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Abstract: Determining causal inference has become popular in physical and engineering applications.
While the problem has immense challenges, it provides a way to model the complex networks by
observing the time series. In this paper, we present the optimal conditional correlation dimensional
geometric information flow principle (oGeoC) that can reveal direct and indirect causal relations in
a network through geometric interpretations. We introduce two algorithms that utilize the oGeoC
principle to discover the direct links and then remove indirect links. The algorithms are evaluated
using coupled logistic networks. The results indicate that when the number of observations is
sufficient, the proposed algorithms are highly accurate in identifying direct causal links and have a
low false positive rate.

Keywords: causal inference; correlation dimension; geometric information flow

1. Introduction

Causal inference has attracted attention in various scientific fields, from engineering [1]
to climate science [2,3] and from neuroscience [4] to ecological systems [5]. The problem
is reconstructing the causal relations from the observed time series of a complex network.
However, the underlying dynamics of the networks are often unknown, and the observa-
tions can be limited. Hence, the ability to model the networks and infer causal relationships
among the systems can be quite challenging.

We have written that [6,7] “a basic question when defining the concept of information
flow is to contrast versions of reality for a dynamical system. Either a subcomponent is
closed or alternatively, there is an outside influence due to another component”. Claude
Granger’s Nobel prize [8]-winning work leading to Granger causality (see also Wiener [9])
formulates causal inference as a concept of quality of forecasts. That is, we ask, does system
X provide sufficient information regarding forecasts of future states of system X, or are there
improved forecasts with observations from system Y? We declare that X is not closed, as it
is receiving influence (or information) from system Y, when data from Y improve forecasts
of X, and this is called Weiner–Granger causality, WGC. In Granger’s original test for
causality (GC) between two time series, a time series Y has a causal inference on a second
time series X if the future of X includes information from past terms of Y [10] as decided
by forecasting X in two different ways with linear models with and without considering
the information from Y. GC deals with the identification of causality in stochastic and
linear systems, and its extensions have been introduced to tackle the problem of detecting
causation in separability between multivariate time series and nonlinear models [11–13].
Other variations on the concepts of WGC exist based on other concepts of forecasting.
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Cross-mapping (CM) techniques, which use the predictions of one system based only
on the past observations from the other system, are also employed in detecting causal
inference problems [14,15]. Rulkov et al. have studied the connections of two unidirec-
tional coupled systems and the detection of synchronization using the CM-based technique
in [14]. The authors have also focused on the connections of unidirectional coupled sys-
tems and applied the mutual nonlinear prediction method to neuroscience [15]. Several
methods have been proposed to infer causal relationships and synchronization using
CM techniques [16–19]. Following the line of CM techniques-based research works, Sugi-
hara et al. have also proposed convergent cross-mapping (CCM) that utilizes a state–space
reconstruction technique [5]. CCM can identify causality in weakly coupled networks and
find causal links in complex ecosystems. Although CCM requires a large amount of data
and fails in case of strong coupling or synchrony, CCM and its alternatives have also been
widely used in recent years [20–22].

On the other hand, information–theoretic approaches are implemented to solve the
causal inference problem in many applications due to being model-free, including transfer
entropy [23–26]. Of particular interest to us here is the more nuanced concept of direct in-
formation flow, which considers if X causes Y conditioned on considering intermediaries Z:
that is, if X flows through Z to influence Y, but perhaps there is no direct influence from X
to Y. In a particular study, Sun et al. have suggested the optimal causation entropy princi-
ple (oCSE), an algorithm that reveals the causal relations in a complex network by using
causation entropy [25], to learn direct and indirect influences. The principle is based on the
idea that the causal parents of a node in the network contain the minimal set of nodes that
maximize causation entropy. The oCSE principle allows us to differentiate causal parents
of a node from indirect influences of a node by using discovery and removal algorithms.

The idea of understanding connections between geometric information flow and causal
inference has been investigated in recent decades [7,27–30]. An index has been proposed
in [27] where it was called the dynamic complexity coherence measure. The index is the
ratio of the sum of the correlation dimensions of individual subsystems to the correlation
dimension of the coupled dynamical system. If the two systems are independent, the sum
of the correlation dimensions of individual subsystems equals the correlation dimension of
the concatenated dynamical system. However, if two systems are coupled, the sum of the
correlation dimensions of individual subsystems is greater than the correlation dimension of
the concatenated dynamical system. The index can determine the degree of synchronization
and the presence of coupling [27]. The authors in [28] have also shown that the correlation
dimension can reveal the presence and the direction of coupling. The synchronization of
coupled systems can be determined by using this method.

Krakovská has used the correlation dimension to detect causality [30]. The study
investigates the causal relevance between or within two systems for the different coupling
strengths using the correlation dimension in the reconstructed state space. It has been
emphasized that the correlation dimension in causal analysis can be a promising method
between and within systems. Furthermore, the study states that correlation-based methods
provide some advantages in finding causal relations in dynamical systems when we have
sufficiently long observations and the states are observable.

Surasinghe and Bollt have suggested the correlation dimension geometric information
flow measure to quantify causal inference between two related systems in the geometric
sense [7]. The authors have proposed a new measure, i.e., geometric information flow
GeoC·→·, based on the conditional correlation dimension, which enables the identification of
causal relations between two related systems by geometric terms. They found that GeoC·→·
provides us with geometric interpretable results when detecting causality in synthetic and
real examples.

Conversely, Cummins et al. have established a theoretical model that builds on
Takens’ theorem [31] for recovering dynamic interactions between weakly coupled or
moderately coupled dynamical systems. The authors have examined the limitations of
the state–space reconstruction methods. The manifold of the systems from one single
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coordinate observation function has been reconstructed. Then, the approach seeks to
identify the reconstructions that have mutual driving, one-directional driving, or are
completely independent. The approach fails to recover self-loops, and it cannot differentiate
between mutual and unidirectional dynamical driving in connected components [32].
Although the study in [30] claims that the correlation dimension reveals the causal relations
in the reconstructed space, it can fail in some cases. If two uncoupled systems (X, Y)
are driven by a hidden common driver Z, X and Z cannot distinguish, and it implies a
directional link from X to Y when X and Z are synchronized.

Although the correlation dimension and measures based on it have been explored
for detecting causality and synchronization, they have not been studied extensively to
reveal connections in the network. The existing methods in the literature are particularly
interested in detecting synchronization. In this paper, we focus on detecting causality in
the networks, assuming the networks are not synchronized.

Additionally, the previously discussed CM or state–space methods reconstruct the
phase space from a single observation of a node. In contrast, we observe all states of
the subsystems in the network. Even if we analyze the correlation dimension in the
reconstructed state–space or observe all states, using only the correlation dimension may
be insufficient to determine the direct and indirect influences of the network. However, we
have utilized the conditional correlation dimensions-based measure in [7] to infer direct
and indirect influences in this paper.

The main goal of this paper is to quantify the causal inference between the subsystems
in a network in the geometric sense. Unlike previous studies, this paper extends the
analysis of causal inference problems using only geometric interpretation to detect causal
links in the networks. Expanding upon the fractal geometric concepts of the consequence
of information flow in [7], we develop the optimal conditional correlation dimensional
geometric information flow principle (GeoC) that resembles the oCSE principle previously
proposed by Sun et al. [25]. We present two algorithms to detect the causal links and
remove indirect links using the correlation dimension geometric information flow GeoC.
The performance of the oGeoC algorithm is investigated in coupled logistic networks.

2. Problem Statement
2.1. Preliminaries and Basic Definitions

In this section, we present the notation and the basic definitions. A graph, G ≡ (V , E)
is defined by the set of vertices (nodes), V = {v1, v2, . . . , vN}, and the set of edges (links),
E ⊆ V × V . If ∀ (vi, vj) ∈ E =⇒ (vj, vi) ∈ E , the graph is undirected. Otherwise, it is
defined as a directed graph. The set of Ni = {vj ∈ V|(vi, vj) ∈ E} is denoted as the parents
of the ith node. In short, we denote vi simply as i. The graphs can also be represented
by their adjacency matrix A. The elements of A are aij = 1 if there is an edge from j to i.
Otherwise, aij = 0.

Consider a discrete-time dynamical system in Rd expressed as

xn+1 = f (xn) (1)

where xn ∈ Rd is the state variable at time step n and f (·) : Rd → Rd is the local dynamics.
We also consider a discrete-time dynamical network consisting of N identical components

x(i)n+1 = f (x(i)n ) + σ
N

∑
i=1
i ̸=j

aijκg(x(i)n , x(j)
n ) i = 1, 2, . . . , N. (2)

Here, x(i)n ∈ Rd is the state variable of node i at time step n, f (·) : Rd → Rd is the local
dynamic, σ is the coupling strength, aij represents the coupling from node j to node i and
it can be expressed in matrix form A ∈ RN×N, κ ∈ Rd×d is the inner coupling matrix and
g(x(i)n , x(j)n ) : Rd ×Rd → Rd is the coupling function. To simplify the notation, we define the
next step of x(i)n as

x
′(i) = x(i)n+1, (3)
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where the ′ denotes the next time step as an alternative notation to explicitly indexing time. Let{
x(i)n

}T

n=1
and

{
x(j)

n

}T

n=1
represent sets of measurements from a network in (2). Assume

that a manifold of observations of (x(i)n , x(j)
n , x

′(i)
n ) ∈ (X(i) × X(j) × X

′(i)) and (x(i)n , x
′(i)
n ) ∈

(X(i) × X
′(i)) are defined as M and Ω1, respectively. Based on how these manifolds lie

in the space provides crucial information about whether x
′(i)
n depends only on x(i)n or on

(x(i)n , x(j)
n ). Thus, using the dimensions of the manifold of the subsystems can be decisive

in determining causal inference between systems [7]. First, the conditional correlation
dimensional geometric information flow is defined as follows:

Definition 1 (Conditional Correlation Dimensional Geometric Information Flow [7]). As-
sume that M and Ω1 are bounded Borel sets. Let M be a manifold of the data set taken
at time steps from 1 to T + 1 for node i as (X(i)

1 , X(i)
2 , . . . , X(i)

T , X(i)
T+1) and let Ω1 be a set

X(i) = (X(i)
1 , X(i)

2 , . . . , X(i)
T ) taken at time steps from 1 to T for node i. The geometric information

flow Geo(·|·) is defined in the sequel:

Geo(X
′(i)|X(i)) = D2(M)−D2(Ω1) (4)

where D2(·) is the correlation dimension of the given dataset [33]. Then, the authors in [7]
have defined correlation dimensional geometric information flow between two systems by
the following:

Definition 2 (Correlation Dimensional Geometric Information Flow [7]). Consider X(i) =

(X(i)
1 , X(i)

2 , . . . , X(i)
T ) and X(j) = (X(j)

1 , X(j)
2 , . . . , X(j)

T ) as time series measured at time steps from
1 to T for nodes i and j, respectively. The correlation dimensional geometric information flow from j
to i is measured by using the conditional correlation dimension in (4) and is given by

GeoCj→i := Geo(X
′(i)|X(i))− Geo(X

′(i)|X(i), X(j)). (5)

It is clear that if j influences i, then GeoCj→i > 0. However, if j does not influence i,
GeoCj→i = 0.

GeoC is based on quantifying information flow between variables and how manifolds
are mapped [7]. The study also investigates information flow between two systems, even
if the observation set is not only a manifold but also a fractal. It lies on how the fractal
dimension changes through the transformations [34].

2.2. Geometric Causation of Information Flow in Networks

We aim to extend the previous concept of correlation dimension geometric information
flow to the networks. The idea is to make an analogy between the oCSE principle [25] and
GeoC [7]. Hence, the extension of the proposed geometric measure GeoCj→i leads us to
solve this problem.

Definition 3 (optimal Conditional Correlation Dimensional Geometric Information Flow
(oGeoC)). Let I, J, and K be subsets of nodes in a network. The correlation dimensional geometric
information flow from J to I by conditioning on K is defined as

GeoCJ→I|K := Geo(X
′(I)|X(K))− Geo(X

′(I)|X(J), X(K)) (6)

where X
′(I) is the observation at T + 1 for subset I and X(J) = (X(J)

1 , X(J)
2 , . . . , X(J)

T ) and

X(K) = (X(K)
1 , X(K)

2 , . . . , X(K)
T ) are time series measured at time steps from 1 to T for nodes

J and K, respectively. It is clear that if X(I) = X(K), then (6) becomes

GeoCJ→I|K = GeoCJ→I|I = GeoCJ→I (7)
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as is denoted (5). Moreover, if X(K) = ∅, GeoC·→· | · simplifies to

GeoCJ→I|∅ = Geo(X
′(I))− Geo(X

′(I)|X(J)). (8)

Consider the case where J ⊂ K. In this case, Geo(X
′(I)|X(J), X(K)) reduces to Geo(X

′(I)|X(J)),
which implies that GeoCJ→I|K = 0. Furthermore, if J ⊂ NI and J ̸⊂ K, then GeoCJ→I|K > 0.

Using Definition 3 and its properties, we can quantify the information flow between
variables geometrically. Moreover, we can identify direct influences and indirect influ-
ences by using similar algorithms that were earlier designed in [25]. “FORWARD GEOC”
in Algorithm 1 computes GeoCj → i | K for each node i ∈ V and finds the maximum of
GeoCj → i | K over j. Then, the algorithm discovers one of the causal parents of i in each
iteration and updates the K set iteratively until GeoCj → i | K reaches zero (ε f orward). In
“BACKWARD GEOC”, the candidate set of the causal parents of i is used, and the algo-
rithm calculates GeoCj → i | K−{j} over the K set. If each GeoC is zero (εbackward), then the
candidate set of the causal parent of i is removed from the K set. “BACKWARD GEOC”
also returns the estimated adjacency matrix Â to present the graph.

ε f orward and εbackward can be determined by setting a threshold or performing a sig-
nificant test statistically [35]. We utilized a shuffle test to determine the zero (ε f orward) in
Algorithm 1. The shuffle test procedure is presented in Appendix B. We set a threshold for
εbackward in the backward algorithm. Note that the computation of the correlation dimension
is required in Algorithm 1. Hence, the estimation of the correlation dimension is explained
in Section Estimation of Correlation Dimension.

Algorithm 1 oGeoC Algorithm

1: procedure FORWARD GEOC(x(i)n ∀ i = 1, 2, . . . N and n = 1, 2, . . . , T ;
V : the vertex set; ε f orward: threshold for zero)

2: Initialize: N ← ∅
3: for i ∈ V do
4: Initialize: K ← ∅, index_max ← ∅
5: do{K ← K ∪ {index_max} }
6: for j ∈ V −K do
7: geoc_j[j] = GeoCj → i | K
8: end for
9: maxgeoc = maxj{geoc_j}

10: index_max = arg max{geoc_j}
11: while maxgeoc > ε f orward
12: N [i]← K
13: end for
14: return I , N
15: end procedure
16: procedure BACKWARD GEOC(x(i)n ∀ i = 1, 2, . . . N and n = 1, 2, . . . , T ;

Set of nodes I ⊂ V ; and set of nodes N ⊂ V : the candidate set of causal parents of I ;
εbackward: threshold for zero)

17: Initialize: Â = 0N×N whose elements [âij]
18: for i ∈ I do
19: K ← N [i]
20: for j ∈ K do
21: if GeoCj → i | K−{j} > εbackward then
22: âij = 1
23: end if
24: end for
25: end for
26: return Â: estimated adjacency matrix
27: end procedure
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Estimation of Correlation Dimension

D2(·) is used to estimate GeoCJ→I|K. Hence, the correlation dimension and its imple-
mentation details are discussed in this section.

Consider the probability of a trajectory being within a ball Bϵ(x) of radius ϵ around
x, which is defined as pϵ(x) =

∫
Pϵ(x)

dµ(x). Then, the generalized correlation integral

becomes [33]

Cq(ϵ) =
∫

x
pϵ(x)q−1dµ(x). (9)

The correlation integral in Equation (9) can be rewritten using a Heaviside step function
as follows

Cq(ϵ) =
∫

x

[∫
y

Θ(ϵ− ||x− y||) dµ(y)
]q−1

dµ(x). (10)

Here, Θ is the Heaviside step function, which is defined as Θ(x) = 1 if x > 0 and Θ(x) = 0
otherwise.

Grassberger and Proccacia have discussed the correlation integral for the case of
q = 2 [36,37]. From a finite set of observations of xi, the estimation of the correlation
integral is given as

Ĉ(ϵ) =
1

[T(T − 1)]q−1

T

∑
i=1

[
∑
i ̸=j

Θ(ϵ− ||xi − xj||)
]q−1

(11)

where T is the number of samples. The modified version of the correlation sum when q = 2
is described in [38]

Ĉ(ϵ) =
2

T(T − 1)

T

∑
i=1

T

∑
j ̸=i+1

Θ(ϵ− ||xi − xj||). (12)

The summation terms count the pairs (xi, xj) for which distance ||xi − xj|| < ϵ. It is
expected that Ĉ(ϵ) scales a power law, Ĉ ∝ ϵD2 when N → ∞ and ϵ→ 0. The correlation
dimension D2 is defined as

d(T, ϵ) =
∂ ln C(ϵ, T)

∂ ln ϵ

D2 = lim
ϵ→0

lim
N→∞

d(T, ϵ).
(13)

A well-known technique for estimating D2 involves obtaining the slope of the
ln C(ϵ, T)/ ln ϵ curve in linear regions for T ≫ 0 [39]. First, ln C(ϵ, T) is plotted against
ln ϵ by increasing ϵ until ln C(ϵ, T) no longer changes with increasing ln ϵ. Then,
the slope of the ln C(ϵ, T)/ ln ϵ in the linear region is determined using a numerical
estimation method, particularly least squares estimation. Clearly, the estimation of D2
depends on the number of samples T, minimum radius ϵmin , maximum radius ϵmax and
the number of radius steps #rs between ϵmin and ϵmax . The details are demonstrated in
Appendix A.

3. Results

In this section, we present some examples to demonstrate the performance of the
proposed method.

Example 1. In the first example, we choose the logistic map as a dynamical system in Equation (2),
and its state equation is defined as

xn+1 = f (xn) = axn(1− xn) x0 ∈ [0, 1]. (14)

Here, for a = 4, the system is chaotic. The number of nodes in the network is N = 7 in (2), and
we consider directed and bidirectional coupled networks as shown in Figure 1a,b. The coupling
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strength is σ = 0.1, and the inner coupling matrix is κ = 1. We choose the coupling function
as g(x(i)n , x(j)

n ) = f (x(j)
n )− f (x(i)n ). The number of the permutation is selected as Np = 100 to

determine the zero ε f orward, and the significance threshold is θ = 0.01. The performance of the
proposed algorithm is defined in terms of the true positive rate (TPR), the false positive rate (FPR)
and the receiver operating characteristic (ROC) curve [40].
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6
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7

(a)

1
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5 6 3

4

7

(b)

0 1000 3000 5000 7000 9000
0
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0.6

0.8

1

T

TPR
FPR

(c)

0 1000 3000 5000 7000 9000
0

0.2

0.4

0.6

0.8

1

T

TPR
FPR

(d)
Figure 1. The performance of the proposed algorithm for the networks in (a,b). (a) A network with
directed coupling consisting of N = 7 nodes and 8 links. (b) A network with bidirectional coupling
consisting of N = 7 nodes and 12 links. In both networks, each circle represents a logistic map.
(c) TPRs and FPRs are plotted against various sample sizes (T) for the network in Figure (a). (d) We
also illustrated TPRs and FPRs with respect to (T) for the network in Figure (b). In both simulations,
the number of permutations is Np = 100, and the significance threshold is θ = 0.01.

Figure 1c,d demonstrate the TPRs and FPRs with respect to various sample sizes
(T) when the network is selected in Figure 1a,b, respectively. As the number of samples
increases, the TPR reaches one, and the FPR becomes zero as depicted in Figure 1c. We could
find all links correctly for the network in Figure 1a using the oGeoC algorithm. The TPR is
almost one when T is increased (i.e., the algorithm misses only one link as a false negative
in Figure 1b), and FPR drops when T > 9000, as shown in Figure 1d.

Example 2. In this example, we investigate the case of randomly coupled networks. We use
the Erdős–Rényi (ER) model to generate random graphs [41], creating random couplings with a
probability of p = 0.1 for the networks. The number of nodes is selected as N = 20. In particular, we
choose the same dynamical system as the logistic map and the network parameters in Example 1.
However, the number of independent trials is 10.

We show only one of the realizations in Figure 2a. We illustrate TPRs and FPRs for
different sample sizes in Figure 2b. The points represent the average values of TPRs and
FPRs over 10 trials. The maximum point of the error bar indicates the highest value of
TPRs and FPRs, while the minimum point represents their lowest values. Additionally, the
ROC curve is demonstrated in Figure 2c with T = 500 and T = 1000 for the network in
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Figure 2a. The number of permutations is chosen as Np = 100. The significance threshold θ
varies from 0.01 to 0.99 in Figure 2c to extract the ROC curve.

TPR approaches one, and the interval between the maximum and minimum values
of the error bars is decreased when T is increased, as shown in Figure 2b. FPR is slightly
reduced but not equal to zero for T = 10, 000. In summary, the algorithm achieves to find
true links in the networks; it detects a small number of links as false positives.

The ROC curves in Figure 2c indicate that the performance of the proposed algorithms
is improved when the number of samples is increased as expected. However, when θ is
increased, the performance of algorithms decreases even if Np is large.

11

10

14

18

194

15

9

12

6

17

13

1

3

20

5

16

8

7

2

(a)

0 1000 3000 5000 7000 9000

0

0.2

0.4

0.6

0.8

1

T

TPR
FPR

(b)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FPR

T
P
R

T = 500
T = 1000

(c)
Figure 2. The performance of the proposed algorithm for the networks randomly coupled according
to the Erdős–Rényi (ER) model with the probability of p = 0.1. The simulations are repeated 10 times
for different networks. (a) An illustration of one of the networks. (b) Error bar points show the mean
of TPRs and FPRs with respect to different sample sizes. The maximum and minimum points of the
error bar indicate the highest and lowest values of TPRs and FPRs. The number of permutations is
again Np = 100 with θ = 0.01. (c) ROC curve for T = 500 and T = 1000. Here, Np = 100, but θ is
varied from to 0.01 to 0.99 to plot the ROC curve.

4. Discussion

In this study, we investigated the causal inference of networks using only geometric
interpretations. We utilized the conditional correlation dimensional geometric information
flow measure based on the correlation dimension to accomplish this. We proposed the
oGeoC principle, which allows us to find causal and noncausal parents of a node, thereby
identifying direct and indirect links through geometric sense. We tested our proposed
method on coupled logistic maps. Our findings revealed that we could find the links when
the number of samples was large enough. False positives decreased when the observations
were sufficient and the significance level θ was selected appropriately.
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It is also important to note that the number of observations is a vital parameter
when estimating GeoC. Although GeoC detects causal relationships between systems, the
estimation requires a large number of observations to estimate D2 accurately [42].

We obtainedD2 by finding the slope of the ln C(ϵ, T)/ ln ϵ curve over its linear regions.
In this technique, the selection of the minimum radius ϵmin and the maximum radius ϵmax
plays a key role. If the dimensionality of the system is high, finding a linear region in the
curve can be problematic even with a large number of observations. Hence, in case of large
networks, it is important to increase the number of observations and to select the radius
ϵmin and ϵmax by considering the linear region of the ln C(ϵ, T)/ ln ϵ curve.

Furthermore, we plotted ROC curves according to the significance level θ when the
number of shuffles was fixed. If the number of shuffles is large enough, the oGeoC algorithm
can determine the causal links while removing the noncausal links. When the significance
level θ is increased, the false positive rate reaches one even if the number of shuffles is large,
as the ROC curve depicts.

As a direction for future work, it would be interesting to apply the oGeoC principle
to real data. In real data analysis, it may not be possible to observe all the states of the
network nodes. In this case, it is necessary to reconstruct the phase space from a single
observation of a node. The embedding dimension parameters (e.g., the delay of embedding
and the embedding dimension) are significant factors when reconstructing the state space
using Takens’ embedding theorem [39]. When the length of the data is sufficient, and there
is no noise in the data, there exists a diffeomorphism between the reconstructed state space
and the original space. It ensures the invariants of the system, such as D2, are preserved in
the reconstructed phase space. However, the observations are generally too short or noisy
in real data. Therefore, the choice of the embedding dimension parameters is essential for
an accurate estimation of D2.

DeterminingD2 can also become challenging in noisy conditions. The studies in [33,43]
have shown that we may not find the significant scaling region in the correlation sum and
the linear interval of the correlation dimension when the dataset has a 2% noise level.
Therefore, we may not obtain a reliable estimation of GeoC in the presence of noise.

In addition, it is known thatD2 estimation can be made with several techniques [44–46].
The oGeoC principle with different D2 estimation techniques or noisy data can be investi-
gated for further exploration.

Although existing studies and our proposed method deal with detecting causal infer-
ence in deterministic systems, the question of which method to use in stochastic systems,
especially in weak and moderate coupling, remains unresolved. Another open question is
whether different dynamic properties of interacting systems might bias the estimation of
the causal direction. In a recent study, the ability of a state–space correspondence method
to identify causal direction in nonlinear bivariate stochastic processes was investigated to
solve these problems [47].

In our case, it is known that the oGeoC principle utilizes the estimation of the correla-
tion dimension. When the variance noise level of nonlinear bivariate stochastic processes
increases, the estimation of the correlation dimensions for the systems becomes less reliable.
As a result, it becomes difficult to identify causal and noncausal parents of a node, and the
performance of the proposed algorithms will be reduced accordingly. A potential solution
to these challenges can be to examine the estimation of the correlation dimension using the
newly proposed techniques in [44–46] for nonlinear bivariate stochastic processes.

To conclude, we showed that the oGeoC principle can detect the causal parents of a
node in a network when the observations are long enough and entirely noise-free. It will
be interesting to apply the oGeoC principle to real data where the causal relations are
unknown, including time series of air quality, temperature, and humidity. Future studies
should also explore applications involving stochastic interactions, such as determining
causality in physiological control mechanisms, brain activity interactions, and coupled
ocean–atmosphere chaotic systems. We aim to test this principle in a more detailed study
and explore their causal relationships.
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Appendix A. Estimation of Correlation Dimension

Given a time series {xn}T
t=1, our goal is to estimate D2. Although D2 is invariant, the

correlation sum Equation (12) is not invariant for a given ϵ [33]. Therefore, the correlation
sum in Equation (12) is calculated for several radii at first. Then, the curve of ln Ĉ(ϵ)/ ln(ϵ)
is plotted. The slope of the curve is computed over a linear region. In this paper, we use the
Linear Regression model to determine the slope. The pseudo-code is given in Algorithm A1.

In our simulations, we choose the minimum radius as ϵmax = 0.0562, the maximum
radius as ϵmax = 0.630, and the number of radius steps as #rs = 50 for the coupled
logistic networks. We utilize kDTree to count the pairs inside the ball of each ϵ and use
multiprocessing tools when estimating D2.

Algorithm A1 D2 Estimation

1: procedure D2 ESTIMATION(x, ϵmin, ϵmax, #rs)
2: Initialize: step_ϵ = (ϵmax − ϵmin)/#rs,
3: slope_array← [ ]
4: radius_array← [ ]
5: for r = ϵmin to ϵmax step step_ϵ do
6: Calculate Ĉ(r) using x
7: slope_array← slope_array + [ln Ĉ(r)]
8: radius_array← radius_array + [ln(r)]
9: end for

10: (D2, residuals)← Linear_Regression(radius_array, slope_array)
11: return D2
12: end procedure

Appendix B. Shuffle Test to Determine the Zero

There are two thresholds, such as ε f orward and εbackward, to determine the zero in the
GeoC algorithm. We perform a statistical significance test to check whether GeoC is greater
than zero. The idea is to obtain an empirical cumulative distribution from the shuffled
GeoC and use it to determine the significance level.

To achieve this, we generate a random permutation array that shuffles the time and
surrogate x(j)

n according to the permutation as x(j⋆)
n . Then, GeoCj⋆ → i | K is calculated. The

procedure is repeated Np times, and the shuffled GeoCs are sorted in ascending order. The
significance threshold θ and Np are used to set the predefined index, which determines the
significance level. ε is the prede f ined indexth element of the ascending list of shuffled GeoC
values. The pseudo-code is given in Algorithm A2.

The determination of ε depends significantly on the number of shuffles, Np and θ. As
the Np increases and θ decreases, we can determine zero significantly.
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Algorithm A2 Shuffle Test

1: procedure SHUFFLE TEST(x(i)n , x(j)
n x(K)n for n = 1, 2, . . . , T ; , Np : number of shuffles, θ:

significance threshold)
2: Initialize: array_index ← int(Np × (1− θ)),
3: shu f f le_array← [ ]
4: for trial ∈ Np do
5: Generate a random permutation array that shuffles n
6: Shuffle x(j)

n according the permutation and obtain shuffled times series x(j⋆)
n

7: Calculate GeoCj⋆ → i | K
8: shu f f le_array← shu f f le_array + [GeoCj⋆ → i | K]
9: end for

10: ascending_Geo_array← sort(shu f f le_array)
11: ε← ascending_Geo_array[array_index]
12: return ε
13: end procedure

Appendix C. Illustration of D2 Estimations for the Networks

To demonstrate D2 estimations, we show one step of the proposed forward algorithm
for the networks in Figures 1a and 2a, respectively.

First, we start with the network in Figure 1a. Let us randomly choose the third node
(i = 3) from the network. The forward algorithm calculates GeoCj→3 | ∅ for all j and returns
the maximum value of GeoCj→3 | ∅ for all j and its index of this maximum value in the first
iteration. In our case, we found that the maximum GeoC as maxgeoc = GeoC2→3 | ∅ = 0.163
for the third node. When Equation (8) is written for i = 3 and j = 2, it becomes

GeoC2→3 | ∅ = Geo(X
′(3))− Geo(X

′(3)|X(2))

= D2(MX′(3))−D2(M(X′(3),X(2))
) +D2(MX(2)).

(A1)

In the estimation of GeoC2→3 | ∅, we require to estimate the correlation dimension of
D2(MX′(3)), D2(M(X′(3),X(2))

) and D2(MX(2)) for given datasets X
′(3), (X

′(3), X(2)) and X(2),

respectively. We use Algorithm A1 to estimate D2(·). We plot the curves of ln Ĉ(ϵ)/ ln(ϵ)
of the datasets X

′(3), (X
′(3), X(2)) and X(2) in Figure A1. The blue circle points demonstrate

the natural logarithm of correlation sum versus the natural logarithm of radius. The red line
determines the slope of the blue points by using least squares estimation. In our case, the
slope of the red line gives us the estimated correlation dimension.

In the algorithm, we determine whether the maximum value of GeoC·→· | · is statisti-
cally significant or not. We found that GeoC2→3 | ∅ > 0. Hence, the index of the maximum
GeoCj→3 | ∅ becomes K = index_max = 2.

In the second iteration, we need to compute GeoCj→3 | 2 for all j except for K = 2. Our
results reveal that the maximum value of GeoCj→3 | 2 becomes GeoC7→3 | 2 = 0.001 when
j = 7. If j = 7, i = 3, and K = 2, Equation (6) is expressed by

GeoC7→3 | 2 = Geo(X
′(3)|X(2))− Geo(X

′(3)|X(2), X(7))

= D2(M(X′ (3) ,X(2)))−D2(MX(2) )−D2(M(X′ (3) ,X(2) ,X(7))) +D2(M(X(2) ,X(7))).
(A2)

Again, we illustrate the curves of ln Ĉ(ϵ)/ ln(ϵ) and corresponding estimated correla-
tion dimensions (D2(M(X′(3),X(2))

), D2(MX(2)), D2(M(X′(3),X(2),X(7))
), and D2(M(X(2),X(7))))

in Figure A2.
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Figure A1. The curve of ln Ĉ(ϵ)/ ln(ϵ) for a given dataset of (a) X
′(3), (b) (X

′(3), X(2)), (c) X(2) for the
network in Figure 1a. The estimated correlation dimension is shown in the legend. The number of
observations is T = 10, 000.
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Ĉ
(ϵ
)

D2(M(X′(3),X(2),X(7))) = 2.12

−2.5 −2 −1.5 −1 −0.5

−4

−3

−2

−1

ln(ϵ)
(d)

ln
Ĉ
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Figure A2. The curve of ln Ĉ(ϵ)/ ln(ϵ) for a given dataset of (a) (X
′(3), X(2)), (b) X(2),

(c) (X
′(3), X(2), X(7)), (d) (X(2), X(7)) for the network in Figure 1a. The estimated correlation di-

mension is shown in the legend. The number of observations is T = 10, 000.
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In the second iteration, the maximum GeoC is not statistically significant (GeoC7→3 | 2 < 0).
Thus, the algorithm stops in the second iteration. We determine the causal parents of the third
node asK = 2 for the network in Figure 1a as expected.

Second, we continue with the network in Figure 2a. We randomly choose the seventh
node (i = 7) from the network. The algorithm finds the maximum GeoC as GeoC2→7 | ∅
in the first iteration, and it is statistically significant (GeoC2→7 | ∅ > 0). When estimat-
ing GeoC2→7 | ∅, the algorithm computes the correlation dimension of the datasets X

′(7),
(X
′(7), X(2)), and X(2) using the same technique in Algorithm A1. The curve of estimation

of ln Ĉ(ϵ)/ ln(ϵ) and the corresponding estimated D2(·) is shown in Figure A3.
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Figure A3. The curve of ln Ĉ(ϵ)/ ln(ϵ) for a given dataset of (a) X
′(7), (b) (X

′(7), X(2)), (c) X(2) for
the network in Figure 2a. The estimated correlation dimension is shown in the legend. The number
of observations is T = 10, 000.

In the second iteration, the maximum GeoC is achieved GeoC20→7 | 2. We demonstrate
the curve of ln Ĉ(ϵ)/ ln(ϵ) and the estimations of D2(·) of the dataset (X

′(7), X(2)), X(2),
(X
′(7), X(2), X(20)), and (X(2), X(20)) in Figure A4. The algorithm determines GeoC20→7 | 2 >

0 and updates K = (2, 20) as a candidate set of causal parents.
In the third iteration, GeoC10→7 | (2,20) takes the maximum value by calculating the cor-

relation dimension of the datasets (X
′(7), X(2), X(20)), (X(2), X(20)), (X

′(7), X(2), X(7), X(10)),
and (X(2), X(7), X(10)). The curves of ln Ĉ(ϵ)/ ln(ϵ) of these datasets and their estimated
D2(·) are represented in Figure A5. In this case, the algorithm decides GeoC10→7 | (2,20) < 0
and returns the causal parents of the seventh node as K = {2, 20}.



Entropy 2024, 26, 1030 14 of 16

−2.5 −2 −1.5 −1 −0.5
−4

−3

−2

−1

ln(ϵ)
(a)

ln
Ĉ
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Figure A4. The curve of ln Ĉ(ϵ)/ ln(ϵ) for a given dataset of (a) (X
′(7), X(2)), (b) X(2),

(c) (X
′(7), X(2), X(20)), (d) (X(2), X(20)) for the network in Figure 2a. The estimated correlation

dimension is shown in the legend. The number of observations is T = 10, 000.
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Figure A5. The curve of ln Ĉ(ϵ)/ ln(ϵ) for a given dataset of (a) (X
′(7), X(2), X(20)), (b) (X(2), X(20)),

(c) (X
′(7), X(2), X(7), X(10)), (d) (X(2), X(7), X(10)) for the network in Figure 2a. The estimated correla-

tion dimension is shown in the legend. The number of observations is T = 10, 000.
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