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Abstract

In this work, we present a method which determines optimal multi-
step dynamic mode decomposition (DMD) models via entropic regres-
sion, which is a nonlinear information flow detection algorithm. Mo-
tivated by the higher-order DMD (HODMD) method of [1], and the
entropic regression (ER) technique for network detection and model
construction found in [2, 3], we develop a method that we call ERDMD
that produces high fidelity time-delay DMD models that allow for
nonuniform time space, and the time spacing is discovered by con-
sider most informativity based on ER. These models are shown to be
highly efficient and robust. We test our method over several data sets
generated by chaotic attractors and show that we are able to build
excellent reconstructions using relatively minimal models. We likewise
are able to better identify multiscale features via our models which
enhances the utility of dynamic mode decomposition.

1 Introduction

Equation free model development has enjoyed a multi-year stretch of contin-
ued progress in part by way of the evolution of dynamic mode decomposition
(DMD) methods. Beginning in the fluid dynamics community (see [4] for a
historical review and key sources), DMD has moved into almost every area
of data driven science, and it has merged itself with every major trend in
the data sciences as well, in particular machine learning based methods; see
[5, 6, 7].
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Likewise, in order to better address the modeling of multiscale data,
delay structured DMD models reminiscent of either ARIMA or Takens em-
bedding models have also been explored; see [8, 1, 9, 10, 11, 12]. Across
these works, it has become clear that the success of DMD when used to
generate models which can be time stepped forward from some set of initial
data depends upon finding accurate multi-step Koopman like models for a
given time series. However, much of the existing literature has in practice
focused on data coming from periodic and quasi-periodic attractors, which
as is proved in [9], can be exactly reconstructed using relatively straight-
forward lagged DMD models. While [8] shows that Hankel-DMD methods
should provide exact determination of the affiliated Koopman operator in
ergodic systems, this is not necessarily a practical result. This issue is par-
tially addressed in [12], which coupled an adaptive Hankel DMD method to
an autoencoding neural network strategy to discover meaningful observables
from chaotic time series. Nevertheless, this method did not provide a fully
automatic way to determine the updating of the Takens style embeddings
needed to make the method successful. Thus, discovering methods which
build better lagged DMD models has a number of potential downstream
applications.

We treat discovering lagged DMD models as a question of optimal model
discovery. While there are a plethora of approaches, the one that we find
most impactful is [3], which treats the problem of finding the most likely
model in terms of the flow of information between time scales. Information
flow is measured here via a generalization of transfer entropy [13], called
causation entropy [2], coupled with an algorithmic approach to model dis-
covery called entropic regression [3], making our approach one which seeks
to find those models which provide the most information about evolving
time series. Our work then is related to methods which build inferential
causal networks in multidimensional time series [14], and it is also a natu-
ral compliment of [15], which uses similar concepts to transfer entropy to
identify causal coupling across scales in turbulent fluids.

As we show, our method, which we dub the entropic-regression-dynamic-
mode decomposition (ERDMD), is able to discover non-uniform lagged DMD
models which provide accurate time-stepping schemes from data coming
from a variety of chaotic attractors. The ability of our method to generate
non-uniform lagged models echoes the work in [16, 17], which shows non-
uniform embeddings of time series lead to more information theoretically rich
models. In all then, the present work realizes the ambition of the results in
[8] while pointing towards future improvements in the algorithm presented
in [12]. That said, we also find limitations by way of our results on the
Kuramoto–Sivashinsky equation, which shows even optimally lagged DMD
models struggle in of themselves to accurately reconstruct higher dimen-
sional strange attractors. Future work in this direction by way of coupling
our current method with the work of [12] should address this shortcoming.
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Likewise, as noted in [3], a major motivation for using information theory
in model discovery is that it is robust to noisy data.

The structure of the paper is as follows. In Section 2, we provide a
brief introduction to higher order DMD and entropic regression. We then
present our central algorithm, the ERDMD method. In Section 3, we present
the results of our method across three different chaotic dynamical systems.
Finally in Section 4, we provide a discussion of the method and further
elaborate on future directions which would follow from the present work.

2 Entropic Regression DMD

The results in this work are a merging of the higher-order DMD (HODMD)
method of [1], and the entropic regression technique for network detection
and model construction found in [2, 3]. We now briefly explain both results,
and then we show how to bring them together in order to build accurate,
yet minimal time lag models.

2.1 Higher-Order DMD

Originally presented in [1], though see also the HAVOK method in [18] and
Hankel DMD method of [8], we generalize the HODMD so as to keep each
lagged model separate, causal, and formulated over an arbitrary sequence of
not necessarily unit increment lags. We suppose that we have the maximum
lag of d time steps. We likewise suppose that we have the choice of say Nl

lags as lc = {l1, l2, · · · , lk, · · · , lNl
}, with 1 = l1 < lj < lj+1 < lNL

< d.

Given times series
{
yj
}NT

j=0
, we then define the matrices

Y+,d = (yd · · ·yNT
) , Y− = (y0 · · ·yNT−1) , yj ∈ Rs,

and the s× (NT − d+ 1) shifted mask matrices Ml where

(Ml)mn =


0 m− 1 < d− l, m− 1 > NT − l
1 n = m, d− l ≤ m− 1 ≤ NT − l
0 n 6= m, d− l ≤ m− 1 ≤ NT − l

An arbitrary lagged DMD model can then be written as

Y+,d =

NL∑
k=1

KlkY−Mlk , (1)

where we note that each matrix Klk is s×s. Using our standard optimization
arguments, we can find each matrix Klj via the critical-point equation

NL∑
k=1

KlkY−MlkM
T
lj
YT
− = Y+,dM

T
lj
YT
−.
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Combining these terms across lags leads to the system

K(lc)Y−(lc)Y−(lc)
T = Y+,dY−(lc)

T .

where
K(lc) =

(
KlNL

KlNL−1
· · ·K1

)
,

and

Y−(lc) =


Y−MlNL

Y−MlNL
−1

...
Y−M1

 .

Once the model in Equation (1) is built, we run it by coupling outputs
to inputs so that for j ≥ d, we have

yj+1 =

NL∑
k=1

Klkyj+1−lk . (2)

While the method sees data within the original given time series, we say the
method is performing reconstruction. When it begins to iterate over data it
has not seen, then we say the model is performing forecasting.

In [1], models with distinct matrices Klj for each lag were eschewed for
something much closer to what is now called Hankel DMD. While effective,
and in several respects simpler, such an approach does not as readily allow
for more thoughtful model selection as we explain in the next section. That
said, a price is paid for working with separate lag matrices when one wants to
look at the corresponding one-step Koopman operator, say Kδ which would
be approximated by

Kδ ≈ Ka ≡



0 I 0 · · · 0 0

0 0 I
. . . 0 0

...
...

...
. . .

. . .
...

0 0 0 · · · I 0

KlNL
K̃lNL

−1 · · · · · · K̃2 K1

 (3)

where each s× s matrix K̃j is given by

K̃j =

{
Klk , j = lk ∈ lc

0, j 6= lk ∈ lc
Finding the eigenvalues of Ka is equivalent to finding the roots of the poly-
nomial pa(z) where

pa(z) = det

(
NL−1∑
k=0

KlNL−k
zlNL

−lNL−k − zlNL I

)
. (4)

While not useful in a numerical context, this formula will prove useful when
characterizing the eigenvalues of Ka relative to the choice of lags lc.
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2.2 Determining Information Flow andModel Discovery through
Entropic Regression

Given two time series, say {Xj}NT
j=1 and {Yj}NT

j=1, it is a foundational question
to determine if one time series causes the other. Said another way, can we
find quantitative methods which determine how one time series might drive
or ultimately explain the behavior of another?

Motivated by the now celebrated Granger causality test, cf. [19], in linear
time series, [13] introduced the notion of transfer entropy to determine the
causal relationship between two nonlinear time series. The transfer entropy
from Xj to Yj , say TX→Y (j) is defined in [13] to be

TX→Y (j) =H (Yj+1|Yj)−H (Yj+1|Yj , Xj) , (5)

=I (Yj+1, Xj |Yj) . (6)

where H() measures the entropy of a random variable and I(, ) is the mutual
information between two random variables defined via the equation

I(X,Y ) = H(X)−H(X|Y ). (7)

Thus the transfer entropy I(Yj+1, Xj |Yj) measures the conditional mutual
information with conditioning over Yj . Note, if Yj+1 is independent of Xj ,
then H(Yj+1|Yj , Xj) = H(Yj+1|Yj) so that TX→Y (j) = 0. This initial con-
cept of transfer entropy has given rise to a host of modifications and improve-
ments, the most relevant for our purposes being that of causation entropy
[2] and entropic regression (ER) [3]. Causation entropy provides a natural
extension of transfer entropy to networks in which a central question is the
determination of information flow between network nodes. Central to its
computation over a network is the separation of the algorithm, after some
INITIALIZE phase, into a BUILD and PRUNE phase. The PRUNE phase
in particular removes nodes which would otherwise provide false-positive
connections for information flow in the network, thereby providing a criti-
cal mechanism for developing accurate pictures of information flow among
several processes.

Building on this three stage methodology, ER develops models of time
series from dictionaries of basis functions, say {φl}Nm

l . This happens as well
in an INITIALIZE, BUILD, and then PRUNE phase. After choosing some
reasonable initial basis function and corresponding model, the BUILD phase
is done by fixing a state, say Ys, which is modeled by the current model,

say Mc, and a test model, say M
(j)
t , where M

(j)
t differs from Mc through

the inclusion of a basis function, say φj , not already used in constructing
Mc. We then find a potential model update by computing

Ĩ = argmaxjI
(
Ys,M

(j)
t

∣∣∣Mc

)
,
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so that, if Ĩ > 0 in a statistically significant sense, we choose those model up-
dates which most increase the degree of information that one model provides
over another regards to a state Ys. Once we have exhausted the family of
basis functions, ER commences the PRUNE phase, in which for the current

model Mc we generate M
(j)
t by removing basis functions, say φj , from Mc,

and then compute

ĩ = argminjI
(
Ys,M

(j)
t

∣∣∣Mc

)
,

so that if ĩ = 0 in a statistically significant way, then we reduce Mc to the

chosen M
(j)
t .

2.3 Entropic-Regression-Dynamic-Mode Decomposition

To augment the HODMD method, we now merge it with ER. To do this,
fixing some maximum choice of lag d, we take as our desired state Ys ≡ Y+

d .
Assuming some already chosen set of lags, say lc, we can add to lc some not
already chosen lag , say lj , to generate the set of test lags lt. We can then
use HODMD to generate a given model Mc ≡ K(lc)Y(lt) and a proposed

model M
(j)
t ≡ K(lt)Y(lt). Following then the ER framework, there are

three stages to our ERDMD method, which are

1. INITIALIZE: We initialize our choice of lags lc = {1} and corre-
sponding HODMD matrix K1 which is found via the typical DMD
method.

2. BUILD: Given some choice of lags lc, we then look at the proposed

list lt = lc ∪ {lj} and then find those lagged models, say M
(j)
t ≡

K(lt)Y−(lt) which provide the most information relative to the prior
choice of lagged model, say Mc ≡ K(lc)Y−(lt), i.e. we find

Ĩ = argmaxjI
(
Y+
d ,K(lt)Y−(lt)

∣∣K(lc)Y−(lt)
)
. (8)

If this value is larger than zero in a statistically significant way (mea-
sured through shuffle testing), then the model is updated to the corre-

sponding model M
(j)
t ; see Figure 1 for an illustration of this process.

3. PRUNE: We finally prune by testing whether each chosen lag is nec-
essary relative to the other choices we have made during the build
phase. Thus, for a given model Mc ≡ K(lc)Y−(lt), we generate

M
(j)
t ≡ K(lc\lj)Y−(lt) and then find

ĩ = argminjI
(
Y+
d ,M

(j)
t

∣∣∣Mc

)
. (9)

If this value is close to zero in a statistically significant way (measured
through shuffle testing), then model is updated to the corresponding

M
(j)
t .
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M
(j)
t : y(+) = K̃1

y
(−)
1

+ · · · + K̃lk

+

y
(−)
lk

K̃lk+j y
(−)
lk+j

Mc : y(+) = K1 y
(−)
1

+ · · · + Klk y
(−)
lk

Figure 1: The BUILD stage of the ERDMD algorithm. Here, we start from
the given model Mc which represents the choice of lags (1, · · · , lk) with
corresponding matrices (K1, · · · ,Klk), and we then find a proposed model

M
(j)
t which maximizes I

(
y+,M

(j)
t

∣∣∣Mc

)
, or the information gain in using

the proposed model relative to the given model to anticipate the next time
steps represented by y(+).
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Note, we always have 1 ∈ lc since this makes all subsequent lags improve-
ments on the basic DMD approach. This process is formalized and detailed
in Algorithm 1.

3 Results

To study the efficacy of our method, we examine its use over numerically
generated data from various chaotic dynamical systems. In each case, for a
given time series {yj}NT

j=0 we choose a maximum lag d and then use a derived

model to reconstruct the original time series after the dth step, i.e. {yj}NT
j=d.

In each case, we compare the model generated by our proposed ERDMD
method to the full HODMD method. While this is of course not exhaustive
with regards to model performance comparison, we refer the reader to [12],
which looks at the performance of the Hankel DMD method on a similar
class of problems where we see it generally fail outright without further
modification. Thus, within its appropriate method class, we have a clear
sense that the ERDMD method is performing well across its most nearby
competitors.

3.1 Lorenz-63

We now examine how well our method performs on the Lorenz-63 system,
given by the equations

ẏ1 = σ(y2 − y1)
ẏ2 = y1(ρ− y3)− y2
ẏ3 = y1y2 − βy3

with σ = 10, ρ = 28, and β = 8/3. These parameter choices ensure that
trajectories are pulled onto a strange attractor and exhibit chaotic dynamics.
We test our method on numerically generated data. Time stepping is done
with standard Runge–Kutta 4.For our numerics, the time step is dt = .01,
and we run the simulation from 0 ≤ t ≤ 22.

We look at data for 20 ≤ t ≤ 22, with d = 150, corresponding to 1.5 units
of non-dimensional time. We then compare our ER-DMD model to a model
using all possible lags for 21.5 ≤ t ≤ 22. The ERDMD algorithm converges
to lc = {1, 149}. The results of running the two models in both reconstruc-
tion and forecasting modes are seen in Figure 2. In the error plots in Figure
2 (b), we see that throughout the reconstruction region, the HODMD is
categorically more accurate than the ERDMD method by several orders of
magnitude. However, practically speaking, the approximation provided by
the ERDMD is still quite good. Further, looking beyond the reconstruction
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Algorithm 1 ERDMD Method

1: procedure Initialize
2: Set lc = {1} and lr = {2, · · · , d}.
3: Find K1 = arg minK

∣∣∣∣Y+
1 −KY− (lc)

∣∣∣∣
F

. Set K(lc) = (K1).
4: end procedure
5: procedure Build
6: while lr 6= {∅} do
7: Given lc = {1 l1 · · · lj}, K(lc), and lr = {2, · · · , d} \lc
8: for lj+1 ∈ lr do
9: Define lt = lc ∪ {lj+1} and find

K(lt) = arg minK̃1,K̃l1
,···K̃lj+1

∣∣∣∣∣∣Y+
lj+1
− K̃(lt)Y−(lt)

∣∣∣∣∣∣
F
.

10: end for
11: Choose lj+1 and the corresponding lt and K(lt) to maximize

I
(
Y+
d ,K(lt)Y−(lt)

∣∣K(lc)Y−(lt)
)

12: If choice is statistically significant (using shuffle test), update lc
and K(lc).

13: end while
14: end procedure
15: procedure Prune
16: Given lc = {1, l1, · · · , lNL

}, set S ≡ True
17: while S do
18: for lj ∈ lc do
19: Define lt = {1, l1, · · · , lNL

} \ {lj}
20: Compute

I
(
Y+
lNL

,K(lt)Y−(lt)
∣∣∣K(lc)Y−(lt)

)
.

21: end for
22: Choose lt corresponding to minimum information.
23: if minimum is statistically insignificant then
24: Prune corresponding lj from lc and K(lc).
25: else
26: S ≡ False
27: end if
28: end while
29: end procedure
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to the forecast regime, we see the ERDMD model does a generally better
job beyond the data, thereby implying that the HODMD model is probably
overfitting.

To this end, we can also compare the models generated by ERDMD and
HODMD. Looking at the norms of the various lag matrices in Figure 3 we see
that the ERDMD model produces a much sparser model with significantly
larger overall matrix norms. Likewise, the relative continuity of magnitudes
of the lag matrices of the HODMD method allows for some description of
the preferred scales of the model, but it is nowhere near as clear as when
using ERDMD to accomplish the same task.

Constructing the full Koopman one-step approximation Ka as in Equa-
tion (3) allows us to find the affiliated Koopman spectrum as seen in the left
side of Figure 4. We see that the affiliated characteristic polynomial pa(z)
is given explicitly by

pa(z) = det
(
K149 + (K1 − zI) z148

)
.

If we look at the interior of the unit disc so that |z| < 1, then because of the
strong separation in lags as seen in lc, our innermost eigenvalues to leading
order are found from the roots of p̃in,a(z) where

p̃in,a(z) = det
(
K149 + K1z

148
)

or the leading roots are found by finding the generalized eigenvalues z̃ = z148

of the two matrix problem K149 + K1z̃.
Looking at the detail figure in Figure 4, we see that most of the features

in the spectrum seen in the full spectrum on the left are present in the right.
Thus, the damping in the dynamics comes almost entirely from the disparity
in lag values. Further, we see that the full spectrum gets closer to the unit
circle and even has two modes which just cross the unit circle. Otherwise,
the reduced model well describes the damping modes, though we also see
that the lag matrices K1 and K149 balance for more delicate dynamics along
the unit circle.

By way of contrast though, if we set the maximum lag d = 100, and
build reconstructions for 21 ≤ t ≤ 22, we find that the ERDMD results differ
markedly in terms of the determined lags though ultimately not in terms of
accuracy; see Figure 5. In this case, the ERDMD algorithm converges onto
the lag choices

lc = {1, 15, 26, 35, 45, 48, 68, 73, 97, 99} .

By choosing a lag horizon which does not fully capture the approximate
period of oscillation in the dynamics, we need significantly more information
to accurately reconstruct the data, though still nowhere as much as the full
HODMD model. We also see though that the smaller choice of d causes
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Figure 2: Direct comparison of ERDMD and all lags HODMD model against
the true trajectory for the Lorenz-63 system (a), and error across dimensions
for the ERDMD and all lags HODMD method (b). The black line indicates
the ERDMD result while the red indicates the all lags HODMD result. The
solid vertical bar indicates the maximum lag choice of d = 150, while the
dashed line indicates the end of the reconstruction interval and the beginning
of the forecasting regime. The ERDMD algorithm converges to lc = {1, 149}.

both models to essentially fail at providing any reasonable forecast, again
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0
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0
||K

l||

Figure 3: Comparison of the HODMD lagged matrix norms (black dots)
and the ERDMD model (red dots) for the Lorenz-63 system with d = 150.
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(λ
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0.95 1.00
−0.2

0.0

0.2

Figure 4: Spectrum of corresponding ERDMD Koopman operator for
Lorenz-63 with d = 150 on the left side, with a detail comparison to the
roots of p̃in,a(z) (blue crosses) on the right side near (1,0). The ERDMD
algorithm converges to lc = {1, 149}. The solid/red line is the unit circle,
provided for reference.

reflecting the importance of good choices of d in the first place, a result
which echoes the work in [9].

Comparing the models again as seen in Figure 6, we see that for d = 100
we get a less minimal ERDMD model though with markedly larger matrix
norms for the longer lags, helping us to see that the model prioritizes long
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Figure 5: Comparison of ERDMD and all lags HODMD model against
true trajectory for Lorenz-63 system. The ERDMD reconstruction is
in solid black in the figure. The vertical bar indicates the maximum
lag choice of d = 100. The ERDMD algorithm converges to lc =
{1, 15, 26, 35, 45, 48, 68, 73, 97, 99}.

correlations in time in order to find accurate reconstructions. Likewise, the
full HODMD model has some degree of spread in magnitudes, but it does
not allow for ready analysis or description.

0 50 100
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0

1

2

lo
g 1

0
||K

l||

Figure 6: Comparison of the HODMD lagged matrix norms (black dots)
and the ERDMD model (red dots) for the Lorenz-63 system with d = 100.

We can likewise find the spectrum of Ka as seen in Figure 7. In this
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case, the larger spread of lags makes ready identification of positions in
the spectrum to lag structure more difficult, though we see that The more

−1 0 1
Re(λ)

−1.0

−0.5

0.0

0.5

1.0

Im
(λ

)

Figure 7: Spectrum of corresponding ERDMD Koopman operator for
Lorenz-63 for d = 100 on the left side, with a detail comparison to the
reduced approximation (blue crosses) on the right side near (1,0). The
ERDMD algorithm converges to lc = {1, 15, 26, 35, 45, 48, 68, 73, 97, 99}.
The solid/red line is the unit circle, provided for comparison.

uniform spread in lag values makes any estimates of the spectrum using
reduced models less useful beyond identifying the most strongly damped
modes.

Rossler Equation

To see how the ERDMD method works on problems with multiple scales,
we now look at modeling dynamics coming from the Rossler system, given
by the equations

ẏ1 = −y2 − y3
ẏ2 = y1 + ay2

ẏ3 = b+ y3(y1 − c)

where a = .1, b = .1, c = 14. To see the role the multiple time scales play
in this problem, letting ε = .1, then we see a = b = ε and c = 1.4/ε. Letting
τ = t/ε and setting y3 = ε2ỹ3(t, τ), to leading order, in y1 and y2 we find(

y1
y2

)
= eεt/2

(
cos(t) − sin(t)
sin(t) cos(t)

)(
y1,0
y2,0

)
+O(ε2),

14



so that we have O(1) planar oscillations complimented by slow growth away
from the origin. Likewise, in ỹ3 we find

∂τ ỹ3 + ε∂tỹ3 = 1− 1.4ỹ3 + εy1ỹ3.

This then motivates the expansion

ỹ3(t, τ) = c(t)e−1.4τ +
1

1.4

(
1− e−1.4τ

)
+ εỹ3,1(t, τ) + · · · ,

which, to remove secularities then gets us the equation for c(t) of the form

dc

dt
= y1(t)

(
c− 1

1.4

)
.

So we have

c(t) =
1

1.4
+

(
c(0)− 1

1.4

)
e
∫ t
0 y1(s)ds,

so that ỹ3 stays small until the slow growth in y1 due to the eεt/2 term pushes
the dynamics out of the plane.

We build reconstructions for 25 ≤ t ≤ 40. To get accurate results, we
chose d = 1000, for which choice the method converged to the set lc with

lc = {1, 3, 170, 436, 553, 665, 988} .
As can be seen in Figure 8, our accuracy relies on capturing a full departure
from the fast through the slow manifold. This also explains the need for
such a large choice of d relative to what was used for the Lorenz-63 system.
Likewise, as with the Lorenz-63 system, the error in the ERDMD approxi-
mation is several orders of magnitude larger than for HODMD, though the
practical difference is minimal. Neither model does well forecasting the next
fast departure from the planar oscillator reflecting an inherent difficult in
learning slow/fast chaotic dynamics.

Comparing the HODMD and ERDMD models for the Rossler system,
we see in Figure 9 somewhat peculiar results. Unlike for the Lorenz system,
the norms of the lag matrices in the ERDMD model span ten orders of
magnitude. Moreover, while K1 and K3 have relatively large norms, the
remaining lag matrices are 10−10 times smaller, so all of the long time lag
matrices are categorically minuscule in comparison. So how can they have
any meaningful impact within the model?

This question is answered in part by examining the spectrum, which will
show us the spread in lag matrix norms is a result of the multiscale nature
of the Rossler system. This of course appears in the wide spread of values
of the optimal lags we see in lc and the corresponding spread in norms of
the affiliated lag matrices. Taking ε = .1, we see that

||K1|| , ||K3|| = O
(
ε−5
)
, (10)

||K170|| , ||K436|| , ||K553|| , ||K665|| , ||K988|| = O
(
ε5
)
. (11)
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Figure 8: Comparison of ERDMD and all lags HODMD model against
true trajectory for the Rossler system. The ERDMD reconstruction is
in solid black in the figure. The vertical bar indicates the maximum
lag choice of d = 1000. The ERDMD algorithm converges to lc =
{1, 3, 170, 436, 553, 665, 988}.

Thus, to look at substructure withing pa(z) we should look at the respective
balances

z988 ∼ ε5, z985 ∼ ε10, z3 ∼ ε−5, (12)

so that for |z| < ε10/985 ≈ .977, we have

pa(z) ≈ p̃in,a(z) = det
(
z323K665 + K988

)
. (13)
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Figure 9: Comparison of the HODMD lagged matrix norms (black dots)
and the ERDMD model (red dots) for the Rossler system.

The affiliated eigenvalues computed from this approximation correspond to
the slowest scales in our ERDMD model. See Figure 10, right side detail for
a comparison of the approximated eigenvalues to the actual values.

Likewise, if we look for eigenvalues outside the unit circle, we look to the
fastest scales corresponding to the reduced polynomial

p̃out,a(z) = det
(
z3 −K1z

2 −K3)
)

We compare all of these regimes of the spectrum in Figure 10, in which we
see most eigenvalues are close to or on the unit circle, though near (1, 0) as
seen in the detail figure, we have a handful of modes outside. The largest
in magnitude of these growing/unstable modes correspond to the fast scale
roots coming from p̃out,a(z). Likewise, we see in the detail two rings of
decaying modes which are reasonably well approximated by p̃in,a(z), which
shows how the relatively minimal model generated by the ERDMD method
allows for more ready identification, classification, and approximation of
time scale related phenomena.

Kuramoto–Sivashinsky Equation

To look at a more intricate and higher dimensional example, we now study
the Kuramoto–Sivashinsky (KS) equation given by

ut + uxx + uxxxx + uux = 0, u(x+ 2L, t) = u(x, t).
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Figure 10: Spectrum of the corresponding ERDMD Koopman opera-
tor for the Rossler system on the left side, with a detail comparison
to the roots of p̃in,a(z) (blue crosses) and p̃out,a(z) (green crosses) on
the right side near (1,0). The ERDMD algorithm converges to lc =
{1, 3, 170, 436, 553, 665, 988}. The solid/red line is the unit circle, provided
for comparison.

See [20] for an extensive bibliography with regards to details and relevant
proofs of facts used in this paper. Introducing the rescalings

t̃ =
t

T
, x̃ =

π

L
x, u = Aũ,

and taking the balances

A =
L

πT
, T =

(
L

π

)2

,

we get the equivalent KS equation (dropping tildes for ease of reading)

ut + uxx + νuxxxx + uux = 0, ν =
(π
L

)2
.

Looking at the linearized dispersion relationship ω(k) = k2 − νk4, we see
that the ν parameter acts as a viscous damping term. Thus, as the system
size L is increased, the effective viscosity is decreased, thereby allowing for
more complex dynamics to emerge. As is now well known, for L sufficiently
large, a fractional-dimensional-strange attractor forms which both produces
intricate spatio-temporal dynamics while also allowing for a far simpler rep-
resentation of said dynamics. It is has been shown in many different works
(see for example [21]) that L = 11 generates a strange attractor with dimen-
sion between eight and nine, and that this is about the smallest value of L
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which is guaranteed to generate chaotic dynamics. We therefore set L = 11
throughout the remainder of this section.

To study ERDMD on the KS equation, we use KS data numerically gen-
erated by a pseudo-spectral in space and fourth-order exponential-differencing
Runge-Kutta in time method [22] of lines approach. For the pseudo-spectral
method, K = 128 total modes are used giving an effective spatial mesh width
of 2L/K = .172, while the time step for the Runge-Kutta scheme is set to
δt = .25. After a burn in time of tb = 10, we generated a simulation of
length tf = (L/π)4 ≈ 160 to allow for nonlinear effects to fully manifest.
This trajectory was then separated via a POD into space and time modes;
see [23]. Taking Ns = 12 modes captured 98.6% of the total energy.

To study the ERDMD method, we choose d = 200, which for dt = .25
corresponds to a lag time of t = 60. With this choice, the ERDMD method
finds lc to be

lc = {1, 123, 141, 158} .
The results for reconstruction can be seen in Figure 11, we where we look
at times 10 ≤ t ≤ 66. As can be seen, the ERDMD does well, though we
note that if we look for longer reconstructions, errors do start to appear
more rapidly for the ERDMD method than the full HODMD method, and
we are not able to push the ERDMD method to reproduce the entire recon-
struction region from initial conditions. Thus, we while the present results
are promising, they represent an edge for our method that will need further
tools to address; see [12] in this direction.

Repeating the HODMD and ERDMD model comparisons, we see in Fig-
ure 12 a situation similar to that seen in the Lorenz-63 system in so far as
each matrix within our model is of roughly equal size and thus impact. Com-
paring to the Rossler system results, this shows there is no rapid transition
layer or other distinguished time scale phenomena.

Nevertheless, we can still identify inner and outer approximations to
eigenvalues affiliated with the ERDMD method. We see in Figure 13 the
corresponding full spectrum affiliated with our method. Again, the strong
separation of lags in lc motivate looking at the roots of the reduced polyno-
mial

p̃in,a(z) = det
(
z35K123 + z17K141 + K158

)
.

Note, letting z̃ = z17, we can write

z35 = z̃2eln z̃/17 ≈ z̃2

so long as |z| is not too close to zero. We can then find the affiliated ap-
proxmiate companion matrix representation for p̃a(z) in the form

K̃a =

(
0 I

−K̃2 −K̃1

)
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Figure 11: Comparison of ERDMD and all lags HODMD model against
true trajectory for the KS equation. The vertical bar indicates the max-
imum lag choice of d = 200. The ERDMD algorithm converges to lc =
{1, 123, 141, 158}.

where
K̃1 = K−1123K141, K̃2 = K−1123K158.

For this problem, for |z| > 1, we can also readily define and compute the
roots of p̃out,a(z) where

p̃out,a(z) = det(z −K1)

The full spectrum and detail comparison is seen in Figure 13, where we
again can see the most damped modes come from the highest lags in our
Koopman model. We likewise see that the most unstable mode of the full
spectrum correspond to the largest magnitude eigenvalues of K1. Thus there
is a clear separation in the Koopman spectrum across lag values, which is
to say time scales in the dynamics.
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Figure 12: Comparison of the HODMD lagged matrix norms (black dots)
and the ERDMD model (red dots) for the Kuramoto–Sivashinsky system.
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Figure 13: Spectrum of the corresponding ERDMD Koopman operator for
the Kuramoto–Sivashinsky system on the left side, with a detail comparison
to the roots of p̃in,a(z) (blue crosses) and p̃out,a(z) (green crosses) on the right
side near (1,0). The ERDMD algorithm converges to lc = {1, 123, 141, 158}.
The solid/red line is the unit circle, which is provided for reference.

4 Discussion

In this work, we have developed a novel lagged DMD method which uses
entropic regression to discover relatively minimal, non-uniform in lag mod-
els which are shown to allow for direct time stepping with good accuracy.
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Further, the non-uniform lag structure and relatively small number of model
terms used allow for more detailed study and characterization of the affili-
ated DMD spectrum, thereby adding diagnostic depth which should prove
useful in a number of real-world contexts. While we also discovered limita-
tions in our approach, future work involving existing machine learning based
DMD algorithms should provide ready improvement. Finally of course, there
is the frontier of studying our method on noisy data, though existing work
of one of the present authors hints that entropic based regression approaches
should be able to address that issue well.
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