and we assume that
f : Wx ⇥ Wy ! R is a component-wise monotonic (we will consider the monotonically increasing case
for consistent explanations, but one can use monotonically decreasing functions in similar manner)
continuous function of X, Y and Wx, Wy ✓ R.

Relative Entropy for a Function of Random Variables

Calculation of transfer entropy depends on the conditional probability. Hence, we will first focus
on conditional probability. Since for any particular values x, y the function value f (x, y) is fixed,
we conclude that X0|x, y is just a linear function of Z. We see that

pX0 |X,Y(x0|x, y) = Pr(Z = x0 � f (x, y)) = pZ(x0 � f (x, y)), (8)

where pZ is the probability density function of Z.
Note that the random variable X0|x is a function of (Y, Z). To write U + Z, let U = f (x, Y).

Therefore, convolution of densities of U and Z gives the density function for p(x0|x) (See Section 4.1 for
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examples). Notice that a given value of the random variable, say X = a, is a parameter in U. Therefore,
we will denote U = f (Y; a). We will first focus on the probability density function of U, pU(u), using
the Frobenius–Perron operator,

pU(u) = Â
y:u= f (y;a)

pY( f (y; a))
| f 0( f (y; a))| . (9)

In the multivariate setting, the formula is extended similarly interpreting the derivative as the
Jacobian matrix, and the absolute value is interpreted as the absolute value of the determinant. Denote
Y = (Y1, Y2, . . . , Yn), g(Y; a) = (g1, g2, . . . , gn) and U = f (a, Y) := g1(Y; a); and the vector
V = (V1, V2, . . . , Vn�1) 2 Rn�1 such that Vi = gi+1(Y) := Yi+1 for i = 1, 2, . . . , n � 1. Then, the
absolute value of the determinate of the Jacobian matrix is given by: |Jg(y)| = | ∂g1(y;a)

∂y1
|. As an aside,

note that J is lower triangular with diagonal entries dii = 1 for i > 1. The probability density function
of U is given by

pU(u) =
Z

S
pY(g�1(u, v; a))

���
∂g1
∂y1

(g�1(u, v; a))
���
�1

dv, (10)

where S is the support set of the random variable V.
Since the random variable X0|x can be written as a sum of U and Z, we find the probability density

function by convolution as follows:

pX0 |x(x0|x) =
Z

pU(u)pZ(x0 � u)du. (11)

Now, the conditional differential entropy h(Z|X, Y) is in terms of these probability densities. It is
useful that translation does not change the differential entropy, he( f (X, Y) + Z|X, Y) = h(Z|X, Y). In
addition, Z is independent from X, Y, h(Z|X, Y) = h(Z). Now, we define

h( f (X, Y)|X, Y) := lim
e!0+

he( f (X, Y) + Z|X, Y) (12)

if this limit exists.
We consider two scenarios: (1) Z is a uniform random variable or (2) Z is a Gaussian random

variable. If it is uniform in the interval [�e/2, e/2], then the differential entropy is h(Z) = ln(e).
If specifically, Z is Gaussian with zero mean and e standard deviation, then h(Z) = 1

2 ln
�
2pee2�.

Therefore, he( f (X, Y) + Z|X, Y) ! �• as e ! 0+ in both cases. Therefore, h( f (X, Y)|X, Y)) is not
finite in this definition (Equation (12)) as well. Thus, instead of calculating X0 = f (X, Y), we need to
use a noisy version of data X0 = f (X, Y) + Z. For that case,

h(X0|X, Y) = h(Z) =

(
ln(e); Z ⇠ U(�e/2, e/2)
1
2 ln

�
2pee2�; Z ⇠ N (0, e2)

, (13)

where U(�e/2, e/2) is the uniform distribution in the interval [�e/2, e/2], and N (0, e2) is a Gaussian
distribution with zero mean and e standard deviation.

Now, we focus on h(X0|X). If X0 is just a function of X, then we can similarly show that: if
X0 = f (X), then

h( f (X) + Z|X) = h(Z) =

(
ln(e); Z ⇠ U(�e/2, e/2)
1
2 ln

�
2pee2�; Z ⇠ N (0, e2).

(14)

In addition, notice that, if X0 = f (X, Y), then h(X0|X) will exist, and most of the cases will be
finite. However, when we calculate Ty!x, we need to use the noisy version to avoid the issues in
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calculating h(X0|X, Y). We will now consider the interesting case X0 = f (X, Y) + Z and calculate
h(X0|X). We require pX0 |X and Equation (11) can be used to calculate this probability. Let us denote
I :=

R
pU(u)pZ(x0 � u)du; then,

he(X0|X) =
Z Z

I pX(x) ln(I)dx0dx (15)

=
Z

pX(x)
Z

I ln(I)dx0dx

= EX(Q),

where Q =
R

I ln(I)dx0. Notice that, if Q does not depend on x, then h(X0|X) = Q
R

pXdx = Q
because

R
pXdx = 1(since px is a probability density function). Therefore, we can calculate he(X0|X)

by four steps. First, we calculate the density function for U = f (x, Y) (by using Equation (9) or (10)).
Then, we calculate I = pX0 |X by using Equation (11). Next, we calculate the value of Q, and finally we
calculate the value of he(X0|X).

Thus, the transfer entropy from y to x follows in terms of comparing conditional entropies,

Ty!x = h(X0|X)� h(X0|X, Y). (16)

This quantity is not well defined when X0 = f (X, Y), and therefore we considered the X0 =
f (X, Y) + Z case. This interpretation of transfer entropy depends on the parameter e, as we define

Ty!x := lim
e!0+

Ty!x(e) = lim
e!0+

he(X0|X)� he(X0|X, Y) (17)

if this limit exists.
Note that

Ty!x =

(
lime!0+ h(Z)� h(Z) = 0; X0 = f (X)

•; X0 = f (X, Y) 6= f (X).
(18)

Thus, we see that a finite quantity is ensured by the noise term. We can easily find an upper
bound for the transfer entropy when X0 = f (X, Y) + Z is a random variable with finite support (with
all the other assumptions mentioned earlier) and suppose Z ⇠ U(�e/2, e/2). First, notice that the
uniform distribution maximizes entropy amongst all distributions of continuous random variables
with finite support. If f is component-wise monotonically increasing continuous function, then the
support of X0|x is [ f (x, ymin)� e/2, f (x, ymin) + e/2] for all x 2 Wx. Here, ymin and ymax are minimum
and maximum values of Y. Then, it follows that

he(X0|X)  ln(| f (xmax, ymax)� f (xmax, ymin) + e|), (19)

where xmax is the maximum x value. We see that an interesting upper bound for transfer
entropy follows:

Ty!x(e)  ln
⇣���

f (xmax, ymax)� f (xmax, ymin)
e

+ 1
���
⌘

. (20)

2.3. Relating Transfer Entropy to a Geometric Bound

Noting that transfer entropy and other variations of the G-causality concept are expressed in
terms of conditional probabilities, we recall that

r(x0|x, y)r(x, y) = r(x, y, x0). (21)
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Again, we continue to overload the notation on the functions r, the details of the arguments
distinguishing to which of these functions we refer.

Now, consider the change of random variable formulas that map between probability density
functions by smooth transformations. In the case that x0 = f1(x) (in the special case that f1 is
one-one), then

r(x0) =
r(x)

| d f1
dx (x)|

=
r( f�1

1 (x0))

| d f1
dx ( f�1

1 (x0))|
. (22)

In the more general case, not assuming one-one-ness, we get the usual Frobenius–Perron operator,

r(x0) = Â
x:x0= f1(x)

r(x, x0) = Â
x:x0= f1(x)

r(x)

| d f1
dx (x)|

, (23)

in terms of a summation over all pre-images of x0. Notice also that the middle form is written as a
marginalization across x of all those x that lead to x0. This Frobenius–Perron operator, as usual, maps
densities of ensembles of initial conditions under the action of the map f1.

Comparing to the expression
r(x, x0) = r(x0|x)r(x), (24)

we assert the interpretation that

r(x0|x) :=
1

| d f1
dx (x)|

d(x0 � f1(x)), (25)

where d is the Dirac delta function. In the language of Bayesian uncertainty propagation, p(x0|x)
describes the likelihood function, if interpreting the future state x0 as data, and the past state x as
parameters, in a standard Bayes description, p(data|parameter)⇥ p(parameter). As usual for any
likelihood function, while it is a probability distribution over the data argument, it may not necessarily
be so with respect to the parameter argument.

Now, consider the case where x0 is indeed nontrivially a function with respect to not just x,
but also with respect to y. Then, we require the following asymmetric space transfer operator, which
we name here an asymmetric Frobenius–Perron operator for smooth transformations between spaces
of dissimilar dimensionality:

Theorem 1 (Asymmetric Space Transfer Operator). If x0 = f1(x, y), for f1 : W1 ! U, given bounded open
domain (x, y) 2 W1 ⇢ R2d, and range x0 2 U ⇢ Rd, and f1 2 C1(W1), and the Jacobian matrices, ∂ f1

∂x (x, y),
and ∂ f1

∂y (x, y) are not both rank deficient at the same time, then taking the initial density r(x, y) 2 L1(W1),
the following serves as a transfer operator mapping asymmetrically defined densities P : L1(W1) ! L1(U)

r(x0) = Â
(x,y):x0= f1(x,y)

r(x, y, x0) = Â
(x,y):x0= f1(x,y)

r(x, y)

| ∂ f1
∂x (x, y)|+ | ∂ f1

∂y (x, y)|
. (26)

The proof of this is in Appendix A. Note also that, by similar argumentation, one can formulate
the asymmetric Frobenius–Perron type operator between sets of dissimilar dimensionality in an
integral form.
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Corollary 1 (Asymmetric Transfer Operator, Kernel Integral Form). Under the same hypothesis as
Theorem 1, we may alternatively write the integral kernel form of the expression,

P : L2(R2) ! L2(R) (27)

r(x, y) 7! r0(x0) = P[r](x, y)]

=

=
Z

Lx0
r(x, y, x0)dxdy =

Z

Lx0
r(x0|x, y)r(x, y)dxdy

=
Z

Lx0

1

| ∂ f1
∂x (x, y)|+ | ∂ f1

∂y (x, y)|
r(x, y)dxdy. (28)

This is in terms of a line integration along the level set, Lx0 . See Figure 4:

Lx0 = {(x, y) 2 W1 : f (x, y) = x0 a chosen constant.} (29)

In Figure 4, we have shown a typical scenario where a level set is a curve (or it may well be a
union of disjoint curves), whereas, in a typical FP-operator between sets of the same dimensionality,
generally the integration is between pre-images that are usually either singletons, or unions of such
points, r0(x0) =

R
d(s � f (x))r(s)ds = Âx: f (x)=x0

r(x)
|D f (x)| .

x0 = c

Lx0

x

y

x0

Figure 4. The asymmetric transfer operator, Equation (27), is written in terms of intefration over the
level set, Lx0 of x0 = f1(x, y) associated with a fixed value x0, Equation (29).

Contrasting standard and the asymmetric forms of transfer operators as described above, in the
next section, we will compute and bound estimates for the transfer entropy. However, it should already
be apparent that, if ∂ f1

∂y = 0 in probability with respect to r(x, y), then Ty!x = 0.
Comparison to other statistical divergences reveals geometric relevance: Information flow is

quite naturally defined by the KL-divergence, in that it comes in the units of entropy, e.g., bits per
second. However, the well-known Pinsker’s inequality [25] allows us to more easily relate the transfer
entropy to a quantity that has a geometric relevance using the total variation, even if this is only by an
inequality estimate.

Recall that Pinsker’s inequality [25] relates random variables with probability distributions p and
q over the same support to the total variation and the KL-divergence as follows:

0  1
2

TV(P, Q) 
q

DKL(P||Q), (30)
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written as probability measures P, Q. The total variation distance between probability measures is a
maximal absolute difference of possible events,

TV(P, Q) = sup
A

|P(A)� Q(A)|, (31)

but it is well known to be related to 1/2 of the L1-distance in the case of a common dominating
measure, p(x)dµ = dP, q(x)dµ = dQ. In this work, we only need absolute continuity with respect to
Lebesgue measure, p(x) = dP(x), q(x) = dQ(x); then,

TV(P, Q) =
1
2

Z
|p(x)� q(x)|dx =

1
2
kp � qkL1 , (32)

here with respect to Lebesgue measure. In addition, we write DKL(P||Q) =
R

p(x) log p(x)
q(x) dx; therefore,

1
2
kp � qk2

L1 
Z

p(x) log
p(x)
q(x)

dx. (33)

Thus, with the Pinsker inequality, we can bound the transfer entropy from below by inserting the
definition Equation (3) into the above:

0  1
2
kp(x0|x, y)� p(x0|x)k2

L1  Ty!x. (34)

The assumption that the two distributions correspond to a common dominating measure requires
that we interpret p(x0|x) as a distribution averaged across the same r(x, y) as p(x0|x, y). (Recall by
definition [26] that l is a common dominating measure of P and Q if p(x) = dP/dl and q(x) =
dQ/dl describe corresponding densities). For the sake of simplification, we interpret transfer entropy
relative to a uniform initial density, r(x, y), for both entropies of Equation (16). With this assumption,
we interpret

0  1
2
k 1

| ∂ f1
∂x (x, y)|+ | ∂ f1

∂y (x, y)|
� 1

| d f1
dx (x)|

k2
L1(W1,r(x,y))  Ty!x. (35)

In the special case that there is very little information flow, we would expect that | ∂ f1
∂y | < b << 1,

and b << | ∂ f1
∂x |, almost every x, y; then, a power series expansion in small b gives

1
2
k 1

| ∂ f1
∂x (x, y)|+ | ∂ f1

∂y (x, y)|
� 1

| d f1
dx (x)|

k2
L1(W1,r(x,y)) ⇡

Vol(W1)
2

< | ∂ f1
∂y | >

2

< | ∂ f1
∂x | >4

, (36)

which serves approximately as the TV-lower bound for transfer entropy where have used the notation
< · > to denote an average across the domain. Notice that, therefore, d(p(x0|x, y), p(x0|x)) # as | ∂ f1

∂y | #.
While Pinsker’s inequality cannot guarantee that Ty!x #, since TV is only an upper bound, it is clearly
suggestive. In summary, comparing inequality Equation (35) to the approximation (36) suggests that,
for | ∂ f1

∂y | << b << | ∂ f1
∂x |, for b > 0, for a.e. x, y, then Ty!x # as b #.

Now, we change to a more computational direction of this story of interpreting information flow
in geometric terms. With the strong connection described in the following section, we bring to the
problem of information flow between geometric concepts to information flow concepts, such as entropy,
it is natural to turn to studying the dimensionality of the outcome spaces, as we will now develop.

Part II: Numerics and Examples of Geometric Interpretations

Now, we will explore numerical estimation aspects of transfer entropy for causation inference in
relationship to geometry as described theoretically in the previous section, and we will compare this
numerical approach to geometric aspects.
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3. Geometry of Information Flow

As theory suggests, see the sections above, there is a strong relationship between the information
flow (causality as measured by transfer entropy) and the geometry, encoded for example in the
estimates leading to Equation (36). The effective dimensionality of the underlying manifold as projected
into the outcome space is a key factor to identify the causal inference between chosen variables. Indeed,
any question of causality is in fact observer dependent. To this point, suppose x0 only depends on x, y
and x0 = f (x, y), where f 2 C1(W1). We noticed that (Section 2) Ty!x = 0 () ∂ f

∂y = 0, 8(x, y) 2 W1.

Now, notice that ∂ f
∂y = 0, 8(x, y) 2 W1 () x0 = f (x, y) = f (x). Therefore, in the case that W1 is

two-dimensional, then (x, x0) would be a one-dimensional, manifold if and only if ∂ f
∂y = 0, 8(x, y) 2 W1.

See Figure 3. With these assumptions,

Ty!x = 0 () (x, x0) data lie on a1D manifold.

Likewise, for more general dimensionality of the initial W1, the story of the information flow
between variables is in part a story of how the image manifold is projected. Therefore, our discussion
will focus on estimating the dimensionality in order to identify the nature of the underlying manifold.
Then, we will focus on identifying causality by estimating the dimension of the manifold, or even more
generally of the resulting set if it is not a manifold but perhaps even a fractal. Finally, this naturally
leads us to introduce a new geometric measure for characterizing the causation, which we will identify
as Geoy!x.

3.1. Relating the Information Flow as Geometric Orientation of Data.

For a given time series x := xn 2 Rd1 , y := yn 2 Rd2 , consider the x0 := xn+1 and contrast the
dimensionalities of (x, y, x0) versus (x, x0), in order to identify that x0 = f (x) or x0 = f (x, y). Thus,
in mimicking the premise of Granger causality, or likewise of Transfer entropy, contrasting these two
versions of the explanations of x0, in terms of either (x, y) or x, we decide the causal inference, but this
time, by using only the geometric interpretation. First, we recall how fractal dimensionality evolves
under transformations, [27].

Theorem 2 ([27]). Let A be a bounded Borel subset of Rd1 . Consider the function F : A ! Rd1 ⇥Rd1 such
that F(x) = (x, x0) for some x0 2 Rd1 . The correlation dimension D2(F(A))  d1, if and only if there exists a
function f : A ! Rd1 such that x0 = f (x) with f 2 C1(A).

The idea of the arguments in the complete proof found in Sauer et. al., [27], are as follows. Let A
be bounded Borel subset of Rd1 and f : A ! Rd1 with f 2 C1(A). Then, D2( f (A)) = D2(A), where
D2 is the correlation dimension [28]. Note that D2(A)  d1. Therefore, D2(F(A)) = D2(A)  d1, with
F : A ! Rd1 ⇥Rd1 if and only if F(x) = (x, f (x)).

Now, we can describe this dimensional statement in terms of our information flow causality
discussion, to develop an alternative measure of inference between variables. Let (x, x0) 2 W2 ⇢ R2d1

and (x, y, x0) 2 W3 ⇢ R2d1+d2 . We assert that there is a causal inference from y to x, if dim(W2) > d1
and d1 < dim(W3)  d1 + d2, (Theorem 1). In this paper, we focus on time series xn 2 R which might
also depend on time series yn 2 R, and we will consider the geometric causation from y to x, for
(x, y) 2 A ⇥ B = W1 ⇢ R2. We will denote geometric causation by GeoCy!x and assume that A, B are
Borel subsets of R. Correlation dimension is used to estimate the dimensionality. First, we identify the
causality using the dimensionality of on (x, x0) and (x, y, x0). Say, for example, that (x, x0) 2 W2 ⇢ R2

and (x, y, x0) 2 W3 ⇢ R3; then, clearly we would enumerate a correlation dimension causal inference
from y to x, if dim(W2) > 1 and 1 < dim(W3)  2 (Theorem 1).
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3.2. Measure Causality by Correlation Dimension

As we have been discussing, the information flow of a dynamical system can be described
geometrically by studying the sets (perhaps they are manifolds) X ⇥ X0 and X ⇥ Y ⇥ X0. As we
noticed in the last section, comparing the dimension of these sets can be interpreted as descriptive
of information flow. Whether dimensionality be estimated from data or by a convenient fractal
measure such as the correlation dimension (D2(.)), there is an interpretation of information flow when
contrasting X ⇥ X0 versus X ⇥ Y ⇥ X0, in a spirit reminiscent of what is done with transfer entropy.
However, these details are geometrically more to the point.

Here, we define GeoCy!x (geometric information flow) by GeoC(.|.) as conditional
correlation dimension.

Definition 1 (Conditional Correlation Dimensional Geometric Information Flow). Let M be the manifold
of data set (X1, X2, . . . , Xn, X0) and let W1 be the data set (X1, X2, . . . , Xn). Suppose that the M, W1 are
bounded Borel sets. The quantity

GeoC(X0|X1, . . . , Xn) := D2(M)� D2(W1) (37)

is defined as “Conditional Correlation Dimensional Geometric Information Flow". Here, D2(.) is the usual
correlation dimension of the given set, [29–31].

Definition 2 (Correlation Dimensional Geometric Information Flow). Let x := xn, y = yn 2 R be two
time series. The correlation dimensional geometric information flow from y to x as measured by the correlation
dimension and denoted by GeoCy!x is given by

GeoCy!x := GeoC(X0|X)� GeoC(X0|X, Y). (38)

A key observation is to notice that, if X0 is a function of (X1, X2, . . . , Xn), then D2(M) = D2(W1);
otherwise, D2(M) > D2(W1) (Theorem 1). If X is not influenced by y, then GeoC(X0|X) = 0,
GeoC(X0|X, Y) = 0 and therefore GeoCy!x = 0. In addition, notice that GeoCy!x  D2(X), where
X = {xn|n = 1, 2, . . . }. For example, if xn 2 R, then GeoCy!x  1. Since we assume that influence
of any time series zn 6= xn, yn to xn is relatively small, we can conclude that GeoCy!x � 0, and, if
x0 = f (x, y), then GeoC(X0|X, Y) = 0. Additionally, the dimension (GeoC(X0|X)) in the (X, X0) data
scores how much additional (other than X) information is needed to describe the X0 variable. Similarly,
the dimension GeoC(X0|X, Y) in the (X, Y, X0) data describes how much additional (other than X, Y)
information is needed to define X0. However, when the number of data points N ! •, the value
GeoCy!x is not negative (equal to the dimension of X data). Thus, theoretically, GeoC identifies a
causality in the geometric sense we have been describing.

4. Results and Discussion

Now, we present specific examples to contrast the transfer entropy with our proposed geometric
measure to further highlight the role of geometry in such questions. Table 1 provides a summary of
our numerical results. We use synthetic examples with known underlining dynamics to understand
the accuracy of our model. Calculating transfer entropy has theoretical and numerical issues for
those chosen examples while our geometric approach accurately identifies the causation. We use
the correlation dimension of the data because data might be fractals. Using a Hénon map example,
we demonstrate that fractal data will not affect our calculations. Furthermore, we use a real-world
application that has a positive transfer entropy to explain our data-driven geometric method. Details
of these examples can be found in the following subsections.



Entropy 2020, 22, 396 13 of 22

Table 1. Summary of the results. Here, we experiment our new approach by synthetics and real world
application data.

Data Transfer Entropy (Section 4.1) Geometric Approach

Synthetic: f(x,y)=aX + bY + C,
a, b, c 2 R

Theoretical issues can be noticed.
Numerical estimation have
boundedness issues when
b << 1.

Successfully identify
the causation for all the
cases (100%).

Synthetic: f(x,y)=ag1(X) + bg2(Y) +
C, a, b, c 2 R

Theoretical issues can be noticed.
Numerical estimation have
boundedness issues when
b << 1.

Successfully identify
the causation for all the
cases (100%).

Hénon map: use data set invariant
under the map.

special case of aX2 + bY +C with
a = �1.4, b = c = 1. Estimated
transfer entropy is positive.

Successfully identify
the causation.

Application: heart rate vs. breathing
rate

Positive transfer entropy. Identify positive
causation. It also
provides more details
about the data.

4.1. Transfer Entropy

In this section, we will focus on analytical results and numerical estimators for conditional entropy
and transfer entropy for specific examples (see Figures 5 and 6). As we discussed in previous sections
starting with Section 2.2, computing the transfer entropy for X0 = f (X, Y) has technical difficulties
due to the singularity of the quantity h(X0|X, Y). First, we will consider the calculation of h(X0|X) for
X0 = f (X, Y), and then we will discuss the calculation for noisy data. In the following examples, we

assumed that X, Y are random variables such that X, Y iid⇠ U([1, 2]). A summary of the calculations for
a few examples are listed in Table 2.

Table 2. Conditional entropy h(X0|X) for X0 = f (X, Y), for specific parametric examples listed, under

the assumption that X, Y iid⇠ U([1, 2]).

f (X, Y) h(X0|X)

g(X) + bY ln(b)
g(X) + bY2 ln(8b)� 5/2

g(X) + b ln(Y) ln
⇣

b e
4

⌘

We will discuss the transfer entropy with noisy data because making h(X0|X, Y) well defined
requires absolute continuity of the probability density function p(x, y, x0). Consider, for example,
the problem form X0 = g(X) + bY + C, where X, Y are uniformly distributed independent random
variables over the interval [1, 2] (the same analysis can be extend to any finite interval) with b being
a constant, and g a function of random variable X. We will also consider C to be a random variable,
which is distributed uniformly on [�e/2, e/2]. Note that it follows that h(X0|X, Y) = ln e. To calculate
the h(X0|X), we need to find the conditional probability p(X0|x) and observe that X0|x = U +C, where
U = g(x) + bY. Therefore,

pU(u) =

(
1
b ; g1(x) + b  X0  g1(x) + 2b
0 ; otherwise.

(39)
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and

pX0 |X(X0|x) =

8
>>>>><

>>>>>:

x0+e/2�g(x)
be ; g(x)� e/2  X0  g(x) + e/2

1
b ; g(x) + e/2  X0  b + g(x)� e/2
�x0+e/2+g(x)+b

be ; b + g(x)� e/2  X0  b + g(x) + e/2

0 ; otherwise

. (40)

By the definition of transfer entropy, we can show that

h(X0|X) = ln b +
e

2b
(41)

and hence transfer entropy of this data are given by

Ty!x(e; b) =

(
ln b

e +
e

2b ; b 6= 0

0; b = 0.
(42)

Therefore, when b = 0, the transfer entropy Ty!x = ln e � ln e = 0. In addition, notice that
Ty!x(e; b) ! • as e ! 0. Therefore, convergence of the numerical estimates is slow when e > 0 is
small (see Figure 6).
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(a) Examples for X0 = g(X) + bY. The left figure shows results for g(X) = X and the right shows results for
g(X) = X2.
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(b) Examples for X0 = g(X) + bY2. The left figure shows results for g(X) = X and the right shows results for
g(X) = ex.

Figure 5. Conditional entropy h(X0|X). Note that these numerical estimates for the conditional entropy
by the KSG method [32], converge (as N ! •) to the analytic solutions (see Table 2).
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(a) b = 1.
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Figure 6. Numerical results and analytical results for transfer entropy Ty!x(e; b) to the problem
X0 = X + bY + e . Transfer entropy vs. e shows in (a) for fixed b value. (b) and (c) show the behavior
of the transfer entropy for b values with fixed e values. Notice that convergence of numerical solution
is slow when epsilon is small.

4.2. Geometric Information Flow

Now, we focus on quantifying the geometric information flow by comparing dimensionalities of
the outcomes’ spaces. We will contrast this to the transfer entropy computations for a few examples of
the form X0 = g(X) + bY + C.

To illustrate the idea of geometric information flow, let us first consider a simple example,
x0 = ax + by + c. If b = 0, we have x0 = f (x) and, when b 6= 0, we have the x0 = f (x, y) case.
Therefore, dimensionality of the data set (x0, x) will change with parameter b (see Figure 7). When
the number of data points N ! • and b 6= 0, then GeoCy!x ! 1. Generally, this measure of causality
depends on the value of b, but also the initial density of initial conditions.

In this example, we contrast theoretical solutions with the numerically estimated solutions

(Figure 8). Theoretically, we expect Ty!x =

(
0 ; b = 0

• ; b 6= 0
as N ! •. In addition, the transfer entropy

for noisy data can be calculated by Equation (42).
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Figure 7. Manifold of the data (x0, x) with x0 = by and y is uniformly distributed in the interval [0, 1].
Notice that, when (a) b = 0, we have a 1D manifold, (b) b 6= 0 we have 2D manifold, in the (x0, x) plane.
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(a) GeoCy!x
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(b) Ty!x(Numerical results)
Figure 8. Geometric information flow vs. Transfer entropy for X0 = bY data.

4.3. Synthetic Data: X0 = aX + bY with a 6= 0

The role of the initial density of points in the domain plays an important role in how the specific
information flow values are computed depending on the measure used. To illustrate this point,
consider the example of a unit square, [0, 1]2, that is uniformly sampled, and mapped by

X0 = aX + bY, with a 6= 0. (43)

This fits our basic premise that (x, y, x0) data embeds in a 2D manifold, by ansatz of
Equations (1) and (43), assuming for this example that each of x, y and x0 are scalar. As the number

of data point grows, N ! •, we can see that GeoCy!x =

(
0 ; b = 0

1 ; b 6= 0
because (X, X0) data are on 2D

manifold iff b 6= 0 (numerical estimation can be seen in Figure 9b). On the other hand, the conditional
entropy h(X0|X, Y) is not defined, becoming unbounded when defined by noisy data. Thus, it follows
that transfer entropy shares this same property. In other words, boundedness of transfer entropy
depends highly on the X0|X, Y conditional data structure, while, instead, our geometric information
flow measure highly depends on X0|X conditional data structure. Figure 9c demonstrates this
observation with estimated transfer entropy and analytically computed values for noisy data. The slow
convergence can be observed, Equation (42), Figure 6.
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Figure 9. (a) shows the geometric information flow and (b) represents the Transfer entropy for
x0 = x + by data. The figures show the changes with parameter b. We can notice that the transfer
entropy has similar behavior to the geometric information flow of the data.

4.4. Synthetic Data: Nonlinear Cases

Now, consider the Hénon map,

x0 = 1 � 1.4x2 + y (44)

y0 = x

as a special case of a general quadratic relationship, x0 = ax + by2 + c, for discussing how x0 may
depend on (x, y) 2 W1. Again, we do not worry here if y0 may or may not depend on x and or y
when deciding dependencies for x0. We will discuss two cases, depending on how the (x, y) 2 W1
data are distributed. For the first case, assume (x, y) is uniformly distributed in the square, [�1.5, 1.5]2.
The second and dynamically more realistic case will assume that (x, y) lies on the invariant set (the
strange attractor) of the Hénon map. The geometric information flow is shown for both cases in
Figure 10. We numerically estimate the transfer entropy for both cases, which gives Ty!x = 2.4116
and 0.7942, respectively. (However, recall that the first case for transfer entropy might not be finite
analytically, and there is slow numerical estimation—see Table 3).

Table 3. Hénon Map Results. Contrasting geometric information flow versus transfer entropy in two
different cases, 1st relative to uniform distribution of initial conditions (reset each time) and 2nd relative
to the natural invariant measure (more realistic).

Domain GeoC Ty!x

[�1.5, 1.5]2 0.90 2.4116
Invariant Set 0.2712 0.7942
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(a) (x, y, x0) data for Hénon Map.
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(b) (x, y) ⇠ U([�1.5, 1.5]2)
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(c) (x, y) is in invariant set of Hénon map
Figure 10. Consider the Hénon map, Equation (44), within the domain [�1.5, 1.5]2 and the invariant
set of Hénon map. (a) the uniform distribution case (green) as well as the natural invariant measure of
the attractor (blue) are shown regarding the (x, y, x0) data for both cases; (b) when (x, y) 2 [�1.5, 1.5]2,
notice that GeoCy!x = 0.9, and (c) if (x, y) is in an invariant set of Hénon map, then GeoCy!x = 0.2712.

4.5. Application Data

Now, moving beyond bench-marking with synthetic data, we will contrast the two measures of
information flow in a real world experimental data set. Consider heart rate (xn) vs. breathing rate
(yn) data (Figure 11) as published in [33,34], consisting of 5000 samples. Correlation dimension of the
data X is D2(X) = 1.00, and D2(X, X0) = 1.8319 > D2(X). Therefore, X0 = Xn+1 depends not only
on x, but also on an extra variable (Theorem 2). In addition, correlation dimension of the data (X, Y)
and (X, Y, X0) is computed D2(X, Y) = 1.9801 and D2(X, Y, X0) = 2.7693 > D2(X, Y), respectively.
We conclude that X0 depends on extra variable(s) other that (x, y) (Theorem 2) and the correlation
dimension geometric information flow, GeoCy!x = 0.0427, is computed by Equations (38) and (37).
Therefore, this suggests the conclusion that there is a causal inference from breathing rate to heart
rate. Since breathing rate and heart rate share the same units, the quantity measured by geometric
information flow can be described without normalizing. Transfer entropy as estimated by the KSG
method [32] with parameter k = 30 is Ty!x = 0.0485, interestingly relatively close to the GeoC value.
In summary, both measures for causality (GeoC, T) are either zero or positive together. It follows that
there exists a causal inference (see Table 4).

Table 4. Heart rate vs. breathing rate data—contrasting geometric information flow versus transfer
entropy in breath rate to heart rate.

GeoCy!x Ty!x

0.0427 0.0485
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Figure 11. Result for heart rate(xn) (a,c) vs. breathing rate(yn) data (b,d). The top row is the scatter plot
of the data, and the second row represents the dimension of the data.

5. Conclusions

We have developed here a geometric interpretation of information flow as a causal inference as
usually measured by a positive transfer entropy, Ty!x. Our interpretation relates the dimensionality
of an underlying manifold as projected into the outcome space and summarizes the information
flow. Furthermore, the analysis behind our interpretation involves standard Pinsker’s inequality
that estimates entropy in terms of total variation, and, through this method, we can interpret the
production of information flow in terms of details of the derivatives describing relative orientation of
the manifolds describing inputs and outputs (under certain simple assumptions).

A geometric description of causality allows for new and efficient computational methods for
causality inference. Furthermore, this geometric perspective provides a different view of the problem
and facilitates the richer understanding that complements the probabilistic descriptions. Causal
inference is weaved strongly throughout many fields and the use of transfer entropy has been a popular
black box tool for this endeavor. Our method can be used to reveal more details of the underling
geometry of the data-set and provide a clear view of the causal inference. In addition, one can use the
hybrid method of this geometric aspect and existing other methods in their applications.

We provided a theoretical explanation (part I: Mathematical proof of the geometric view of the
problem) and numerical evidence (part 2: A data-driven approach for mathematical framework) of
a geometric view for the causal inference. Our experiments are based on synthetic (toy problems)
and practical data. In the case of synthetic data, the underlining dynamics of the data and the actual
solution to the problem are known. For each of these toy problems, we consider a lot of cases by setting
a few parameters. Our newly designed geometric approach can successfully capture these cases. One
major problem may be if data describes a chaotic attractor. We prove theoretically (Theorem 2) and
experimentally (by Hénon map example: in this toy problem, we also know actual causality) that
correlation dimension serves to overcome this issue. Furthermore, we present a practical example
based on heart rate vs. breathing rate variability, which was already shown to have positive transfer
entropy, and here we relate this to show positive geometric causality.
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Furthermore, we have pointed out that transfer entropy has analytic convergence issues when
future data (X0) are exactly a function of current input data (X, Y) versus more generally (X, Y, X0).
Therefore, referring to how the geometry of the data can be used to identify the causation of the time
series data, we develop a new causality measurement based on a fractal measurement comparing
inputs and outputs. Specifically, the correlation dimension is a useful and efficient way to define what
we call correlation dimensional geometric information flow, GeoCy!x. The GeoCy!x offers a strongly
geometric interpretable result as a global picture of the information flow. We demonstrate the natural
benefits of GeoCy!x versus Ty!x, in several synthetic examples where we can specifically control the
geometric details, and then with a physiological example using heart and breathing data.
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Appendix A. On the Asymmetric Spaces Transfer Operators

In this section we prove Theorem 1 concerning a transfer operator for smooth transformations
between sets of perhaps dissimilar dimensionality. In general, the marginal probability density can
be found by integrating (or summation in the case of a discrete random variable) to marginalize the
joint probability densities. When x0 = f (x, y), the joint density (x, y, x0) is non-zero only at points on
x0 = f (x, y). Therefore, r(x0) = Â(x,y):x0= f (x,y) r(x, y, x0) and notice that r(x, y, x0) = r(x0|x, y)r(x, y)
(By Bayes theorem). Hence, r(x0) = Â(x,y):x0= f (x,y) r(x0|x, y)r(x, y) and we only need to show the
following claims. We will discuss this by two cases. First, we consider x0 = f (x) and then we consider
more general case x = f (x, y). In higher dimensions we can consider similar scenarios of input and
output variables, and correspondingly the trapezoidal bounding regions would need to be specified in
which we can analytically control the variables.

Proposition A1 (Claim). Let X 2 R be a random variable with probability density function r(x). Suppose
r(x), r(.|x) are Radon–Nikodym derivatives (of induced measure with respect to some base measure µ) which is
bounded above and bounded away from zero. In addition, let x0 = f (x) for some function f 2 C1(R). Then,

r(x0|X = x0) = lim
e!0

de(x0 � f (x0))

where de(x0 � f (x0)) =

8
<

:

1
2e| f 0(x0)|

; |x0 � f (x0)| < e| f 0(x0)|
0 ; otherwise

.

Proof. Let 1 >> e > 0 and x 2 Ie = (x0 � e, x0 + e). Since r is a Radon–Nikodym derivative
with bounded above and bounded away from zero, r(Ie) =

R
Ie

dr
dµ dµ � m

2e where m is the
infimum of the Radon–Nikodym derivative. Similarly r(Ie)  M

2e where M is the supremum of
the Radon–Nikodym derivative. In addition, |x0 � f (x0)| ⇡ | f 0(x0)||x � x0| for x 2 Ie. Therefore,
x0 2 ( f (x0)� e| f 0(x0)|, f (x0) + e| f 0(x0)|) = I0e when x 2 Ie. Hence, r(x0|x 2 Ie) = r(x0 2 I0e) and

m
2e| f 0(x0)|

 r(x0|x 2 Ie)  M
2e| f 0(x0)|

. Therefore, r(x0|X = x0) = lime!0 de(x0 � f (x0))

Proposition A2 (Claim). 2 Let X, Y 2 R be random variables with joint probability density function r(x, y).
Suppose r(x, y) and r(.|x, y) are Radon–Nikodym derivatives (of induced measure with respect to some base
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measure µ) which is bounded above and bounded away from zero. In addition, let x0 = f (x, y) 2 R for some
function f 2 C1(R). Then,

r(x0|X = x0, Y = y0) = lim
e!0

de(x0 � f (x0, y0))

where de(x0 � f (x0, y0)) =

8
<

:

1
2e(| fx(x0,y0)|+| fy(x0,y0)|)

; |x0 � f (x0, y0)| < e(| fx(x0, y0)|+ | fy(x0, y0)|)

0 ; otherwise
.

Proof. Let 1 >> e > 0 and Ae = {(x, y)|x 2 (x0 � e, x0 + e), y 2 (y0 � e, y0 + e) . Since r is a
Radon–Nikodym derivative with bounded above and bounded away from zero, r(Ae) =

R
Ae

dr
dµ dµ �

m
4e2 where m is the infimum of the Radon–Nikodym derivative. Similarly, r(Ae)  M

4e2 where M is
the supremum of the Radon–Nikodym derivative. In addition, |x0 � f (x0, y0)| ⇡ | fx(x0, y0)||x � x0|+
| fy(x0, y0)||y� y0| for (x, y) 2 Ae . Therefore, x0 2 ( f (x0, y0)� e(| fx(x0, y0)|+ | fy(x0, y0)|), f (x0, y0) +
e(| fx(x0, y0)| + | fy(x0, y0)|)) = I0e when (x, y) 2 Ae. Hence, r(x0|(x, y) 2 Ae) = r(x0 2 I0e) and

m
2e(| fx(x0,y0)|+| fy(x0,y0)|)

 r(x0|x 2 Ie)  M
2e(| fx(x0,y0)|+| fy(x0,y0)|)

. Therefore, r(x0|X = x0, Y = y0) =

lime!0 de(x0 � f (x0, y0)).

If f only depends on x, then the partial derivative of f with respect to y is equal to zero and which
leads to the same result as clam 1.
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