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ABSTRACT Manifold-learning techniques are routinely used in mining complex spatiotemporal data to
extract useful, parsimonious data representations/parametrizations; these are, in turn, useful in nonlinear
model identification tasks. We focus here on the case of time series data that can ultimately be modelled as
a spatially distributed system (e.g. a partial differential equation, PDE), but where we do not know the space
in which this PDE should be formulated. Hence, even the spatial coordinates for the distributed system
themselves need to be identified - to "emerge from"- the data mining process. We will first validate this
"emergent space" reconstruction for time series sampled without space labels in known PDEs; this brings
up the issue of observability of physical space from temporal observation data, and the transition from
spatially resolved to lumped (order-parameter-based) representations by tuning the scale of the data mining
kernels. We will then present actual emergent space "discovery" illustrations. Our illustrative examples
include chimera states (states of coexisting coherent and incoherent dynamics), and chaotic as well as
quasiperiodic spatiotemporal dynamics, arising in partial differential equations and/or in heterogeneous
networks. We also discuss how data-driven “spatial" coordinates can be extracted in ways invariant to
the nature of the measuring instrument. Such gauge-invariant data mining can go beyond the fusion of
heterogeneous observations of the same system, to the possible matching of apparently different systems.

INDEX TERMS Data Mining, Diffusion Maps, Dimensionality Reduction, Nonlinear Dynamical Systems

I. INTRODUCTION

IN 1979, when the American embassy was vacated in
Tehran, sensitive documents were not incinerated; they

were instead “strip-shredded” and considered destroyed.
Yet local carpet-weavers painstakingly put them together
again [1]. In 2011 DARPA issued a “shredder challenge”:
reconstructing five shredded pages (a handwritten page, a
picture etc.); the $50,000 prize was claimed a few weeks
later [2].

The subject of this paper is the extraction of useful in-

formation implicit in apparently spatially disorganized data,
such as the actual physical order of the paper shreds; this can
be useful for winning the DARPA challenge, or, as we show
below, for visualizing and hopefully better understanding
spatiotemporal simulations. Extracting useful information,
such as the dimension and geometry of the underlying phys-
ical space, is crucial in identifying a consistent distributed
dynamic model. Establishing the correct global sequence of
temporal observation windows, as well as the number and
nature of state variables in this consistent dynamic model is
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also crucial for the system identification task. In this paper
we use nonlinear data mining tools (in particular, versions of
diffusion maps [3]–[7]) to extract these types of information
from spatially/temporally disorganized data by exploiting the
intrinsic variabilities in the recorded data sequences. These
extracted variabilities are the key to defining new spatial co-
ordinates for the representation and modeling of the system.

In classical mechanics, generalized coordinates define a
frame in which to represent the configuration of a system
with respect to a reference state. Many possible choices of
generalized coordinates exist, and there is an “anthropic”
motivation in choosing them so as to make the formulation, or
the solution, of the equations of motion in these coordinates
easier. Data-driven coordinate discovery provides an even
broader set of alternatives. Ideally such a set of coordinates
would be intrinsic to the phenomenon observed and indepen-
dent of the particular nature of the measurement entity.

The focus in this paper is threefold: We will start with
the observability and reconstruction of physical space from
disorganized (spatially unlabelled) observations of spatially
distributed processes. The extent to which we can “redis-
cover" the missing physical space validates the approach.
In the case of networks, where no obvious physical space
exists, we will demonstrate the identification of a “surrogate”
embedding space, useful in reducing the network dynamics,
demonstrate how it emerges from the network dynamic data,
and discuss its possible physical interpretation in terms of
network heterogeneity. Motivated by this heterogeneous net-
work example, we choose the term “Emergent Space” for
such spatial embeddings.

Physical dynamics can be observed at several different
scales. Our second focus involves the adaptation of data min-
ing to the degree of feature coarse-graining we are interested
in: that is, to the scale of the observer. Investigating chimera
states (hybrid states of coherent and incoherent dynamics) for
a partial integro-differential equation we show how we can
move from recovering space on a fine scale to the extraction
of a more lumped description in terms of more coarse-grained
order parameters.

Lastly, we focus on exploring the use of different ob-
servation modalities. Our illustrative example involves low-
dimensional spatiotemporal dynamics, namely modulated
traveling waves (quasiperiodic solutions) of the Kuramoto-
Sivashinsky equation, and we start by reconstructing the
underlying toroidal attractor. We then show how one can re-
cover the same emergent space reconstruction from different
types of (disorganized) measurements. We draw connections
between this and traditional dynamical system “embedol-
ogy” [8]: the theorems by Whitney [9], Nash [10], and
Takens [11]. If two systems are thus found to be observations
of each other, we illustrate, in a simple example, how spectral
techniques (gauge-invariant data mining, but also Koopman-
operator techniques [12], [13]) can guide us in matching the
two systems. Being able to consider (in principle) all possible
diffeomorphisms of a given representation of a system, leads
naturally to a discussion of which representation to choose

to work with and report on. For which variables should we
try to identify a dynamic model? This, in turn, leads to some
simple arguments about the interplay of data mining (and,
more generally, machine learning) and systems modeling,
opening up several research directions, some of which we
outline.

Details on the individual models and algorithms are given
in the Supplementary Information [14].

II. ON DIFFUSION MAPS
In recent years, many nonlinear manifold learning tech-
niques have been proposed for embedding apparently high-
dimensional nonlinear phenomena in lower-dimensional
spaces. Examples include Isomap [15], locally linear em-
bedding [16], Laplacian eigenmaps [17] and our method of
choice here: Diffusion Maps [3], [4], [18], [19].

Assume a collection of N real-valued time series segments
{ai}, i = 1, . . . , N . Each sampled time series ai is a T -
dimensional vector, containing the value of one recorded
variable at T discrete points in time, with T depending on
the sampling rate and the time window considered (longer
vectors sampling more than one variable at each moment in
time can be similarly constructed). Thus, each (time series)
vector can be regarded as a point in a T -dimensional Eu-
clidean space, with all time series together forming a point
cloud embedded in T dimensions. We assume that this point
cloud lies close to a smooth manifold M, embedded in
RT . Calculating all pairwise Euclidean distances between
the points yields, through a diffusion kernel, a symmetric
N ⇥N matrix, whose spectral properties can reveal intrinsic
structures in this cloud.

A diffusion kernel weighs the Euclidean distances between
points that are close in T -dimensional space (i.e., between
similar time series segments), much more strongly than those
pairs of points at larger Euclidean distances. This effectively
embodies a random walk on the data, where the probability
of jumping from point ai to ai0 is large if their distance is
small, and vice versa. The diffusion kernel on RT is defined
as

k (ai, ai0) = e

� ka
i

�a

i

0 k2

2✏
.

Here, the scale parameter ✏ is used to tune the rate of decay
of the kernel compared to a characteristic scale present in
the data. For relatively small ✏, the kernel decays fast, and
only pairs of points very close in the Euclidean distance are
significantly weighted.

Using the similarity measure given through the kernel,
we construct a graph between all data points. For a given
scale parameter ✏ > 0, the connectivity between two points
ai, ak 2 RT is stored in the kernel matrix Kik = k(ai, ak).
The Diffusion Maps concept is based on the convergence
of the normalized graph Laplacian on this graph to the
Laplace–Beltrami operator on the manifold M, in the limit
n ! 1, ✏ ! 0. If the data points are not sampled uniformly

2 VOLUME 4, 2016

Page 2 of 20

For Review Only

IEEE Access

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Kemeth et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

on the manifold, the matrix K has to be normalized by an
estimation of the density,

Pii =

nX

k=1

Kik, (1)

˜

K = P

�↵
KP

�↵
. (2)

Here, ↵ = 0 (no normalization [17]) can be used in the
case of uniform sampling, and ↵ = 1 otherwise [3]. The
kernel matrix ˜

K then has to be normalized again, by the
diagonal matrix Dii =

Pn
k=1

˜

Kik, yielding the Markov
matrix A = D

�1
˜

K. A non-linear parametrization (embed-
ding) of the manifold is then given by a certain number l

of eigenvectors of A, scaled by their respective eigenvalue.
The new embedding dimension l can be much smaller than
the previous ambient space dimension T , in which case the
algorithm achieves dimensionality reduction. Selecting the
eigenvectors is not as straight-forward as for linear dimen-
sionality reduction methods (Principal Component Analysis),
but can be achieved, for example, by sorting the eigenvectors
based on the absolute value of their associated eigenvalue
and removing eigenvectors that are functions of previous
ones [20].

Changing the length scale ✏ can lead to very different
representations of the same data, as described in more detail
in the section “The scale of the observer” in the paper. For
convenience, we write ✏ = const ·D2

max, with Dmax being the
maximal distance in the data set.

While most of our results are obtained using a simple
Euclidean-distance-based diffusion kernel, many extensions
exist, such as vector diffusion maps and (non)orientable
Diffusion Maps [21]; we will also use anisotropic diffusion
kernels, based on the more refined, so-called Mahalanobis-
like distance [6]. Recent Diffusion Maps research has pro-
gressed along a broad range of topics and applications,
including intrinsic modeling [22], reduction in multiscale
dynamical systems [7], multimodal data analysis [23], and
data organization [24], just to name a few.

Diffusion maps help construct a nonlinear, data-based
change of coordinates, embedding an intrinsically d-
dimensional manifold in a low-dimensional Euclidean space.
The extrinsic dimension of the manifold can be much larger
than d, making this a suitable choice for dimensionality
reduction. In this paper, we use Diffusion Maps to discover
intrinsic order contained in a data set, focusing on the relation
between this order and the spatiotemporal dynamic modeling
of the data.

III. RECOVERING SPACE FROM SPATIOTEMPORAL
DATA
We start by investigating observations of spatiotemporal
chaos in one spatial dimension. In particular, we consider
intermittency in the complex Ginzburg-Landau equation, a
nonlinear reaction-diffusion-type partial differential equation
for a complex variable W (x, t), arising in the modeling

FIGURE 1: (a) Randomly shuffled time series segments
(indexed by i) observed at different spatial locations in a
simulation of the complex Ginzburg-Landau equation. The
color corresponds to the modulus of the complex amplitude
W . (b) First independent Diffusion Map coordinate obtained
from the shuffled time series segments in (a). (d) Sorting the
time series in (a) according to their respective first Diffusion
Map coordinate yields a new indexing, ˆi. (c) The time series
in (a) sorted according to this new, data-driven indexing ˆ

i;
this identifies the correct topology of the original physical
space, and reconstructs the original spatiotemporal simula-
tion results.

of oscillatory systems [25]–[27]. The complex Ginzburg-
Landau equation (CGLE) in a re-scaled form reads

@tW = W + (1 + ic1)r2
W � (1 + ic2) |W |2 W, (3)

with real parameters c1 and c2. The parameter values leading
to our spatiotemporal intermittency [25] are c1 = 0 and
c2 = �3 (see the supplemental information for details on
the integration methods used).

The repeated appearance of temporally synchronous spa-
tial patches at seemingly random locations in space and
time is characteristic of this dynamical regime. Following
their initial emergence, these patches shrink in size due to
diffusion, giving rise to the triangular patterns in Fig. 1(c).
The incoherent nature of the dynamics suggests that the (here
512) time series recorded at each individual discretization
point, each consisting of 1000 steps, are mutually different
(there is no spatial periodicity) Nevertheless, due to the
smoothness induced by diffusion in the system, time series
at points located close to each other in physical space tend
to be similar: The Euclidean distance between observations
at nearby points will be smaller than that between observa-
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FIGURE 2: Top row: (a) Spatiotemporal data obtained from numerical simulations of the complex Ginzburg-Landau equation
in two spatial dimensions. The data is colored by the real part of the complex amplitude W . To demonstrate that we can
reconstruct (a version of) the original physical space from disorganized, spatially unlabelled time series data, we randomly
shuffle the N2 time series segments before using Diffusion Maps. (b) The first two independent Diffusion Map coordinates, �1

and �2, resulting from data mining and colored as in (a); the “rediscovered" space is visually homeomorphic to the hidden “true"
one. Apart from a slight rotation, �1 corresponds roughly to �x and �2 to y. Bottom row (schematic): in a finite difference
discretization of the PDE, the “hidden” Jacobian would have a banded structure in the usual row-by-row numbering of the
discretization points (a typical point five-point stencil is highlighted, left). This structure is lost upon random point labelling
(middle), but recovered when the points are correctly reordered after data mining (right).

tions at points far apart in physical space. This fact will be
exploited in the Diffusion Map process. In Fig. 1(d), it can
be seen that the first Diffusion Map coordinate �1 associates
(is one-to-one) with the spatial coordinate x: Each data point
(each time series) has its own entry in the �1 vector; here
large entries correspond to time series observed at small x,
while small entries correspond to observations at large x

(the original physical space was discovered “flipped”!). That
�1 (which is one-to-one with x) turns out to be by far the
most dominant mode, suggests that the data mainly vary
along a single “distributed"direction; alternatively, that the
system can be described using one spatial dimension. Note
that for the kernel scale ✏ = 1.0 ⇡ 5.7 · 10�4

D

2
max chosen,

with Dmax being the maximal Euclidean distance between
our time series, only a few nearest neighbors are effectively
considered in the Diffusion Map computation. (The effects
of the kernel scale are treated in more detail in section “The
scale of the observer: Tuning the kernel parameter”.)

Shuffling the individual time series, c.f. Fig. 1(a), i.e.
shuffling the indices in the Diffusion Map matrix, does not
affect its eigencomputations. The first and only significant
Diffusion Map coordinate now appears nonmonotonic with
the (shuffled) index i, as shown in Fig. 1(b). However,
simply sorting the entries of the Diffusion Map coordinate
in increasing order (and changing the indices of the time
series accordingly to the new index ˆ

i) recovers the original
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spatial arrangement, see Fig. 1(c). We thus argue that the
dimensionality (one) and the topology (the correct ordering
of the points) of the physical space x is contained in (is
observable through, can be recovered from) the dynamic
simulation data themselves, without spatial labels.

Shredding Fig. 1(a) vertically gave 512 time series; shred-
ding it in the horizontal direction gives 1000 spatial snap-
shots. They are mutually different, yet the smoothness inher-
ent in the time evolution implies that nearby time instances
will yield similar snapshots. The above procedure applies
again: We can now recover from temporally shuffled snap-
shot data the correct temporal sequence [28].

Clearly, this approach to recovering physical space is not
restricted to line segments. It is also applicable to one-
dimensional systems with periodic boundaries (rings, c.f.
Fig. 4), as well as to systems with two or more spatial
dimensions. Indeed, our procedure so far can be thought of
as the putting-back together of effectively one-dimensional
puzzles – the puzzle pieces are very long in the vertical (time
series) or in the horizontal (snapshot) direction. It is easy to
rationalize that by comparing edges of space-time patches
(two-dimensional puzzle tiles) two-dimensional puzzles can
also be reassembled. For spatiotemporal intermittency in the
complex Ginzburg-Landau equation with one spatial dimen-
sion and periodic boundary conditions, one finds that the
first two Diffusion Map coordinatesdefine a circle. Shuffling
the data indices, applying Diffusion Maps and sorting the
shuffled data along that circle, one recovers the original ring
ordering modulo a rotation and possibly a reflection (not
shown).

Fig. 2(a) illustrates the recovery of two-dimensional phys-
ical space from dynamical (time series segment) data. It
depicts spatiotemporal intermittency on a square, with zero-
flux boundary conditions, again for the complex Ginzburg-
Landau equation (eq. 3). Recording individual time series at
each point of a 64 by 64 discretization mesh, and applying
Diffusion Maps to these 4096 data segments, one finds two
independent Diffusion Map coordinates �1 and �2. Embed-
ding the data points in (�1,�2) space, and coloring them by
the real part of the complex amplitude W at t = 0 shows
that the two Diffusion Map coordinates indeed span a space
that is one-to-one with the original physical space – by visual
inspection, apparently a homeomorphism, see Fig. 2(b).

It is smoothness (similarity of recorded time series from
nearby points), that lets diffusion maps discover the right
two-dimensional parametrization of the data and yield their
actual relative positions. Neither the dimension of physical
space, nor the physical location of each discretization (and
thus, observation) point were used – everything is contained
in (observable through, recoverable from) just the recorded
dynamic data.

IV. EMERGENT SPACE RECONSTRUCTION IN
NETWORK DYNAMICS
Nodes in a network will, in general, not correspond to
points in a low-dimensional physical space (all-to-all coupled

networks are an obvious example). Our approach can help
discover an effective embedding space, based on the dimen-
sionality and the intrinsic geometry of the node dynamics.

Consider a neuronal network that arises in modeling
the pre-Bötzinger complex [29]–[31]. The states of these
Hodgkin-Huxley-type neurons (a membrane potential V and
a channel variable h) oscillate periodically. As in previous
studies [31], the neurons are heterogeneous: Each is charac-
terized by a different value of the intrinsic kinetic parameter
I

i
app.

The neurons are also heterogeneous through their connec-
tivity: They are not all-to-all coupled, but form a Chung-
Lu-type network [14], [32]. The number of connections
to a neuron i, its degree i, varies strongly across the
neurons, making it thus a second, structural, heterogeneity.
The (synchronized) temporal evolution of our network of
1024 neurons is depicted in Fig. 3(a). The neurons oscillate
clustered in the (V, h) plane, but with somewhat different
phases and amplitudes each. Due to the heterogeneities, their
instantaneous values differ. Nevertheless, the dynamics of
the ensemble of neurons can be well approximated by a
smooth function of the two heterogeneous parameters I

i
app

and i [31]. This is indicated by the color code in Figs. 3(b-
c).

Without prior knowledge of these heterogeneity parame-
ters, the two-dimensional nature of the collective dynamics
can be recovered from temporal observations only, using
Diffusion Maps. Using pairwise distances between node time
series segments yields two Diffusion Map coordinates that
parametrize a two-dimensional “variability manifold". The
kernel width was chosen as ✏ = e

10 ⇡ 0.39D

2
max. Embedding

the nodes in the resulting two-dimensional diffusion space,
and coloring them by the heterogeneous parameter I

i
app,

one observes an approximate one-to-one correspondence be-
tween this parameter and the first Diffusion Map coordinate
(Fig. 3(d)). The second direction, transverse to the first,
correlates with the degree i, see Fig. 3(e).

The leading few eigenvectors following �2 are harmonics
of the first two (not shown), indicating that only two major
directions parametrize the variability of the node dynamics.
Comparing these results with the outcome from the section
“Recovering space from spatiotemporal data”, an analogy
arises between the two heterogeneity parameters in the neu-
ronal network, and the spatial axes recovered in the 2-D
reaction-diffusion system above. Data mining enables us, by
extracting the dominant variabilities in the dynamics in both
cases, to find our “Emergent Space” (an effective embed-
ding space). In the reaction-diffusion example, this Emer-
gent Space is one-to-one with actual physical space; in the
network problem, it plays the role of a physical space (even
though the latter does not really exist). Indeed, representing
the behavior in terms of well-chosen basis function sets
in these intrinsic variability dimensions makes the network
description analogous to that of a discretized PDE in the
to leading Diffusion Map coordinates (and time). This can
be used to dramatically reduce the network model: a few
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FIGURE 3: (a) Top: The closed curves in the center show temporal evolution of the two variables h and V of the 1024
individual oscillators in the Chung-Lu type network of pre-Bötzinger neurons. For six representative temporal snapshots along
the trajectory (indicated by the color of the point clouds on the attractor) the potential V is plotted as a function of the first two
Diffusion Map coordinates �1 and �2. The value of V for each neuron is marked by a dot. The apparent smooth dependence
of V on the two Diffusion Map coordinates ( [31]) strongly suggests that the network could be modelled as an irregular grid
discretization of a PDE in �1 and �2 (whose time evolution is sketched around as well as below the attractor). (b,c) Each
oscillator as a function of the two heterogeneous parameters i and I

i
app, colored with the variable h and the voltages V at

t = 0. (d,e) The two independent Diffusion Map coordinates�1 and �2, colored by applied heterogeneous current Iiapp and i.

collocation polynomials in variability space, instead of tens
of thousands of coupled ODEs accounting for each node
separately [31].

V. THE SCALE OF THE OBSERVER: TUNING THE
KERNEL PARAMETER
In the previous examples, a specific choice of the kernel scale
✏ was made. When recovering the Emergent Space for the
PDE, we had to choose this ✏ to be very small, in the sense
that only the nearest neighbors (only very similar time series)
contribute to the computation. For the network, a coarser
observation (a larger ✏, taking into account more than just
nearest neighbors) was required to extract the two dominant
variabilities. In this section, we vary ✏ (the decay rate of
the kernel, i.e. the scale of the observer) in order to explore
how different features of our data are seen by observers
with different perception sensitivity. Increasing ✏ decreases
the ability to discriminate between nearby time series, thus
“coarsening" the observation.

As a model example, we observe a chimera state, that
is, a dynamical hybrid state of coexisting coherence and
incoherence [33]–[36]. An example of such a state arises
in a globally coupled version of the complex Ginzburg-
Landau equation. A simulation in one spatial dimension is
depicted in Fig. 4(a). Note that here we use periodic boundary

conditions, so that the spatial axis is in fact a ring. This
chimera state has an underlying two-cluster state: One of the
two clusters develops incoherent dynamics while the other
remains largely synchronized [37].

By choosing the kernel scale ✏ = e

�2.5 ⇡ 3.5 · 10�5
D

2
max

– very small, in the sense that only nearest neighbors, with
very similar time series, contribute to the computation – we
are able to reconstruct the full circular spatial arrangement,
as depicted in Fig. 4(b). Due to the periodicity in x, two
Diffusion Map coordinates are needed to embed the data.
Note that this maps the coherent oscillations (by nature
very similar) onto a dense cluster in Diffusion Map space.
Nevertheless, by zooming in on this cluster, we find that the
two Diffusion Map coordinates are still able to differentiate
between the synchronous series, see the inset of Fig 4(b).
This is possible since diffusion preserves a slight variation
across the coherent cluster and therefore allows for distin-
guishing between the coherent time series.

We now vary ✏; the embedding in the first two Diffusion
Maps eigenvectors for ✏ = e

7 ⇡ 0.46D

2
max is shown in

Fig 4(c). This figure clearly shows that the observability
of physical space is now lost when observing the data in
terms of its two most dominant variabilities. There are three
“cusp like” regions in the data; a finer-scale plot would reveal
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FIGURE 4: (a) Temporal evolution of a chimera state in a globally coupled version of the complex Ginzburg-Landau equation
with one spatial dimension x and periodic boundary conditions. The pseudo-color corresponds to the modulus of the complex
amplitude W . (b) The first two independent Diffusion Map coordinates �1 and �2 for ✏ = e

�2.5 ⇡ 3.5 · 10�5
D

2
max, colored

by the position i along the spatial coordinate x. (c) The first two independent Diffusion Map coordinates �1 and �2 for ✏ =

e

7 ⇡ 0.46D

2
max, colored by the position i along the spatial coordinate x. (d) First independent Diffusion Map coordinate �1 for

✏ = e

�2.5 ⇡ 3.5 · 10�5
D

2
max and ✏ = e

7 ⇡ 0.46D

2
max.

intersections, which suggests that points at different physical
locations (and known to have different dynamics) appear the
same at this observation scale. Indeed, the entire coherent
region effectively maps now to a point (the rightmost point
on this plot); and while the incoherent region can be largely
discriminated in terms of �2, practically all its constituents
have the same �1 value. Observation in terms of only �1

now reveals two plateaus (see Fig. 4(d)); the structure within
the incoherent plateau observed at small ✏ is lost at this
coarser observation level (large ✏). Thus the system naturally
coarse-grains from a one-dimensional PDE to a “bistable”
system, where two distinct scalar variables, two “oscillator
densities” (the extent of the coherent and the incoherent
regions) interact. A small percentage of phase space is taken
up by the transition regions (the fronts) between the two
plateaus. In a sufficiently large spatial simulation one might
expect the extent (and the importance) of these transitions
to be practically negligible. This perception of clustering is
consistent with earlier studies, which have shown that the dy-
namics of the type-II chimera state can be well approximated
by a modulated-amplitude two-cluster state [37], [38] - not a
PDE any more, but two ODEs.

Note that, as in the example of the pre-Bötzinger neurons,
the Euclidean distances between time series in the same
�1 cluster can be quite large; yet observing these different
time series through the right observable (their �1 component)
helps cluster them meaningfully.

For very small kernel scales, the graph connecting data
points is practically disconnected. Every data point is a
“dimension” by itself (eigenvectors approximate indicator
functions, with local support and eigenvalue one). As ✏ is
increased, these many distinct dimensions start to interact and
gradually merge into a coarser, one-dimensional “emergent
space”: the ring, described by the two Diffusion Map coordi-
nates that we see dominating for ✏ = e

�2.5.
This description is one-to-one with the physical space of

the simulation, which thus emerges as a natural descriptor of
the data for a range of ✏ values (Fig. 4(b)). Further coarsening
destroys the observability of physical space from the data (as
indicated by multiple loops in Fig. 4(c)), leading eventually
to the “two-cluster” description through �1 only. Interest-
ingly, this showcases the transition (in the eye of the be-
holder) between three distinct regimes, clearly characterized
by different scales and different physical interpretations: the
set of 4096 distinct coupled oscillators, the one-dimensional
PDE with periodic boundary conditions, and the two-cluster
amplitude description.

VI. OBSERVATIONS OF AN ATTRACTOR
In the previous examples, time series observations were used
in order to discover parametrizations of variabilities intrinsic
to the dynamics, yielding coordinates in which to embed
the data. Yet, all our observations came from a single time
window; we did not observe long-term variabilities along the
time direction, important in the study of dynamics.

In this section we start using as data points partially
overlapping time-series windows, obtained during long-term
simulations, in order to explore such temporal variabilities.
These window overlaps are chosen so that distances in the
time- and the space-directions are (loosely) comparable. Our
illustrative example comes from observations of a Modu-
lated Traveling Wave (a quasiperiodic attractor) of the one-
dimensional Kuramoto-Sivashinsky equation with periodic
boundary conditions, shown in Fig. 5(a)

The Kuramoto-Sivashinsky equation is a fourth-order par-
tial differential equation used to model spatiotemporal insta-
bilities in a number of physical settings [39], [40]. In this
case, the dynamics possess two frequencies: one determined
by the speed of traveling along the periodic domain, and
one coming from the temporal modulation. The nature of
the latter becomes apparent when observing the dynamics
in a frame that is co-traveling with the wave, as depicted in

VOLUME 4, 2016 7

Page 7 of 20

For Review Only

IEEE Access

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Kemeth et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Fig. 5(b). Here, every spatial point oscillates differently, but
with the same constant (modulation) frequency. Altogether,
the dynamics (the short time window observations) at any
particular point x belongs to a 2-parameter family of possible
behaviors, parametrized by the phases with respect to the
traveling and to the modulation frequency. In other words, the
dynamics of the system lives on a (two-)torus, as schemati-
cally depicted in Fig. 5(c). There, the toroidal angle ⇣ denotes
the phase with respect to the modulation, and the poloidal
angle ✓ the phase with respect to the traveling of the wave. A
time-series window can be depicted as a short line-segment
lying along this torus; all possible time segments constitute a
two-parameter family, filling out the torus surface.

As a particular example, the dynamics shown in Fig. 5(a-b)
are in the form of time series from N = 100 equidistributed
spatial points, each of total length T = 500 (the periods of
the two oscillations are ⇡ 56 and ⇡ 250). These time series
are then subdivided into partially overlapping windows of
length lstring = 100, at several degrees of overlap, as will be
discussed below. For an overlap of lstring � n time steps and
evenly distributed segments in time, this will give a total of
(T � lstring)/n+ 1 time windows.

How the torus is reconstructed by applying Diffusion Maps
to these time windows, will, as in the previous sections,
depend on the scale of the observer: the kernel parameter ✏.
For ✏ = e

�0.5 ⇡ 1.7 · 10�2
D

2
max, the dynamics projected on

the first three non-trivial Diffusion Map coordinates visually
appear one-dimensional: a closed loop spanned by �1 and �2

(see Fig. 5(d)). None of the next at least 8 Diffusion Map
coordinates encode new, independent directions.

A single visible ring indicates that, at this kernel scale,
only one of the two torus frequencies is observable. While
at this value of ✏, the temporal modulation is simply missed
by the Diffusion Maps to leading order; the traveling in
the spatial domain corresponds to the rotation along this
ring. The last 100 points plotted correspond to the 100 time
windows obtained from the 100 different spatial locations
during our last sampling interval in time. The smoothness
of the coloring by the spatial coordinates at which these
observations were made, shows that the Diffusion Maps can
recover the physical space x.

Decreasing the scale parameter, the ring in Diffusion Map
space partially unfolds into several rings, as the kernel al-
lows us to begin detecting variability along the modula-
tion direction. For ✏ = e

�2.0 ⇡ 3.8 · 10�3
D

2
max, this

is shown in Fig. 5(e). Note that each of the rings is still
parametrized by physical space. A further decrease of ✏

leads to further unfolding of the rings, see Figs. 5(f-g). At
✏ = e

�3.2 ⇡ 1.2 · 10�3
D

2
max we get a full separation of

the rings, making the entire torus finally visible in Fig. 5(h).
The direction along each of the rings corresponds to the
underlying traveling wave. We assert that the other direction,
from one ring to the next, corresponds to the modulating
oscillation: The time difference between two successive rings
is one increment: n = 8 time units. Running through seven
such overlaps yields a total time length of 7 · 8 = 56 time

steps, the modulation period. A finer discretization in time
and larger overlaps would clearly “fill in” the torus surface.
In the opposite direction, less overlap will “depopulate” the
torus surface, see Fig. 5(i).

A strong relationship exists between our varying the scale
of the observer, and topological data mining/persistent ho-
mology [41]. Successive plateaus in the identified surface
genus in the latter correspond to successive plateaus in the
dimension of our identified manifold: from a cloud of indi-
vidual discretization points at very small ✏, to the (desired)
torus, then to a ring, and, ultimately, to a single point at
very large ✏. Our Figs. 5(d-h) provide an interesting study
of the transition between two of the plateaus, where the
dimensionality of the manifold appears to vary along it [42].

In what follows, we will assume that we have chosen the
scale at which we want to observe the system, and revisit the
effect of different types of observations. The dynamics live
on a T

2 in function space. We want to be able to observe
this T

2, that is, we want a mapping between each of our
observations and a corresponding unique point on the surface
of this torus. How many quantities (variables) do we need to
observe to construct such a mapping? This has been a long-
standing research issue in topology as well as in dynamical
systems. Starting with Whitney’s theorem in the 1930s [43],
guaranteeing homeomorphisms between manifolds and their
Euclidean embeddings, and through the work of Nash in the
1950s providing isometries [10], we have the work of Takens
in 1980 [11] (and also of Farmer et al. [44]) guaranteeing
homeomorphisms between the system state space and a space
spanned by just a few delayed measurements of a single
scalar observable (see [8]). This is exactly what we did, using
time windows at various spatial locations in our discussion
above. Since the dimension of the attractor is 2, our 99 delays
were certainly sufficient to guarantee an embedding.

In fact, what we observe is the function u(x, t) for x 2
[0, 2⇡] and t within the modulation period. This is a two-
parameter family of points, and, at each one of them, we
took short temporal measurements (a value and 99 delays).
Clearly, there are other ways by which one can learn (ob-
serve) this surface. One can take horizontal measurement
segments (short discretized solution profiles at fixed time).
One can consider traveling observers: short measurement
segments along an arbitrary angle in (x, t). Alternatively,
as discussed above, we can consider small spatiotemporal
patches centered at each point (or, to make the observation
finite, several leading Fourier components of the function
within each patch, or several leading PCA components of
the histogram of the function values in the patches). Each of
these different types of measurement data simply constitutes
a different way to observe “the same" points on the attractor
in function space (or, alternatively, points on our u(x, t)

surface). All of these different types of measurements of
points on the attractor (all these different embeddings of the
original torus) can therefore be diffeomorphically mapped to
each other.

Interestingly, if we can agree on a reference set of observ-
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FIGURE 5: (a) Temporal evolution of u in the 1-D Kuramoto-Sivashinsky equation with periodic boundaries, showing
modulated traveling waves. (b) The dynamics of (a) in a co-rotating frame. The color corresponds to u. (c) Torus spanned
by the phases with respect to traveling wave, ✓, and modulation, ⇣, respectively. Going along space (red line) only changes the
former, whereas moving in time (green line, dashed blue line) changes both phases. (d) First three independent Diffusion Map
coordinates obtained from overlapping time segments created with a time shift of n = 8 and for ✏ = e

�0.5 ⇡ 1.7 · 10�2
D

2
max,

colored by spatial position. (e-h) Equivalents to (d) for ✏ ⇡ 3.8 · 10�3
D

2
max, ✏ ⇡ 2.1 · 10�3

D

2
max, ✏ ⇡ 2.0 · 10�3

D

2
max and

✏ ⇡ 1.2 · 10�3
D

2
max, respectively. (i) First three independent Diffusion Map coordinates obtained for n = 14 and ✏ = e

�2.3,
colored by spatial position. See discussion and interpretation of the images in the text.

ables and construct the conjugacy between this set and our
various types of observation, we can then easily fuse informa-
tion from the various types of observation (i.e. the different
measurement instruments/modalities). It would make sense
for this reference set of observables to be in some sense
intrinsic to the manifold, and not to depend on the particular
embedding; observables based on the manifold curvature
tensor, like the ones resulting from the Codazzi-Mainardi
equations, might be good candidates for this [45].

Manifold learning can therefore go beyond the recovery
of physical space or the creation of useful embeddings for
dynamical observations. It holds the promise of fusing het-
erogeneous observations of the same dynamical system and
of realizing when different dynamical systems are indeed
observations of each other (are conjugate). The property of
obtaining a description of a system that does not depend
on the measurement instrument is sometimes termed “gauge
invariance”, and indeed performing gauge-invariant data

mining constitutes a promising research direction. Diffusion
maps based on a Mahalanobis-like distance (involving the
local pseudo-inverse of the noise covariance) were proposed
by Singer and Coifman in 2008 [6], and have been used to
this effect in e.g. [7], [18], [22].

As a last example, Fig. 6 demonstrates this data-driven
matching of a simple stochastic nonlinear oscillator (system
(a)) with a nonlinear observation of it (system (b)). We
parametrize the states x = (x1, x2) and x̂ = (x̂1, x̂2) =

T (r(x1, x2), ✓(x1, x2)) of both systems separately with Dif-
fusion Maps. Instead of the Euclidean distance, we use the
Mahalanobis distance between data points xi

, x

k (and x̂

i
, x̂

k,
respectively), defined through [6]

d(x

i
, x

k
)

2
=

1

2

(x

i�x

k
)

T
(C(x

i
)+C(x

k
))

†
(x

i�x

k
). (4)

Here, C(x

i
) and C(x

i
) are covariance matrices obtained

by short bursts of trajectories started at the given points.
In the original system, the short bursts result in isotropic
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FIGURE 6: Panel (a) shows a limit cycle system with ˙

✓ =

1, ṙ = r � r

3, where we add small amplitude white noise at
each time step (isotropic in Cartesian space, not visible in the
plots). Panel (b) shows the same limit cycle, but observed
through T (r, ✓) = [(r

2
)/2 cos(✓),

p
r sin(✓)]. The second

row shows the Diffusion Map eigenvectors obtained from the
original system, �1,2, and the transformed system, ˆ

�1,2, as
color on the phase space around the limit cycle. An example
trajectory is depicted in blue. The third row shows the two
systems in Diffusion Map space, where they match up to a
rotation because we rescaled the distances based on the local
covariances of the noise.

diffusion (so that the covariance is the identity), while the
observation function distorts this to anisotropic diffusion
in system (b). The pseudo-inverse (·)† is used in general,
because the matrices are usually rank-deficient. The local
noise covariance provides an estimate of the local Jacobian of
the transformation that is used to re-scale the local distances,
such that the metric on both spaces agree. Parametrization
with Diffusion Maps then allows us to match the two dynam-
ical systems modulo a rotation. An alternative approach to
creating data-driven conjugacies between dynamical systems
using Koopman operator eigenfunctions [12] is discussed in
the Supplemental Information.

VII. DISCUSSION
We started by demonstrating that manifold learning tech-
niques and, in particular, Diffusion Maps, can be used to
reconstruct the topology of the physical space in which an
observed process takes place, only from disorganized (spa-
tially unlabelled) collections of temporal measurements (time
series segments). This becomes especially useful in prob-
lems where no obvious physical space is involved, such as
network dynamics. Here, by discovering intrinsic variability
directions in the dynamics, the network can be conveniently
reduced: Instead of thousands of coupled oscillators, the

response surface can be described in terms of a few collective
Diffusion Map coordinates in our Emergent Space.

We then focused on chimera states arising in the dynamics
of integrally coupled partial differential equations. Being able
to tune systematically the kernel parameter ✏ gives us the
ability to vary the scale of the observer and, ultimately, to
construct representations of the system at different levels of
coarse-graining [46]–[48]. In our examples, we always the
same value of ✏ for all data points of a given data set. Note
that for data where the density of points varies greatly over
the data set, or where the density cannot be bounded from
below, variable bandwidth kernels can be constructed [49].

We also discussed the observation of the same physical
space topology through several different types of measure-
ments: short time series windows, short spatial segments,
small space-time patches. The ability to fuse heterogeneous
observations of a dynamical system naturally brought forth
the possibility of realizing that different dynamical systems
are really observations of each other.

The question then arises: Given two dynamical systems,
are their state spaces/their representations related by a dif-
feomorphism, such that the dynamics in the first system
correspond to the dynamics in the second? This question
is vital in the theory of dynamical systems, where such
diffeomorphisms are typically constructed analytically. A
famous closed-form example of such a transformation is
the Cole-Hopf transform between the diffusion equation and
the viscous Burgers equation [50]. The related idea of a
normal form, shared by two systems, also provides an avenue
towards matching them. We illustrated a data-driven path to-
wards such a matching without access to closed-form models,
but rather via processing observations of both systems’ states
with the help of a Mahalanobis-like distance in the Diffusion
Map computations. Any model, even a quite inaccurate one,
that lies in the same universality class as the true process
we observe (that shares the same normal form with the true
process), is but one diffeomorphism away from the truth.
Modern machine-learning tools (like deep nets) can help find
this diffeomorphism in a data-driven way. This “calibration
curve” is a matching between the inaccurate model and the
truth. Such calibration curves arise in the recent multifidelity
modeling literature, e.g. [51].

If machine learning (gauge-invariant data mining) allows
us to work practically indiscriminately with any possible
diffeomorphic realization of a system, which one should we
choose? Which one is “the best”? Until now, the optimality
criteria were guided by human understanding of the pro-
cess. Choosing physically interpretable variables for a model
makes it easier to understand. It was this anthropocentric
sense of simplicity that decided the observables and the form
of the model equations. However, the temporal evolution
in these variables might be rather complicated. Lax pairs
provide an alternative point of view in choosing one’s sense
of “simplicity”: here, the variables are quite complicated
objects, resulting from eigenproblem solutions at every tem-
poral step, yet the dynamics are almost trivial [52].
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Machine learning can help us broaden our scope of pos-
sible simplicities, in that we can now choose from a much
wider range of different system representations, and select
the kind of simplicity we prefer: for example, linear dynam-
ics in a minimal number of variables, if possible. This is
emphatically not a new idea. Principal Component Analysis
(PCA) is a time-honored reduction method. “Nonlinear”
principal components (the auto-encoder bottleneck neural
networks of the 1980s [53] that are now back as deep nets)
can also provide parsimonious descriptions of processes in
terms of a few observables (the states of the bottleneck neu-
rons, that are, however, not easily physically interpretable).
What has made these techniques widely applicable is the
computational savings in producing accurate predictions, de-
spite the “uninterpretability” of their state variables. It is re-
assuring that “easy” back-and-forth mappings between these
and the interpretable, physical variables can be constructed.

We close this paper with a small gallery of examples,
where we chose simplicity to mean a sense of beauty (ad-
mittedly, our own subjective criterion!). The first system
is a chimera state, containing, in interpretable variables,
spatiotemporal chaos. In Equal Space, it appears to admit
periodic, or, at worst, quasi-periodic, visually remarkably
coherent motion [Video 1]]. The second system is also a
chimera state; in Equal Space it brings to the minds of each
of us certain distinctive swarming behavior of the starlings
of Rome [Video 2]. The last example system consists of
10000 globally coupled Stuart-Landau oscillators. In Equal
Space, their probability density function evolves on what
visibly suggests a homoclinic tangle involving the stable and
unstable manifolds of a coarse periodic solution [Video 3].
In the words of the Little Prince, “c’est véritablement utile
puisque c’est joli” [54].

The work we have discussed has an increasingly medieval
flavor: We aspire to predictions, starting from observations,
processing the data and never trying to grasp the physical
nature of the observables or the interactions between them
(obtaining closed-form expressions for physical laws).

It would appear that because of the complexity and inter-
connectedness of the systems we study today, the emphasis
gradually shifts from understanding the system and its laws
as a whole, to understanding the algorithms that create rep-
resentations of the system, based on a possibly new, differ-
ent sense of simplicity. Even though the new, data-driven
variables may be difficult to rationalize, the mathematics
involved in using them to make predictions remain the same.
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FIGURES 1 AND 2 IN THE PAPER:
SPATIOTEMPORAL INTERMITTENCY IN THE
COMPLEX GINZBURG-LANDAU EQUATION

The complex Ginzburg-Landau equation (CGLE) in a
re-scaled form reads

@

t

W = W + (1 + ic

1

)r2

W � (1 + ic

2

) |W |2 W,

with real parameters c

1

and c

2

. The parameter val-
ues leading to our spatiotemporal intermittency [3] are
c

1

= 0 and c

2

= �3. The equation is integrated using
a pseudo-spectral integration method with exponential
time-stepping [4] and fixed time step dt = 0.05. The
system sizes considered are L = 100 with N = 512
grid points for one-dimensional simulations (Fig. 2) and
L

x

= L

y

= 40 with N

x

= N

y

= 64 grid points for two-
dimensional simulations (Fig. 3). The solution in both
cases is sampled as T = 1000 snapshots between t

0

= 500
and t

1

= 700 time units. For the two-dimensional sys-
tem, a kernel scale of ✏ = e

2 ⇡ 4.0 · 10�3

D

2

max

is chosen.

Fig. 1 in the paper discussed the spatial reconstruction
of the solution from temporal observations. In that case,
our data points consisted of 512 time series of length 1000
each. Fig. 1 below supports the claim made in the paper,
that the same data-driven approach is also able to ac-
complish a temporal reconstruction of the solution from
spatial observations. Here, the data points consisted of
1000 spatial snapshots of length 512. Clearly, the first
di↵usion maps component is now one-to-one with phys-
ical time, and the panels of the figure echo the ones of
Fig. 2 in the paper.

⇤
yannis@princeton.edu

FIGURE 3 IN THE PAPER: HETEROGENEOUS
CHUNG-LU TYPE NETWORK OF

PRE-BÖTZINGER NEURONS

As a toy example for complex dynamics without an
obvious physical space, we consider an ensemble of 1024
neurons, a caricature of the pre-Bötzinger complex [5–7],

C

dV

i

dt

= �g

Na

m (V
i

)h
i

(V
i

� V

Na

)� g

l

(V
i

� V

l

)

+ I

i

syn

+ I

i

app

dh

i

dt

=
h1 (V

i

)� h

i

⌧ (V
i

)
.

with the coupling

I

i

syn

=
g

syn

(V
syn

� V

i

)

N

NX

j=1

A

ij

s (V
j

) .

Here

m (V ) = (1 + exp (� (V + 37) /6))
�1

,

h1 (V ) = (1 + exp ((V + 44) /6))
�1

,

⌧ (V ) = (✏ cosh ((V + 40) /5))
�1

,

s (V ) = (1 + exp (� (V + 40) /5))
�1

are nonlinear functions, whereas C = 0.21, g
Na

= 2.8,
g

l

= 2.4, g

syn

= 0.3, V

syn

= 0, V

Na

= 50, V

l

= �65
and ✏ = 0.1 are constants. As in previous studies [7], we
take the intrinsic kinetic parameter I

i

app

to vary across

the ensemble (Ii
app

= 22 + 2!
i

, where !
i

is drawn from
a uniform distribution on [�1, 1]), making the network
kinetically heterogeneous.
We connect the neurons in the form of a Chung-Lu

type network [8], where the network topology is given by
a symmetric adjacency matrix A. The entries A

ij

are 1
if there is a coupling between oscillators i and j, and 0
otherwise. The algorithm for the creation of the A

ij

uses
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î

0

1

|W
|

0 1000
i

≠1

1

„1

500

700

t

0 1000
i

≠1

1

„1

500

700

t

0 1000
î
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FIG. 1. Reconstruction of the temporal arrangement of the one-dimensional spatiotemporal intermittency in the CGLE following
the spatial reconstruction, Fig. 1 in the paper.

a sequence of weights w
i

for each oscillator i, defined as

w

i

= pN(i/N)r , i = 1, 2, ..., N

with parameters p = 0.80 and r = 0.40. From these
weights, the entries P

ij

of a matrix P of connection prob-
abilities are defined as

P

ij

= P

ji

= min

✓
w

i

w

jP
k

w

k

, 1

◆
.

The matrix is then mirrored along the diagonal, and all
diagonal entries are set to zero to avoid self-loops. As
initial conditions, V = �60.0 and h = 0.0 are taken for
all oscillators. We simulated our realization of a Chung-
Lu network of N = 1024 oscillators, using lsode [9, 10].
The time series observations from each neuron were taken
between t

0

= 20 and t

1

= 40 in the form of T = 2001
time steps.

FIGURE 4 IN THE PAPER: TYPE-II CHIMERA
IN THE MODIFIED COMPLEX

GINZBURG-LANDAU EQUATION

The modified complex Ginzburg-Landau equation
(MCGLE), that is, the CGLE with nonlinear global cou-
pling, is described by

@

t

W = � i⌫W + (1 + ic

1

)r2

W

� (1 + i⌫) (hW i �W )

+ (1 + ic

2

)
⇣
h|W |2 W i � |W |2 W

⌘

with h. . .i denoting spatial averages. It has the property
that for the spatially uniform mode,

@

t

hW i = �i⌫hW i ) hW i = ⌘e

�i⌫t

holds. Thus, the mean hW i is confined to harmonic mo-
tion with frequency ⌫ and amplitude ⌘ [11]. This sys-
tem is known to exhibit type-II chimeras for c

1

= 0.2,
c

2

= �0.63, ⌫ = 0.1 and ⌘ = 0.65, starting from ran-
dom initial conditions. Here, a system size of L = 100
with periodic boundaries and N = 4096 grid points is
considered. For integration, a pseudo-spectral method
with exponential time-stepping [4] and fixed time step
of dt = 0.01 was used. The data was sampled between
t

0

= 5000 and t

1

= 6000 at T = 4000 snapshots. Data
mining for di↵erent values of the kernel scale parameter
✏ was performed on 4096 time series of length 4000 each.

FIGURE 5 IN THE PAPER: MODULATED
TRAVELING WAVES IN THE 1-D

KURAMOTO-SIVASHINSKY EQUATION

The Kuramoto-Sivashinsky equation in one spatial di-
mension reads

@

t

u+ ↵ (u@
x

u+ @

xx

u) + 4@
xxxx

u = 0

with the real variable u = u (x, t) and a single real param-
eter ↵. For system size L = 2⇡, with periodic boundary
conditions, and ↵ = 53.3, () is known to exhibit stable
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FIG. 2. The dominant ten eigenvalues of the eigenvalue spec-
trum obtained from the di↵usion matrix for di↵erent values
of the kernel parameter ✏.

modulated traveling waves [12]. Using N = 100 spatial
grid points in a finite-di↵erence discretization, we nu-
merically integrate the Kuramoto-Sivashinsky equation
using lsode [9, 10] with time step dt = 0.001 and sam-
ple the data between t

0

= 1 and t

1

= 1.25 as T = 500
snapshots. We are confident that our simulation has rea-
sonably converged on the attractor by t

0

= 1, so that our
100 time series of length 400 are representative of it. For
completeness, we note here that one period of the modu-
lation contains ⇡ 56 discrete snapshots and the “period”
of traveling in the spatially periodic domain is known to
consist of ⇡ 250 snapshots.

FIGURE 6 IN THE PAPER
(GAUGE-INVARIANT DIFFUSION MAPS), AND

THE KOOPMAN OPERATOR

We illustrate the capability of performing gauge-
invariant di↵usion map computations on a simple two-
dimensional nonlinear dynamical system possessing a sta-
ble limit cycle in its deterministic form, yet slightly per-
turbed by low-amplitude white noise. We start by record-
ing the evolution of its state. Separately, we record
observations of this evolution through a known “obser-
vation function” that transforms this state nonlinearly
(and invertibly). In the original system, for short time
intervals, the white noise causes states initialized at a
single point (r, ✓) to spread out to a normal distribu-
tion. In the observed system (here, observed through the
observation function T (r, ✓) = [(r2) cos(✓)/2,

p
r sin(✓)]),

the normal distribution is transformed into an ellipsoid
shape, with axes corresponding to the eigenvectors of the
noise covariance matrix C = J(r, ✓)J(r, ✓)T –where J is
the Jacobian of the transformation function T . Thus,
observing several brief bursts of (stochastic) simulation
initialized at a particular state-space point through T al-
lows us to estimate the covariance matrix C numerically.
The pseudo-inverse of this matrix is used to compute the
Mahalanobis-like distance between two data points x, y

FIG. 3. (a) In a system exhibiting the dynamics of a modu-
lated traveling wave, the state of any point in space and time
can be described by its phase with respect to the modulation
(⇣) and traveling wave (✓), respectively. Together, these two
phases span the surface of a torus. (b) The data set from the
Kuramoto-Sivashinsky equation treated in the paper section
on observing an attractor is an example of such dynamics,
containing the “minimal parallelogram” of the unfolded torus
several times over.. (c-f) The points in this minimal par-
allelogram can be observed in several di↵erent ways, either
as time strings (c), space strings (d), space-time patches (e)
or through the trajectories of active observers (f) that travel
with their own, known speeds along the torus surface.

(see [13, 14]):

d(x, y)2 = 1/2(x� y)T (C(x) + C(y))�1(x� y).

The “gauge invariant” di↵usion maps, based on using
this Mahalanobis-like distance for each of the two obser-
vations, visibly yields (and can be shown to successfully
approximate) the same embedding (Fig. 6 in the paper)
modulo an orthogonal transformation. Clearly, the (in-
vertible) mapping of any trajectory of the original system
to the corresponding trajectory of the transformed (dif-
feomorphic) one provides a systematic way of matching
the two systems, mapping one to the other, and even
fusing observations from both of them (see e.g. [15]).
This transformation is encoded in the eigenvectors of the
gauge invariant di↵usion map matrix (that approximate
the eigenfunctions of the Laplace-Beltrami operator on
the data manifold).
We now discuss an alternative approach to the con-
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4

struction of data-driven conjugacies: one using the Koop-
man operator framework [16], which also employs a
spectral representation. For a discrete dynamical sys-
tem x

k+1

= f(x
k

), x 2 Rn, the Koopman operator
K acts linearly on a space of complex-valued observ-
ables h : Rn ! C. Specifically, for any given observ-
able h, (Kh)(x) = (h � f)(x). This property also gives
it the name composition operator. Indeed, exploring
the numerically obtained spectra of the Koopman op-
erator (see [17]) for each of the two deterministic sys-
tems, we can also find matching eigenvalues and eigen-
functions, analogous to the gauge-invariant di↵usion map
case. If  is a Koopman eigenfunction of the original
system associated to the eigenvalue �,  =  ̂ � T de-
fines an eigenfunction  ̂ of the observed system associ-
ated to the same eigenvalue. This relation can be used
to approximate the function T if enough pairs of eigen-
functions ( ,  ̂) are given [18]. There are already nu-
merous algorithms available to approximate Koopman
eigenfunctions, such as EDMD [19] in the general case
and Fourier- or Laplace averaging for limit cycle sys-
tems [20]. Here we use the Fourier average defined as

f

!

(x) = lim
N!1

1

N

P
N

k=0

(h � f

k)(x) exp(�i!k), where
! is the period of the limit cycle and f is a generic
observable of the system state. The resulting function
f

!

: Rn ! C is an eigenfunction of the Koopman op-
erator [20], such that Kf

!

= exp(i!)f
!

. For continu-
ous systems ẋ = d

dt

S

t|
t=0

(x), the Fourier average is de-

fined as f

!

(x) = lim
t!1

1

t

R
t

0

(h � S

t

0
)(x) exp(�i!t

0)dt0.
We compute the Fourier averages with the observable
h(x) = x

1

+x

2

similar to [20], where x
1

, x

2

are the Carte-
sian coordinates of the system. The (complex-valued)
eigenfunction f

!

then defines the geometry in the Koop-
man eigenfunction space (see Fig. 4). The geometry in
this space allows us to learn the (approximate) transfor-
mation function through a standard optimization formu-
lation, in our case, a two-hidden-layer neural network.
In particular, we solve min

T :R2!R2 k � � � Tk2
L

2
(R2

)

by
parameterizing T as a two-layer feed-forward neural net-
work with 10 hidden units, i.e. T (x) = V �(Wx+b)+ c,
where W 2 R10⇥2, b 2 R10, V 2 R2⇥10, c 2 R2, and � is
a sigmoid point-wise nonlinearity �(x)

i

= 1/(1 + e

�xi).
We solve the minimization by standard stochastic gra-
dient descent, with samples uniformly drawn in the set
|x|2 < 1.4. The approximation by a neural network is
scalable to larger problems because it circumvents the
“curse of dimensionality” associated with the usual func-
tion approximation via linear combination of basis func-
tions. Now, the transformation function is embodied in
the neural network.

FIG. 4. Eigenfunctions of the Koopman operator are com-
puted by Fourier average, and interpolated with a neural net-
work, for the original system (a), and the transformed system
(b). Drawn in the real and complex parts of the eigenfunc-
tion, the trajectories of both systems match (plots c,d). The
black dots in plots (c,d) visualize the transformation of the
plane [�1, 1]2 into the Koopman eigenfunction space.

VIDEO 1: TYPE-I CHIMERA STATE IN THE 2-D
GLOBALLY COUPLED COMPLEX
GINZBURG-LANDAU EQUATION

We integrate the complex Ginzburg-Landau equation
with nonlinear global coupling (as described above) for
parameters c

1

= 0.2, c

2

= 0.61, ⌫ = 1.5 and ⌘ = 1.0
on a two-dimensional spatial domain of size 750 ⇥ 750
and fixed time step dt = 0.01. The data is sampled from
t

0

= 1900 to t

1

= 2000 as T = 500 snapshots. For
these parameters, the system exhibits a so-called type-I
chimera state, for which the absolute value |W | of the
complex system variable is used as z-axis in the right
part of video 1.
Following earlier works on chimera states [21], we apply

a scaled version of the discrete Laplacian to the data,

Df(x, y, t) = f (x+�x, y, t) + f (x��x, y, t)

+ f (x, y +�y, t) + f (x, y ��y, t)

� 4f (x, t) .

Creating a histogram of these transformed data may re-
veal insightful features of di↵erent chimera states. In the
left part of video 1, a two-dimensional histogram over the
angle \D of the complex-valued Laplacian and the abso-
lute value |W | of the complex system variable is shown.
A circular one-dimensional color scale is used to en-

code the individual bins of histogram. Every individual
point in physical space (right part of the video) is then
colored according to bin (and thus, the color) to which
it corresponds. Special care is taken for the coherent
regimes of the chimera state, as the value of D vanishes
there and the angle \D becomes thus not well-defined.
Accordingly, all points with amplitude |W | larger 1 are
given the same blueish-purple color.
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5

VIDEO 2: 3-D HISTOGRAM OF THE TYPE-I
CHIMERA STATE

For the same data obtained in the previous section,
a di↵erent representation is chosen in video 2. Here, a
three-dimensional histogram is created over the absolute
value |W | of the complex system variable, and the real
and imaginary parts of the discrete Laplacian D. The
“height” of the bins in this histograms are encoded in the
size and the color of the scattered points in the left part of
the video. In addition, projections onto two-dimensional
histograms are depicted in the three planes parallel to
(ReD, ImD), (ReD, |W |) and (ImD, |W |).

VIDEO 3: TYPE-I CHIMERA STATE IN A
STUART-LANDAU ENSEMBLE

Video 3 shows the data of a chimera state arising in
an ensemble of N = 10000 Stuart-Landau oscillators,
globally coupled as

@

t

W =� i⌫W � (1 + i⌫) (hW i
⌃

�W )

+ (1 + ic

2

)
⇣
h|W |2 W i

⌃

� |W |2 W
⌘
,

with hW i
⌃

= 1/N
P

i

W

i

and h|W |2 W i
⌃

=

1/N
P

i

|W
i

|2 W
i

denoting ensemble averages. It has the
property that for the spatially uniform mode, the relation

@

t

hW i = �i⌫hW i ) hW i = ⌘e

�i⌫t

holds. Thus, the mean hW i is confined to harmonic mo-
tion with frequency ⌫ and amplitude ⌘ [11].
The system is integrated using lsode [9, 10] with fixed

time step dt = 0.01 at parameter values c

2

= 0.58, ⌫ =
1.49 and ⌘ = 1.02, and the data is sampled from t

0

= 500
to t

1

= 525 as T = 500 snapshots.
The real parts of the individual oscillators are depicted

on the right, and a two-dimensional histogram over the
real and imaginary parts of the complex system variable
W in a co-rotating frame, rotating with the frequency
of the ensemble mean, ⌫, on the left. Moreover, the in-
dividual bins of histogram are encoded with a circular
one-dimensional color scale, corresponding to the angle
\W . Every individual oscillator in the right part of the
video is then colored according to the bin (and thus, the
color) to which it corresponds.

VIDEO 4: TYPE-I CHIMERA STATE IN THE 1-D
GLOBALLY COUPLED COMPLEX
GINZBURG-LANDAU EQUATION

This video illustrates the evolution of characteristics
on an attractor: The temporal evolution of observables
for fixed physical space (on the right) compared to how

physical space “visits” di↵erent observable values as time
passes (on the left).
In order to generate the data for video 4, we inte-

grate the complex Ginzburg-Landau equation with non-
linear global coupling as described above, but on a one-
dimensional spatial domain of length L = 1000. The sim-
ulation is carried out for parameters c

1

= 0.2, c
2

= 0.61,
⌫ = 1.5 and ⌘ = 1.0 with a fixed time step dt = 0.01. The
data is sampled from t

0

= 2500 to t

1

= 2530 as T = 300
snapshots. For these parameters, this system exhibits a
so-called type-I chimera state, for which the real value of
the complex system W variable is shown as a function of
space in the right part of video 4.
In order to create the two other parts of the video,

we apply a scaled version of the 1-D discrete gradient,
defined as

d

x

f(x, t) = f (x+�x, t)� f (x��x, t) .

In the left part of video 4, a two-dimensional histogram
over the real part Red

x

of the complex-valued gradient
and the absolute value |W | of the complex system vari-
able is shown. A projection of this histogram, showing all
non-empty bins, is shown in the form of several black lines
on the plane parallel to (Red

x

, |W |) (below the histogram
itself). The resulting long, “snake-like” self-intersecting
black curve is parametrized by physical space - its evo-
lution shows which observable values are realized (are
“visited” by physical space) as time evolves.
In the middle part of the video, the last 15 such pro-

jections are plotted above each other, with the newest
projection shown at the top, and every projection being
moved one step downward every frame increment of the
video.
Finally, a circular one-dimensional color scale is used

to encode the individual bins of the histogram in the left
part of the video. Every individual points in physical
space (right part of the video) is then colored according
to the bin (and thus, the color) to which it corresponds
[cite vid 4.avi].

All figures are generated using matplotlib [22].
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[17] Budǐsić M, Mohr R, Mezić I (2016) Applied koopmanism.
Chaos 22:047510.

[18] Bollt EM, Li Q, Dietrich F, Kevrekidis I (2017)
On matching, and even rectifying, dynamical sys-
tems through koopman operator eigenfunctions. arXiv
1712.07144v1.

[19] Williams MO, Kevrekidis IG, Rowley CW (2015) A data-
driven approximation of the koopman operator: Extend-
ing dynamic mode decomposition. Journal of Nonlinear
Science 25(6):1307–1346.
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