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Abstract

In this paper, we consider comparing dynamical systems by using graph matching method either between the
graphs representing the underlying symbolic dynamics, or graphs approximating the action of the systems on
a fine but otherwise non generating partition. For conjugate systems, the graphs are isomorphic and we show
that the permutation matrices that relate the adjacency matrices coincides with the solution of Monge’s mass
transport problem. We use the underlying Earth Mover’s Distance (EMD) to generate the “approximate”
matching matrix to illustrate the association of graphs which are derived from equal-distance partitioning
of the phase spaces of systems. In addition, for one system which embeds into the other, we show that the
comparison of these two systems by our method is an issue of subgraph matching.

Keywords: symbolic dynamics, graph matching, conjugate systems, isomorphic, Earth Mover’s Distance,
Monge-Kantorovich problem, embedding systems, subgraph matching.

1. Introduction

A basic question in science and in dynamical systems models of scientific problems is how to compare
two systems. For an equivalence relation on dynamical systems, standard practice is to use the notion of
conjugacy. The problem in practice is that it can be difficult in the general scenario of more than one di-
mension to find such a homeomorphic change of variables that relates the two systems, even if one exists.
Furthermore if no such exact equivalence exists, the question becomes “is one system a good approximation
of another?” In [3, 12], we explore this isuue by generating a change of variables between the systems,
and then we measured the quality of the comparison by discussing the deviation of the resulting change of
variables from a homeomorphism, which we called homeomorphic defect. The problem is the contraction
mapping methods we used to identify the change of variables do not easily extend to the general scenario of
multi-variate dynamical systems. Thus the need to develop alternative methods in the spirit of our goal [3, 12]
of relaxing conjugacy to compare somewhat related dynamical systems. Here we will resort to a variant of
the classic Monge-Kantorovich optimization problem [7, 8] to both built a useful change of variables and
measure quality of the comparison through the underlying cost called the Wasserstein distance, in a spirit
such as the related work for time series in [9].

In symbolic dynamics [4, 2, 1], a shift space is a set of infinite symbol streams representing the trajectory
of a dynamical system. Shifts spaces with a finite set of forbidden blocks are called shifts of finite type.
Such shifts spaces have a simple representation as a special case of so-called sophic shifts, that is a directed
graph, where nodes are symbols. Furthermore we may define edges weights as the probability of a transition
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from one symbolic word to another. As such, the directed graph becomes a discrete representation of the
Frobenius-Perron operator, [14] through an approximation method related to the Ulam’s method, [15].

Within the usual dynamical systems framework, the determination of whether two systems are dynami-
cally equivalent is based upon whether or not there is conjugacy between them, [2]. In terms of a symbolic
dynamics representation [1, 4] of the underlying systems, the conjugacy matches symbol sequence from each
symbolic space. System comparison within the concept of “conjugacy” would be straightforward, since all
we need is to check is the existence of a similarity transformation that relates the adjacency matrices (one for
each system) which generates the grammars of the underlying subshifts. Here we will demonstrate that such
a matrix is equivalent to finding the Monge solution [8] to a specific mass transport problem. Because of well
understood difficulties in finding Monge solutions, we instead choose to solve for the relaxed “matching ma-
trix”, which is actually a Kantorovich solution to relating the adjacency matrices of the dynamical systems.
We use the earth mover’s distance (EMD) [6] to generate such matching matrices which we show serves as a
suitable commuter for the dynamical system. In addition, we prove that if one system embeds into the other,
the comparison becomes a subgraph matching problem.

The outline of the paper is as follows: In section 2, we introduce the idea of our graph matching method to
compare dynamical systems; In section 3, we give some theoretical results regarding the comparison between
conjugate systems, with a particular example; In section 4, we consider the error analysis, with a numerical
result to study the regularity property of our algorithm; in section 5, we extend our methods to compare
systems where one embeds into the other, with both theoretical and numerical results given; In section 6,
we show that our method can be easily extended to compare higher dimensional dynamical systems. We
summarize our results in section 7.

2. Graph Representations of Dynamical systems

We adopt our notations from Lind and Marcus [1]: A graph G consists of a finite set ν = ν(G) of
vertices, and with a finite set ε = ε(G) of edges. Each edge e ∈ ε(G) starts at a vertex denoted by i(e) ∈
ε(G) and ends at a vertex t(e) ∈ ε(G). The weighted adjacency/stochastic matrix of G, denoted as AG,
is a conditional probability matrix where the (i, j) entry assigns the probability P( j|i) (or P(i → j|i)), the
conditional probability from node i to j given the current state is in node i. The stochastic matrix is essentially
a matrix description of a Markov chain on the graph G = (ν, ε) [1]. We note that some references may
distinguish a stochastic matrix and the graph adjacency matrix, defining the latter as a binary matrix which
assigns 1 to connected nodes, otherwise 0. In this paper, the transition matrix and stochastic matrix are used
interchangeably, and (unless specifically stated otherwise) when we refer to “the adjacency matrix,” we mean
a weighted adjancency matrix with weights assigned to describe the appropriate transition probabilities.

In practice, given a test orbit {xk}Nk=1 s.t. xk+1 = f (xk) from dynamical system f , then the transition
probabilities can be estimated as follows,

P( j|i) ≈ #({xk |xk ∈ Bi and f (xk) ∈ Bj})
#({xk ∈ Bi})

(1)

as Ulam-Galerkin approximation of the Frobenius-Perron operator with a partition Γ = {Bi}, which is a
finite family of connected sets with nonempty and disjoint interiors that covers the phase space [15, 17].

As example, Figure 1 shows a partition on the logistic map. We label the interval [0, 1/2] with L, and
(1/2, 1] with R. Start from any initial point that yields a chaotic trajectory, record L or R in each iteration
based on the evolution of dynamics. Then a weighted directed graph is built based on the recorded link list.
In this example, the transition matrix would be a 2 by 2 matrix where entries are all 1/2.

The weighted directed graph is a simple representation of the dynamical system in that the adjacency
matrix of the graph records all the allowable bi-infinite walks. Consequently, we assert that one way to relate
the dynamics of two different systems is to perform a graph matching operation on the associated graph
representations of the symbol dynamics. A key benefit of using a graph matching approach is that the study
of graph matching techniques and algorithms is well developed in the field. Among many of the efficient
graph matching methods, we use the Earth Mover’s Distance, which essentially solves the discrete case of
the Kantorovich’s problem. What we hope to answer in this paper is,“what does the matching of the graphs
using EMD tell us about the similarity of the dynamical systems?” As preliminary explanation, we briefly
recall the Monge-Kantorovich problem.
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Figure 1: Graph

2.1. Monge-Kantorovich Problem
The Monge-Kantorovich problem is an optimal transportation problem [8]: Specially, given two distribu-

tions µ for space X and ν for Y , one is required to find the optimal transportation plan within a given some
metric describing the transportation cost. The Monge’s problem is formalized as:

Minimize I[T ] :=
∫

X c(x, T (x)))dµ(x)

for all measurable map T : X → Y such that ν is a push-forward [8] of µ by T . The term c(x, T (x))
defines the cost to transport a unit from x to T (x).

On the other hand, the Kontorovich’s problem is a relaxed version of the Monge’s one. It allows each point
in X to be associated to different points in Y . We can no longer use a map T to describe this association. We
shall use a probability measures π, the transference plan, on the product space X×Y , where informally dπ(x, y)
measures the amount of mass transferred from location x to y. We denote the set of all such probability
measures by

Π(µ, ν) = {π ∈ P(X × Y) : π[A × Y] = µ[A], π[X × B] = ν[B] f or all measurable A, B}

And the Kontorovich’s optimal transportation problem can be formalized as follow:

Minimize I[π] :=
∫

X×Y c(x, y)dπ(x, y)

for π ∈ Π(µ, ν), where Π(µ, ν) (defined above) is called the space of transference plans from X to Y .
In the later discussion of this paper, we focus on the discrete version of the Monge-Kantorovich problem,

with solution given as a matrix F that expresses the optimal transportation in that matrix entry fi j gives the
amount of mass to be moved from discrete location xi to location y j. In that setting, the special case of a
Monge solution would then be a permutation matrix, because the Monge problem requires that the full mass
at location xi be moved to a single site y j.

We will compare two systems by studying the Monge-Kantorovich solution between the first eigenvectors
of their associated adjacency matrices relying on Ulam’s conjecture. Ulam’s conjecture was proposed by S.
Ulam [15] and referred that Ulam-Gelerkin matrix determined by Eq. 1 has dominant state/eigenvector that
converges weakly to invariant measure/distribution of the Frobenius-Perron operator, which has been proven
for certain special dynamical systems.

3. Analysis

In this section, we relate graph matching and conjugacy. Particularly, we prove an interesting relationship
between the matching matrix F that describes the Monge solution to a particular problem, and the adjacency
matrices, AG1 and AG2 , that describe the dynamics of the two systems:

F · AG1 = AG2 · F.
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We first introduce the notation: A partition Γ = {x0, x1, · · ·, xm} on interval [a, b] is a set of points where
a = x1 < x1 < · · · < xm = b. We denote |Γ| as the number of subintervals after partitioning, which we call the
cardinality of partition. Let G be a graph with edge set ε and adjacency matrix AG. The edge shift XG or XA
is the shift space over the alphabet A = ε specified by XG = XA = {ξ = (ξi)i∈Z ∈ εZ : t(ξi) = i(ξi+1) for all
i ∈ Z}. The shift map on XG or XAG is called the edge shift map and is denoted by σG or σAG .

3.1. Conjugate Systems
Two dynamical systems are said to be topologically conjugate if there exists a homeomorphism which

describes the change of coordinates between systems. Consequently, when we associate these systems to
dynamics on graphs, we may use that homeomorphism to relate the partition in one system to the partion
in the other. Because trajectories in each system are matched (via the homeomorphism), allowable paths
through the graphs must also be matched, and the graphs of the two systems would be. So in this case, the
associated graph adjacency matrices, say A (for one system) and B (for the other), are similar, and related by
a permutation matrix P. Essentially, P tells how the nodes of the compared graphs are associated, in a 1-to-1
way, so that A = P−1BP. In addition, P relates the eigenvectors of A and B as a linear isomorphism [1].
And, we can identify conjugate edge shifts from these conjugate systems (Theorem 4 in Appendix), which
also determines a so-called “strong shift equivalent” relationship. More precisely, we have the following
definition:

Definition 1 ([1]). Let A and B be nonnegative integral matrices. An elementary equivalence from A to B is
a pair (R, S ) of rectangular nonnegative integral matrices satisfying

A = RS and B = S R

In this case we write (R, S ) : A ! B. A strong shift equivalence of lag l from A to B is a sequence of l
elementary equivalences

(R1, S 1) : A = A0 ! A1, (R2, S 2) : A1 ! A2 · · · (Rl, S l) : Al−1 ! Al = B

In this case we write A ≈ B (lag l). We say that A is strong shift equivalent to B (and write A ≈ B) if there is
a strong shift equivalence of some lag from A to B.

In the following we show that, for isomorphic graphs, which we obtain from conjugate systems by an
appropriate partitioning, the permutation matrix P which provides the similarity transform between the as-
sociated adjacency matrices is the same matrix identified by the Monge solution to an appropriately defined
transport problem.

Theorem 1. Suppose we are given two conjugate systems S YS 1 and S YS 2, and partitions Γi, i = 1, 2, with
|Γi| = M, such that the resulting edge shifts XG1 is conjugate to S YS 1, XG2 is conjugate to S YS 2. Let AG1

be the adjacency matrix of the graph generated from S YS 1 with this partition, and similarly AG2 for S YS 2.
Suppose AG1 is isomorphic to AG2 . Let F be the Monge solution between dominant eigenvectors of adjacency
matrices 2 of graphs from S YS 1 and S YS 2, then F satisfies

F · AG1 = AG2 · F.

2

Remark 1. Note that in the proof, we apply theorems and definitions from the appendix. Some of the fundamental theorems and
definitions that we are using require matrices to be over Z or Z+. But as we define before in section 2, we generally consider adjacency
matrices to be stochastic matrices. The stochastic matrix setting makes our method easy to be implemented, as will be illustrated in
section 3.3. Because these stochastic weights are determined by counting transitions in a long trajectory, and then normalizing each
row (to row sum one), each of these stochastic matrices has rational entries, and appropriate scaling yields an integer matrix. This
renormalized matrix is similarly interpretable as a weighted adjacency matrix. Consequently, the proofs that rely on integer matrix
theorems remain valid under such a renormalization. The Monge’s solution would be interpreted as showing how to move “counts”
instead of “densities.” Even though some references [1, 16] discuss shift equivalence issues for irreducible shift of finite type with a
Markov measure, we prefer not to introduce additional theorems and definitions to address this technical detail, relying simply on the
frequency counting to justify our approach.
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Proof. Since S YS 1 is conjugate to S YS 2, XG1 ! XG2 . By Theorem 4, AG1 ≈ AG2 (strong shift equivalent).
By Definition 5 and Theorem 5, AG1 ∼ AG2 (shift equivalent). By Definition 6 and Theorem 6, AG1 ∼Z AG2

(shift equivalent over Z). On the other hand, since AG1 is isomorphic to AG2 , there exists a permutation matrix
P such that AG1 = P−1AG2 P. Now if we let S = P, R = P−1AG2 , then AG1 ∼Z AG2 (lag 1) according to
Definition 1. By Theorem 7 and Theorem 8, w = S v ! 0 where v and w are Perron eigenvectors of AG1

and AG2 , respectively, and S satisfies S · AG1 = AG2 · S . In addition, S is a permutation matrix, hence S is
invertible.

On the other hand, let F be the Monge solution between v and w, where v and w are dominating eigen-
vectors of AG1 and AG2 , then F satisfies w = Fv ! 0. We claim that F = S .

By Choquet′s theorem and Birkho f f ′s theorem [8], F is a permutation matrix, which implies F is in-
vertible. Substitute v = F−1w into w = S v, we have

w = S · F−1w, (2)

where S · F−1 is also always a permutation matrix, regardless of the cardinality of partition. We note that (2)
is not sufficient in that S ·F−1 could be a rotation matrix other than identity matrix that satisfies w = S ·F−1w.

We prove by induction that, S · F−1 is an identity matrix. In the following, we let EN = S · F−1, where
the cardinality of partition M = N, where we intent to use induction on N.

When N = M = 2, the only permutation matrices that S · F−1 can take are

E2 =

[
1 0
0 1

]

or
Ê2 =

[
0 1
1 0

]

but |Ê2| = −1, so Ê2 can not be a rotation matrix. Thus S · F−1 = E2.
Now we suppose when M = N, EN is an N by N identity matrix, so that w = S · F−1w.
When M = N + 1, in order that the resulting edge shifts with cardinality of partition N + 1 is conjugate

to the one with cardinality of partition N, the graph with N + 1 nodes has to be a splitting of the one with N
nodes [1]. Without loss of generality, we can assume the first node of the graph splits into two nodes, from
cardinality of partition N to N + 1. Then the first bin of dominate eigenvector w of case N would break into
two for case N + 1, with the rest of bins unchanged. For example, from Figure 2(a) to Figure 2(b), bin 1
breaks into bin 1a and bin 1b.

Regardless of how bin 1a and bin 1b match each other, we claim that the rest bins of w, like bins from
2 to 5 in Figure 2(b), match themselves identically as before. Because otherwise, if we amalgamate bin 1a
and bin 1b back into bin 1, or say from case N + 1 back to case N, the bins of w would not match themself
identically. This contradicts to our assumption of the matching of bins of w when M = N.

Also, since S · F−1 is a permutation matrix, EN+1 would has the forms of

EN+1 =

[
E2 0
0 EN−1

]

or
ˆEN+1 =

[
Ê2 0
0 EN−1

]

where EN−1 is a N − 1 by N − 1 identity matrix. Thus, by the calculation of determinant of block matrix,
we know that | ˆEN+1| = −1, which can not be a rotation matrix. Thus, S · F−1 = EN+1, which is a N + 1 by
N + 1 identity matrix.

Similar for the case v = F · S −1v. Thus, we have S = F.

So we can consider finding the similarity matrix P as a process of choosing the association matrices that
minimize the transportation cost.

However, there is not a general algorithm to find the similarity matrix P. Although we prove the equiv-
alence between finding the similarity matrix and finding Monge’s solution, that equivalence does not mean
that either problem is easily solved. In fact, Monge’s problem is difficult because the metric that defines the
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Figure 2: Dominate eigenvectors of graph for case N and N + 1

topology of the transport problem could be very degenerate from the point of view of convexity properties
[8]. For non-conjugate systems (and non-isomorphic graphs), there still exists a Monge solution which as-
sociates nodes of the two graphs in a 1-to-1 fashion in a way that minimizes the “cost of association” with
respect to a particular choice of norm to measure the transportation cost. We observe that the Monge solution
yields a linear transformation from the dominate eigenvector of one graph to the other. On the other hand,
the Monge solution, does not provide a similar linear transformation between the adjacency matrices when
the underlying graphs are not isomorphic. Consequently, the relaxed version, i.e. Kantorovich’s problem,
provides a more natural and implementable method to find an “optimal matching”, where optimality is with
respect to the relaxed transport problem.

3.2. Partitioning Issues
As additional reasons for framing this “system matching” as a Kantorovich problem is that framing as a

Monge problem requires that we our partition is such that the edge shift is conjugate to the original dynamics.
In most practical cases, it is hard or costly to find an appropriate partition (i.e. Markov partition) so that the
resulting graph can fully describe the original dynamical system. Rather, we seek a method that can be applied
to comparing general dynamical systems without solving the “hard” problem of finding a Markov partition.
As alternative, we will use an equal-distance partition. We have to be very careful here, because in general
the equal-distance partition won’t give a conjugate shift space. So, in principle, if we proceed our method
by comparing dynamical systems via equal-distance partition, we are actually comparing different systems
than what we really would like to compare. However, this issue can be addressed as an “approximation
problem.” If we refine our equal-distance partition to sufficiently small cells, then the resulting shift space
can approximate the one that would be observed from a Markov partition.

As example of this approximation via grid refinement, L. Billing and E. Bollt proved that the family
of skew tent map is Markov for a dense set of parameters in the chaotic region [10]. In particular, in any
given neighborhood of a non-Markov map in this chaotic region, there exists a Markov map that uniformly
approximates the non-Markov one. J. Zheng proved that this approximation implies approximation in the
sense of conjugacy [12]. In addition, H. Teramoto and T. Komatsuzaki showed that if a Markov partition has
a certain relationship called “map-refinement of the other Markov partition”, the shift spaces corresponding to
these two Markov partitions are topologically the same [11]. Thus, an adequately refined equidistant partition
can approximate a Markov partition in the sense of conjugacy. In section 4.1, we examine this numerical error
estimate for a tent map example.

3.3. Graph Matching Method for Comparing Dynamical Systems by Earth Mover’s Distance
There are several cases where the Kantorovich’s solution coincides with the Monge’s solution. When we

consider the structure of the space with metric, or say the cost function, defined with a regular p > 1 norm,
the strict convexity of the metric guarantees there is a unique solution to the Kantorovich problem, which
turns out to be also the solution to the Monge problem [8].

However, because of the partitioning issues that we have discussed before, the graphs representations of
the systems are somehow an “approximation”. So the adjacency matrices from conjugate systems are no
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longer similarly related due to inexact partition of phase space. However, we seek to relax the problem in the
way of allowing partial matching, which is to find the Kantororich’s solution, to describe the association.

In probability theory, the Earth Mover’s Distance (EMD) is a measure of distance between two probability
distributions. EMD can be viewed as the solution of the discrete case of Kantorovich problem. It is a bipartite
network flow problem which can be formalized as a linear programming problem [6]: Let I be the set of
supplies, J be the set of consumers, and ci j be the cost to ship a unit from i ∈ I to j ∈ J. We want to find a set
of flow (matching matrix) fi j to minimize the overall cost:

∑
i∈I
∑

j∈J ci j fi j,

subject to the constrains:

fi j ≥ 0, i ∈ I, j ∈ J∑
i∈I fi j = y j, j ∈ J∑
j∈J fi j ≤ xi, i ∈ I

where xi is the total supply of supplier i, and y j is the total capacity of consumer j.
Here we consider the cost function ci j = |x − y|2, with the metric to be the regular 2 norm. In this

case, the optimal matching/flow is the gradients of the convex functions, which are monotone and orientation
preserving. On the other hand, we consider the matrix norm to be the induced 2 norm, since with induced
norm, the matrices can be viewed as operators. And if two systems are conjugate, they are isomorphic as
linear transformations if we restrict the operators/matrices to their eventual range [1].

We give the example about how to create the matching matrix between systems: suppose we are given
two dynamical systems, i.e. the logistic map and tent map, we make a equidistant partition on the phase space
with partitionning numbers M and N, respectively. We randomly choose an initial starting point, and then
iterate it on each system, record the interval/node that the trajectory passes, and built the graphs based on the
recording link list. Figure 3 presents the graphs of logistic map and tent map.

Graph for Tent map
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(a) Adjacency Matrix of Tent Map

Graph for Logistic map
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(b) Adjacency Matrix of Logistic Map

Figure 3: Graph

The matching matrix (Figure 4) generated by Earth Mover’s distance associates the nodes between tent
graph and logistic graph in the way of minimizing the overall cost determined by predefined topology. Notice
the matching itself is a matrix. In Figure 4, the x-axis are nodes for tent graph, y-axis are for logistic graph.
Color intensity implies similarity of the matching. We also plot the homeomorphsim function of tent and
logistic in blue curve. We can see that both the matching matrix and the conjugacy describe the dirt of the
tent distribution is moved in the direction so that it can match the logistic map distribution.

3.4. Further Discussion about the Measure on Adjacency Matrices
In Figure 4, we present the matching matrix between tent map and logistic map, which are conjugate

systems. Note we apply the Earth Mover’s Distance on their adjacency matrices whose entries are assigned
the conditional probability measure. We can think of the matching matrix as a different representation of
conjugacy, since the EMD is actually giving the transformation between the first eigenvectors of the tent map
and logistic map.
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Figure 4: Graph matching between Logistic map and Tent map.

This matching method may be confusing sometimes, since there are systems that are not conjugate but
generating a “conjugate like” matching matrix. For example, if we are comparing a two hump tent map,
instead of the one hump tent map, to the logistic map, our method would still give a matching matrix as
shown in Figure 4. This comes from the fact that, different systems may have the same invariant measures.

Thus we also present an alternative but similar approach for our matching method. Instead of assigning the
conditional probability measure to the entries of the adjacency matrices of underlying systems, we equalize
these non-zero weights of each row of the adjacency matrices.

Figure 5 shows the matching matrix between the tent map and the logistic map with equalized weights
on their adjacency matrices. This focuses more on the topological relation between systems. In the following
section, we will discuss regularity properties when using the adjacency matrices with probability measure.
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Figure 5: Matching Matrix using Equalized weights on the Adjacency Matrices

4. Error Analysis and Regularity Property Analysis

The graph matching method to compare dynamical systems that we discussed in the previous section
suffers from both numerical and theoretical errors: the partition errors that we mentioned in section 3.2;
the statistical errors from comparing the graphs which are constructed by a particular finite trajectory; the
linear program solver error from the Earth Mover’s distance algorithm, which can be reduced by resetting
the stopping criteria stricter. In this section, we will show, numerically, that these errors can be reduced by
refining the partition and increasing sampling size.
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On the other hand, we will consider the regularity of our method, i.e. we will show whether “closer”
systems gives a smaller number of “dissimilarity” for matching. As our goal of this work is to compare
general dynamical systems by graph matching method. We seek to study the metric of “dissimilarity” as the
measure of distance from being conjugacy, or isomorphism for the associate graphs.

4.1. Partition Error
As we have discussed the partitioning issue in section 3.2, we can use the equidistant partition to approxi-

mate the Markov partition with more and more cardinality of partition M. Continuing the example in previous
section, we consider the logistic map T1 and the symmetric full tent map T2, and the value || f low∗AT2−AT1∗ f low||2

||AT1 ||2 ,
a relative error of being isomorphic, when increasing M. Figure 6 suggests the error is decreasing approx-
imately polynomially as M increases. In particular, when cardinality of partition is 100, i.e. M = 100,
|| f low∗AT2−AT1∗ f low||2

||AT1 ||2 = 0.46%.

0 20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

M

||f
lo
w
*A

G
2−
A G

1*
flo
w
|| 2
/||
A G

1||
2

(a) Partition error for refining partition

100 101 102
10−3

10−2

10−1

log(M)

lo
g(
||f
lo
w
*A

G
2−
A G

1*
flo
w
|| 2
/||
A G

1||
2)

(b) Partition error for refining partition in log
scale

Figure 6: Partition error || f low∗AT2−AT1∗ f low||2
||AT1 ||2 with number of partition M increasing.

4.2. Statistical Error
We apply the Earth Mover’s distance to compare graphs which are from taking a particular finite trajectory

of systems. If we let F be the matching matrix between the exact graphs from systems, which can be solved
analytically in this example, and let Fapproximate be the matching matrix between the approximate graphs from
finite trajectories, and ||F − Fapproximate||2 be the error. Then by taking longer iterations for the trajectory and
transient, we have a more precise statistical results, which gives a smaller number of error.

On the other hand, as shown in Figure 7, if we let the cardinality M increase, the error is decreasing
approximately polynomially.
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Figure 7: Error analysis for refining partition
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4.3. Regularity Property for the Metric
We have discussed the issue for conjugate systems, which allows perfect matching for the correspond-

ing graphs. What we are going to consider is, whether “closer” systems implies smaller measure of the
dissimilarity, which we regard as a regularity issue of the method. Here we consider an example with a lo-
gistic map L and a symmetric full tent map with additive noise T . We let the measure of dissimilarity to be
||F ∗ AT − AL ∗ F||2, where F is the matching matrix by Earth Mover’s distance. As shown in Figure 8, when
we decrease the amplitude of the additive noise, the dissimilarity value ||F ∗ AT − AL ∗ F||2 is decreasing to a
certain value monotonously.
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Figure 8: Measure of dissimilarity || f low ∗ AT − AL ∗ f low||2 with decreasing scale of noise for the noisy tent map.

5. For Embedding Systems

We have established the graph matching method to compare conjugate systems. However, in most of the
cases, the underlying systems are not perfectly homeomorphic. It is our goal of this topic to develop the graph
matching method to compare general dynamical systems. But the difficulty is, even we can follow the same
procedure to present the matching matrix like Figure 4 for general non-conjugate systems, the theoretical
explanation and justification stand in our way. But at this stage, we have shown that, if one system embeds
into the other, the issue would become a subgraph matching problem.

We have the following definitions regarding to embedding:

Definition 2. If φ : X → Y is one-to-one, then φ is called an embedding of X into Y.

Definition 3. P(X) denote the set of all periodic points in X. qn(X) is the number of points with least periodic
n, i.e. qn(X) = |{x : φn(x) = x, φk(x) ! x, 0 < k < n}|.

Note that if φ : X → Y is an embedding, then φ restricts to a one-to-one shift-commuting mapping from
P(X) into P(Y). The existence of such a mapping is equivalent to the condition qn(X) ≤ qn(Y) for all n ≥ 1.We
denote these equivalent conditions by P(X) ↪→ P(Y), and call this the embedding periodic point condition.

In addition, we refer “the induced subgraph” as:

Definition 4. Let H be a graph with vertex set v. For each subset w of v define the induced subgraph of H
from w to have vertex set w and edge set the collection of all edges in H that start and end in w. An induced
subgraph of H is one that is induced by some subset of v,

Note that if H has adjacency matrix B, and G is an induced subgraph of H, then AG is a principal submatrix
of B; i.e., AG is obtained from B by deleting the jth row and j column for a certain set of j’s.

We would first give the proof of Theorem 2, which is similar to the proof of Masking Lemma (Theorem
11). But the difference is, our proof is like “cutting edges”, while the proof of Masking Lemma is “adding
edges”.
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Theorem 2. Let G and H be graphs. Suppose that XG embeds into XH. Then there is a induced subgraph K
of H, such that XG " XK.

Proof. Let G′ and H′ be graphs constructed in Theorem 10. Then AH " AH′ . So there is a sequence of graphs

H′ = H0, H1 · ··, Hk = H

such that AHi ! AHi+1 for 0 ≤ i ≤ k − 1. By the next Lemma that will be proved, we will find a sequence of
graphs

G′ = G0, G1 · ··, Gk

such that each Gi is an induced subgraph of Hi, and the elementary equivalence from AHi to AHi+1 extends to
one from AGi to AGi+1 . We set K = Gk. Then AK " AG′ " AG and K is an induced subgraph H.

Lemma 1 (“cutting edges”). Let G1, H1, H2 be graphs such that AH1 " AH2 and G2 is an induced subgraph
of H1. Then there is a graph G2 such that AG1 " AG2 and G2 is an induced subgraph of H2.

Proof. Let A = AH1 and B = AH2 . Let (R, S ) : A " B so that RS = A and S R = B. Let GR,S be the auxiliary
graph. This graph has vertex set which is the disjoint union of v(H1) and v(H2). It contains a copy of H1,
whose edges are called A − edges, and a copy of G2, whose edges are B − edges. For each I ∈ v(H1) and
J ∈ v(H2), there are RIJ edges from I to J, called R − edges, and S JI edges from J to I, called S − edges.

We use G1 to reduce GR,S , forming a new graph Ḡ as follows. Let v = v(H1)\v(G1) and ε = ε(H1)\ε(G1).
Subtract v∪ε to the vertex set of GR,S to form the vertex set of Ḡ. To avoid notational confusion, let Ie denote
the subtracted vertex corresponding to e ∈ ε. It will be helpful to think of vertices in v as being subtracted to
the “H1 − part” of GR,S . And vertices Ie, for each e ∈ ε, as being subtracted to the “H2 − part” of GR,S . For
each e ∈ ε, subtract a R − edges r(e) from the initial state of e to Ie, and S − edge s(e) from Ie to the terminal
state of e. For each R, S − path from I to I′ that this cuts, subtract to Ḡ an A − edge from I to I′; similarly,
for each S ,R − path from J to J′ that this cuts, subtract to Ḡ a B − edge from J to J′ (see Figure 9). This
completes the construction of Ḡ.

Each e ∈ ε determines a cut R, S − path r(e)s(e) from GR,S with the same initial and terminal states in G1
as in Ḡ, and these are the only subtracted R, S − paths. Hence the graph with vertices v(H1) \ v and A− edges
of Ḡ is isomorphic to G1. Let G2 be the graph with vertices v(H2) \ {Ie : e ∈ ε} and all B − edges of Ḡ. Let R̄
and S̄ record the incidences of R−edges and S −edges in Ḡ. The Ḡ is the auxiliary graph GR̄,S̄ corresponding
to the elementary equivalence (R̄, S̄ ) : AG1 " AG2 . Furthermore, G2 is the subgraph of H2 induced from the
vertex subset vG2 .

Figure 9: Auxiliary graph

Combine Theorem 2 and Theorem 1, we have the following theorem, which establish the theory for
non-conjugate systems where one embeds into the other.
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Theorem 3. Suppose we are given two non-conjugate systems S YS 1 and S YS 2, and a partition Γ with
|Γ| = M, such that the resulting edge shifts XG1 is conjugate to S YS 1, XG2 is conjugate to S YS 2, where AG1 is
the adjacency matrix of graph that generated from S YS 1 with this partition, and AG2 is from S YS 2. Suppose
XG1 embeds into XG2 . Then there is a induced subgraph G′2 of G2, such that there is a matrix F (the Earth
Mover’s Distance matching matrix between graphs from XG1 and XG′2 ), satisfies

F · AG1 = AG′2 · F.

A simple illustration would be the short symmetric tent map and full tent map, which are not conjugate
systems, and the short one embeds into the full one.
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(a) Adjacency Matrix for short tent map
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(b) Adjacency Matrix for full tent map

Figure 10: Induced Subgraph

Figure 10(a), denote AG, is the graph for short symmetric tent map, whose peak is at 0.95, while Figure
10(b), denote AK , is the graph for short symmetric tent map. We claim that Figure 10(a) is a induced subgraph
of Figure 10(b), or say Figure 10(a) can be enlarged to Figure 10(b).

6. For Higher Dimensional Dynamical Systems

The graph matching method for higher dimensional dynamical systems can be easily extended from the
1-d case. For 2-d dynamical systems, we partition the phase by equal sized boxes. Then the graphs are
determined by investigating the trajectory of a randomly chosen starting point, like the procedure for 1-d
maps. And EMD can be applied to obtain the matching matrix.

As a example, we use the graph matching method to compare two conjugate Henon map (blue and red
Henon maps in Figure 11). We choose the blue Henon map as:




xn+1 = 1 − ax2
n + yn

yn+1 = bxn
(3)

with parameters a = 1.4, b = 0.3, and the red Henon map, which is a cubic transformation of the blue
one, i.e. xred = x3

blue; yred = y3
blue, which is a smooth change of coordinate.

Figure 12(a) and Figure 12(b) show the graphs of the blue Henon and red Henon, respectively. Applying
EMD on this two graphs gives us the matching matrix Figure 12(c). Note that due to the coarse partition,
which is good for visualization, the matching matrix only suggests a rough association between the boxes in
Figure 11.

7. Conclusion

In this paper, we compare dynamical systems by using graph matching method. For conjugate systems,
which have isomorphic graphs, we show that the permutation matrix that relates the adjacency matrices of the
graphs is the same as the solution of Monge’s problem. We use Earth Mover’s Distance (EMD) to generate
the “approximated” matching matrix to illustrate the association of graphs which are derived from equal-
distance partitioning of the phase spaces of systems. In addition, for one system embedding into the other,
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Figure 11: Conjugate Henon Maps
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(b) Red Henon Map
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(c) Matching Matrix

Figure 12: Graph Matching for 2D Dynamical Systems

we show that the comparison of these two systems by our method is an issue of subgraph matching. In the
end we show how to extend the method to compare higher dimensional systems.

For our ultimate objective and future work, we seek to theoretically extend the graph matching method
to compare more general dynamical systems, which are not necessary conjugate or embedding. On the other
hand, the regularity property of our method should be justified. In particular, “closer” systems in the metric
of graphs’ distance should imply closer dynamical relationships, as considered in paper [3]. And by this
setting, finding an optimal system to model a time series data or approximate a system can be achieved by
minimizing the “dissimilarity” of matching.
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Appendix

Here we list the theorems and definitions that we used in our proof. The reader can refer to Lind [1] for
further details.

Theorem 4 ([1]). The edge shifts XA and XB are conjugate if and only if matrices A and B are strong shift
equivalent, we write

XA " XB ⇐⇒ A ≈ B
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Definition 5 ([1]). Let A and B be nonnegative integral matrices and l ≥ 1. A shift equivalence of lag l
from A to B is a pair (R, S ) of rectangular nonnegative integral matrices satisfying the four shift equivalence
equations

(i)AR = RB, S A = BS

(ii)Al = RS , Bl = S R
(4)

Denote by (R, S ) : A ∼ B (lag l). We say that A is shift equivalent to B, written A ∼ B, if there us a shift
equivalence from A to B of some lag.

Theorem 5 ([1]). Strong shift equivalence implies shift equivalence, we write

A ≈ B =⇒ A ∼ B.

Definition 6 ([1]). Let A and B be integral matrices. Then A and B are shift equivalent over Z with lag l,
written A ∼Z B (lag l), if there are rectangular integral matrices R and S satisfying the shift equivalence
equations Definition 5 (i) and (ii). In this case we write (R, S ) : A ∼Z B (lag l).

Theorem 6 ([1]). A ∼ B =⇒ A ∼Z B. If A, B are primitive, A ∼Z B =⇒ A ∼ B.

Theorem 7 ([1]). Let A and B be integral matrices, and suppose that R and S are rectangular integral
matrices so that (R, S ) : A ∼Z B. If µ ! 0 and v ! 0 are such that Av = µv, then w = S v ! 0 and Bw = µw.
Hence A and B have the same set of nonzero eigenvalues, so that λA = λB.

Theorem 8 (Perron-Frobenius Theorem, [1]). Let A ! 0 be an irreducible matrix. Then A has a positive
eigenvector vA with corresponding eigenvalue λA > 0 that is both geometrically and algebraically simple. If
µ is another eigenvalue for A, the |µ| < λA. Any positive eigenvector for A is a positive multiple of vA. We call
λA the Perron eigenvalue of A, and vA a Perron eigenvector of A.

Theorem 9 (Embedding Theorem, [1]). Let X and Y be irreducible shifts of finite type. Then there is a
proper embedding of X into Y if and only if h(X) < h(Y) and P(X) ↪→ P(Y).

Theorem 10. ([1]) Suppose that XG embeds into XH. Then there are graphs G′ and H′ so that XG′ "
XG, XH′ " XH, and G′ is a subgraph of H′.

Note that the Masking Lemma, state below, strengthens this result by showing that we only need to modify
H, leaving G exactly as it is, and that G can be realized as a particular kind of subgraph of H′.

Theorem 11 (Masking Lemma, [1]). Let G and H be graphs. Suppose that XG embeds into XH. Then there
is a graph K such that XK " XH and G is an induced subgraph of K.
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