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Unstable invariant sets are important to understand mechanisms behind many dynamically
important phenomenon such as chaotic transients which can be physically relevant in experi-
ments. However, unstable invariant sets are nontrivial to find computationally. Previous tech-
niques such as the PIM triple method [Nusse & Yorke, 1989] and simplex method variant
[Moresco & Dawson, 1999], and even the step-and-stagger method [Sweet et al., 2001] have
computationally inherent dimension limitations. In the current study, we explicitly investigate
the landscape of an invariant set, which leads us to a simple gradient search algorithm to con-
struct points close to the invariant set. While the calculation of the necessary derivatives can be
computationally very expensive, the methods of our algorithm are not as dimension dependant
as the previous techniques, as we show by examples such as the two-dimensional instability
example from [Sweet et al., 2001] followed by a four-dimensional instability example, and then

a nine-dimensional flow from the Yoshida equations, with a two-dimensional instability.
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1.

It has been illustrated that unstable invariant
chaotic saddles can strongly influence physical
experiments [Sweet et al., 2001] and that chaotic
transients can be caused by the presence of nonat-
tracting invariant sets (saddles) [Nusse & Yorke,
1989; Tél, 1990]. For example, long-lived transients
in a pipe flow [Darbyshire & Mullin, 1995] imitate
turbulent states, making it extremely difficult to
determine the precise transition to sustained tur-
bulence if it exists. Unstable chaotic saddles have
also been shown to be useful in communication
with chaos, since embedded chaotic saddles often
exist with substantial channel capacity but impor-
tant noise resistance properties [Bollt et al., 1997].

Despite their dynamical importance, the fact
is that unstable invariant sets have been difficult
to construct explicitly. In this article, we present
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an entirely new and deterministic technique to con-
struct unstable invariant sets, which for the first
time has no fundamental obstacles preventing its
applications to even higher dimensional dynami-
cal systems. For each point in the space, one can
numerically compute a “lifetime”, that is how long
the trajectory remains in some bounded region. A
point that lies on an invariant set in the region
will have an infinite lifetime. In practice, the goal
is to find points with very long lifetime. The
most direct previous method, called the “Sprinkle
method” [Kantz & Grassberger, 1985] relies on
a uniformly distributed random sampling of ini-
tial conditions over the phase space, wherein the
chance of finding points closer to the invariant
set shrinks exponentially with lifetime, and like-
wise there are serious difficulties in all but two-
dimensional systems due to the simple explosion
of space in higher dimensions. The unstable set is
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not adequately approximated for computations of
ergodic statistics such as Lyapunov exponents on
the invariant set. The “PIM-triple” method [Nusse
& Yorke, 1989 is a straightforward and now popu-
lar technique which works well even in higher overall
dimensional systems when the unstable dimension
is one. PIM calculates the invariant sets adequately
to compute Lyapunov exponents and has been used
for example in communicating with chaos [Bollt
et al., 1997], in a class-B laser [Schwartz & Carr,
1999] and appropriately modified for experimental
NMR laser data [Jéanosi & Tél, 1994]. A “PIM-
simplex” method has recently been developed by
Moresco and Dawson [1999] which is an important
generalization, and it can often construct unsta-
ble invariant sets in two or more unstable dimen-
sions. However, the technique is complicated and
does not work well for some systems. In [Sweet
et al., 2001], a particularly simple technique called
“step-and-stagger” was developed which works well
for one- and two-dimensional unstable dimensional
invariant sets, and some more unstable systems.
However, step-and-stagger also has a random
searching aspect: perturbation directions are chosen
random uniformly on an n-sphere and much of its
success is due to cleverly choosing the size of the
step from an exponential random distribution. Step-
and-stagger is surprisingly robust and efficient given
its simplicity to implement, for systems which are
not too high dimensional. The technique suffers
from its random nature in higher dimensions due to
the simple explosion of space in higher-dimensions,
the so-called curse of dimensionality. The random
step (called a “stagger”) ignores the local structure
of the dynamics.

It is in this historical landscape that we feel
that there is a need for a systematic and all-new
approach to the problem of finding unstable invari-
ant sets, with no fundamental dimension barriers.
We describe the lifetime function landscape, and we
describe the directions of improving lifetime, which
gives rise to a direct technique to improve lifetime
within a desired set corresponding to solving an
ordinary differential equation, which essentially fol-
lows unstable foliations towards stable manifolds
of points on the unstable invariant set. See our
own critique of our gradient based method in the
conclusion.

Throughout the presentation in the next several
sections, we will use the Henon map as an illustra-
tive example, since a map of the plane allows better
pictorial illustration than do the high dimensional

maps for which the techniques are intended. The
Henon map [Hénon, 1976,

F(z,y) = (a — 22 + by, x), (1)

has the famous parameter values, a = 1.4, b = 0.3.

2. Discrete and Continuous Lifetime
Functions

We use notation for a uniformly continuously dif-
ferentiable discrete-time dynamical system,

Zni1 = F(z,), z,eR?, FeCh (2)

We wish to explicitly construct an e-chain, or
“pseudo”-orbit segment {z;}Y, that is,

Hzn-‘rl - F(Zn)H <e¢, (3)

is satisfied [Robinson, 1995]. We require that the
orbit lies in some set B. Then we say that {z;}}¥,
is a B-invariant orbit segment if z; € B, Vi =
0,1,...,N, and each z; satisfies Eq. (2). Exact
orbits rarely exist in a finite precision computer and
choosing € = 1071, the order of machine precision,
is the best that can be constructed. Define discrete
forward (backward) lifetime functions, L5 : R¢ —
Z*, as follows,

L(z) = |j| if F*'(z) € B,
but FEU+H)(z) ¢ B. (4)

for 0 < il < jl,

That is F** denotes the ith forward or backward
iterate, depending on the sign, and F° denotes the
identity map, FO(z) = z, for all z.

In Fig. 1, we see a lifetime function plotted over
the phase space, for the Henon map, Eq. (1), and
where B is a circle of radius 2 centered on the ori-
gin. We will not explicitly use the following fact, but
it is relevant background and a main idea behind a
lifetime-improver algorithm even if uniform hyper-
bolicity is by no means expected to be present in our
specific models. Nonetheless we find it instructive
to describe the hyperbolic picture. Hyperbolicity
shrinks errors upon inverse iteration along unstable
manifolds, and along stable manifolds upon forward
iterations. To arrive at a point on the stable mani-
fold of some point in an unstable invariant set, it is
best to move transversely to that stable manifold,
along unstable foliations.

Let,

Lp(i)* = {z: L(2) > |il}, (5)



Fig. 1.
centered on the origin.

be the set of points with lifetime of at least 7. This
definition helps to explain the towering steps nature
of the lifetime functions shown in Figs. 1 and 2; by
definition, there is the natural nesting of steps of
increasing heights, ££(i +1) C LE(i), V.

Our job is to construct an algorithm to detect
the direction to the next higher step; step-and-
stagger makes no such attempt, instead choosing
a direction at random. To this end, we introduce
the following continuous generalization of the life-
time function. Using the distance function from a
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Forward (left) and backward (right) lifetime functions Eq. (4) of Henon map, Eq. (1), where B is a circle of radius 2

point z to the set B,

Rp(z) = dist(z, B) = inf dist(z,y), (6)
yEB
we define the continuous lifetimes, l§ DR R,
1
+ +
I5(z) =n+ Rp(FE(2))’ where n = Lz(z). (7)

If B is not convex, then the gradient derivative of
I5(z) may not be continuous, which would lead to
interesting but unintended consequences. For what
follows, we will assume that B is convex.
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(Left) A cross-section of the forward lifetime function of Henon map, Eq. (1), shown in Fig. 1, where B is a circle

of radius 2 centered on the origin. Notice the stepping nature of the towers of increasing lifetime. (Right) Layers show points
invariant in a box [—2, 2] x [—2, 2] for i = 1,2, 3, 4 steps successively. The spikes limit on the invariant set £ (o0) , approximated
in Fig. 4.
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The gradient vector for a continuously differ-
entiable function points in the direction of steepest
descent, and therefore vectors,

u*(z) = ~Vip(a), (8)

always point locally in the direction of steepest
increasing continuous lifetime 15(z), when z is in
the interior of Lp(i), a region of fixed and finite
discrete lifetime. The Appendix presents a discus-
sion of an alternative geometric way to derive the
directions of increasing lifetime function.

Now increasing a lifetime becomes obvious.
Increasing lifetime formally corresponds to solving
the ordinary differential equation,

= Vi), )

where s denotes parameterization along a curve
of increasing continuous lifetime invariant in B.
We remark that the formulation of the problem of
increasing lifetime in terms of ODE Eq. (9) should
be considered no more than a formalism, since we do
not wish to discuss here questions of existence and
uniqueness due to both discontinuity and the severe
stiffness which results as solutions z(s) — Lp(c0).
However, we must grapple with the stiffness numer-
ically even when constructing points of lifetimes of
say 50 or 60, which we will discuss in the next
section.

2.1.

In general, the distance between a point and a set,
as described in Eq. (6), is not computationally sim-
ple. However, if B is convex, the distance after
first escape to the center of B, (denoted by c), is
monotone with respect to the set distance Rp(z) in
Eq. (6). In fact, monotonicity of the magnitude of
the “radial” vectors, with respect to Rp(z) follows
for any choice of ¢ € B. Therefore define the radial
vectors,

r*(z) = F(z) — c,

Computing the gradient

where n = LE(z),  (10)
gives the distance to some reference point ¢ by,
¢ (z) = /x5 (2) T2 (2) (1)

We now redefine the continuous lifetime func-
tions more usefully as,

1
lﬁ(z) =n-+ )’ where n = Lﬁ(z), (12)

and r*(z) is calculated as in Eq. (10). However,
since

_ [ 1
2\/1%(z)
and since the part in the brackets is a scalar factor

which does not affect the direction of the gradient
vector,! we define even more simply,

3
I':l:Z 'riz
—| V@ ), 09

l%(z) =n—d*(z), wheren = Lﬁ(z), (14)

which is sufficient to capture the direction of the
gradient field for z for each Lp(n). The gradi-
ents resulting from Eqs. (12) and (14) are parallel,
Vi5(z) || Vi5(z). Here, “||” denotes that the two
vectors are parallel. Finally, we define the direc-
tion vector pointing towards increasing (decreasing)
lifetime,

_ Vi)
VViE(2) - Vig(z)

v¥(2) (15)

which is well defined for z in the interior of Lp(n),
for each n.

Explictly, the direction of the gradient vector,
for z in the interior of Lp(n),

Vi @)|[V(n —r(2) - 15(2))| Dr¥|, - 1¥(2), (16)

since Vn = 0 on each constant life step. The deriva-
tive Dri\Z is the composite Jacobian matrix, which
by the chain rule,

Dr*|, = DF"|,
= DF[pn-1() - DF|pn-2(5) - -+ - DF|s,
Dr™|, = DF |, = DF g ni1y
-DF p-niagy----- DF ', (17)
and where DF is the Jacobian of F,

~1
and DF!= 8§i . (18)
Zj

_OF,

DF =
6zj ’

There are striking similarities between Eq. (16) and
the theoretical construction of stable and unstable
foliations [Jaeger & Kantz, 1997], which we will dis-
cuss further in Sec. 6.

!The derivatives exist for z in the interior of £ B(n), for each n finite, since F was assumed continuously differentiable, and so

is F™.



3. Numerical Integration Towards
Points of Longer Life

For z in the interior of Lp(n), the vector v*(z)
points towards increasing lifetime. Solving the
ODE,

dz n

— =v (z 19
=), (19)
on a given constant life step interior of Lp(n),
brings us near boundary points corresponding to
the next higher step.

We use a simple adaptive scheme. Stated as an
algorithm,

Algorithm A:

(1) Start at an arbitrary initial point z° in the inte-
rior of Lp(n), and choose k = 0, and h = hpax.
(2) If the point reaches a pre-chosen lifetime goal,
z") > Goal, then Take a test ste
L3(z") > Goal, then Tak D,
yitl = 2% 4 hvE(2). (20)
(3) If the discrete lifetime of y**! is better than
that of z”,
Lyp(y"*h) > L(2h), (21)

then assign,

yP — ZE D min (2R, hyax) — b,

22
k+1— k. ( )

Go to 2.
(4) If the continuous lifetime of y**! is better than
that of z”,

(") > (@), (23)
then assign,
Bl 2R+ min(2h, hpay) — A,

k+1— k.

Y (24)

Go to 2.
(5) If the discrete lifetime of y**! is not better than
that of z”,

Lp(y*™) < L(z"), (25)
then reduce the step size,
1
§h — h, (26)

and try again. Go to 2.
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In practice, we evaluate the gradiant in Egs. (15)
and (19) by the second-order difference scheme,

[V5(z + 614) — U5 (2 — 61,)]

(Vi (2)]i ~ Y :

(27)

where 1; denotes a unit basis vector of all zeros,
except a one in the ith index. For both z + §1; and
z—91; in one constant step in the interior of Lz(n)
for all 4, choosing 6 ~ O(10~7) gives an error in the
derivative direction of order O(10~4), which is close
to machine precision. This is simpler than directly
using the definition, Egs. (16) and (17), and compu-
tationally sufficient. In the notation adopted above,
subscripts denote time, or iteration, of the map, and
superscripts denote applications of the above algo-
rithm in search for points with longer lifetime.

4. Building an Invariant Pseudo-Orbit

Given the ability to construct points z with life-
time of N in the set B, constructing a pseudo-orbit
results from the following algorithm,

Algorithm B:

(1) Choose a random starting point z) € B, and

assign m = 0, and k£ = 0.

(2) Using initial position z2,, construct a point
zF — z,, with lifetime of (at least) N in the
set B by algorithm A above.

(3) Iterate z,,+1 = F(z,), which by definition
automatically has a lifetime, L(z;) > N — 1.
Assign m — m + 1.

(4) If L(zx) < N improve life; go to 2.

(5) Since L(z) > N, simply iterate. Go to 3.

That the perturbations z2, — z* become small in

step 2 follows at least if there is uniform hyperbol-

icity as described in Sec. 2.

5. Numerical Examples
Example 1: Henon, Two-Dimensions

First we continue with the Henon map example,
Eq. (1). Using Algorithm A, we construct the
marked path from starting point (circle) to ending
point (star), shown in Fig. 3. The circle has a life-
time Lt = 3, whereas the star at the end of the
green path has a lifetime of Lt = 76. It is fast
and efficient to produce long invariant orbits such
as that shown in Fig. 4.
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Fig. 3. Algorithm A is used to construct the green path from starting point (circle) with lifetime LT = 3 to the ending point
(star) with lifetime L™ = 76 within B, the circle of radius 2. Direction vector field v(z) is shown as red arrows, and coloring
of each square on grid denotes lifetime L™ of the square’s center point, according to the colorbar scale at right.
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Fig. 4. L£(60) (almost) invariant set of the Henon map, using B as the circle of radius 2.



Example 2: Four-Dimensions,
Two-Dimensional Instability

As a second example, in four-dimensions, the algo-
rithm has no problem in reproducing the results
of Sweet’s paper [Sweet et al., 2001], where using
the “step-and-stagger” algorithm, they produced a
L£(30) invariant set, for which e = 10719, for a four-
dimensional coupled Henon map,

F(z,y,u,v) = (A—2? + By + k(z —u), z,
C—ul4+Dv+k(u—zx)u), (28)

where, A =3, B=0.3,C =5, D =03, k=04.
See Fig. 5. Since the dimension of the instability
is 2, due to two positive Lyapunov exponents, the
authors in [Sweet et al., 2001] suggested that an
instability dimension of > 3 should be the next
step, and that their random-direction based search
runs slowly when the dimension of possible direc-
tions increases.

Example 3: Eight-Dimensions,
Four-Dimensional Instability

As an example of higher dimensional instability,
we offer the following chain of coupled Henon

3 | |
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maps,

F(x,y) = (a— x% + by1, 1,0 — :c% + bys + exy, To,
a— $§ + bys + exo, x3,
a— x5 + byy + exs, x4), (29)

which when using (a,b,e) = (1.4,0.3,0.001), for
example, gives the top four Lyapunov exponents
Ay = (0.0428,0.0425,0.0416,0.0410), thus show-
ing a four-dimensional instability embedded in
the eight-dimensional phase space. Our algorithm
works in this setting, finding for example, the unsta-
ble invariant set where —1.7 < z; < 1.7, —1.7 <
v <1.7,1=1,2,3,4.

Example 4: Nine-Dimensional Differential
Equation, Two Dimensionally Unstable
Poincaré Map

Finally, we give an example motivated by an infi-
nite dimensional embedding space. Starting from a
1D set of PDEs which model nonlinear interactions
of magnetic islands in a low-beta tokamak cylindri-
cal plasma, Yoshida et al. [1993] derived an N = 2
mode interactions model corresponding to 4 ODEs,

-3 2 -1

Fig. 5.

Invariant set of a four-dimensional coupled Henon map, as in [Sweet et al., 2001].
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which was improved to the N = 3 modes model
giving the following nine-dimensional differential
equations [Mirus & Sprott, 1999; Dexter et al.,
1991],

i1 = a1y1y3 + aayays,

o = wyay3 — ay1ys + a3(yi + v3),
(a4 — 2y3 + y6),

U3 = 3 (as(y7 + y3)(aa — 2y3 + y6) + as),

Ua = a1yayg + a2ysYs,

J5 = mysyg — azyaye + 0.833a3(y2 +y3 —ui
—3) (ys —2y6+ o),

6 = g (as(yi + y3) (Y3 — 2ys + yo) + as),

Ur = a1yrys + a2ysyo,

Us = a1ysys — azyryo + 0.714az(ar — y3
—y2)(ys — 2yo0),

Yo = 5 (a5 (Y7 + y2) (Y6 — 2v9) + a6),

181

0.5

o
m
T

where we have chosen a = (—0.57813,1,9.78195,
0.66811, 5.46545, 0.66126, 3.63998). Our interest in
this problem is that using the eight-dimensional dis-
crete time mapping resulting from the Poincare’
section of negative to positive crossings of the
ys = 0 hyperplane, gives a more substantial
higher dimensional problem to test our invari-
ant set finding algorithm. Looking for an invari-
ant set, this time rectangular, hyper-box B =
[—2,2] x [-2,2] x -+ x [=2,2] yields the picture
shown in Fig. 6, projected onto the (yi,y2) plane.
In this case, the top three Lyapunov exponents
are, 0.0865,0.000275,—0.02041, indicating a two-
dimensional instability. The computational work
necessary to find the high-ordered derivatives of
a Poincare’ map known only through numerically
integrating a flow makes for a very long computa-
tion, the pixels shown in Fig. 6 taking a good part
of a day to compute.

In both Examples 3 (figure not shown) and 4
(Fig. 6), projection from eight to two dimensions

0.5 o 0.5

Fig. 6.

1 1.5 2
¥4

Invariant set of an eight-dimensional Poincare’ mapping of the nine-dimensional Yoshida differential equations

Eqgs. (30) [Mirus & Sprott, 1999; Dexter et al., 1991]. The projection from eight to two dimensions shown makes it diffi-

cult to see the kind of fine structure seen in Figs. 4 and 5.



makes it difficult to display the kind of fine struc-
ture seen in Figs. 4 and 5.

6. Stable and Unstable Foliations
Versus the Greatest Increasing
Lifetime Vector

A stable and unstable foliation of the plane is
defined by how the tangent map, the Jacobian
matrix of F', rotates an arbitrary vector along
orbits, in the tangent space towards the unstable
direction, and the Jacobian matrix of the inverse
map F~! rotates a vector towards the stable direc-
tion [Jaeger & Kantz, 1997]. In practice, we choose
an arbitrary unit vector u and forward multiply,
starting at z_,, the Jacobian matrices along the
orbit to zg, normalizing the vector at each step:

DF"|,  -u=DF|, ,-DF|, ,--
— fu(z)

Likewise, the stable direction is formed from the
inverse Jacobian starting at 7" (z).

DF™"|, -u=DF', -DF7Y,,--
- fS(Z)

This defines the stable and unstable foliations
fsu(z) in the limit, n — oo. Comparison of
Egs. (31) and (32) to Egs. (17) reveals a striking
similarity when n, the time of first exit in Eqgs. (17)
is large. The direction vector pointing towards
increasing lifetime, v*(z) in Eq. (17), defines a foli-
ation related to the stable and unstable foliations.
For large exit time n, v©(z) is almost the same as
a stable or unstable vector, at the points F~"(z)
and F~"(z) respectively. That is, fs(F~"(z)) and
fu(F"(z)) respectively. So, the vectors we see in
Fig. 3, for example, are spatially permuted versions
of the unstable foliations, but permuted by n(z)
iterates where each n is a function of z. Thus mov-
ing from z in the direction v*(z) generally brings
us in a direction which is hoped to be transverse
to the stable direction at a future iterate, bringing
us almost onto a stable manifold of a point on the
invariant set.

.. .DF‘Z;” -u

as n — oo. (31)

"'DF_I\zn ‘u

as n — oo. (32)

7. Conclusions

Here, we have given an all-new approach to
the problem of finding unstable invariant sets,
with no fundamental dimension barriers. How-
ever, our initial hope in beginning this project
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had been to design a method to cope with high-
dimensional differential equations, which display a
high-dimensional instability. The inherent calcula-
tion of gradients along test orbits requires a great
deal of computation for a flow. While effective
for lower-dimensional problems, in retrospect, we
have found our method expensive to push higher in
dimensionality than what is done in our Example 4.
From a descriptive point of view, we have for
the first time carefully defined the problems in
proper mathematical language with an objective
function corresponding to approximating unstable
invariant sets, and we have described the lifetime
function landscape. We described the directions
of improving lifetime, which give rise to a direct
technique to improve lifetime within a desired set
corresponding to solving an ordinary differential
equation, which essentially follows unstable folia-
tions towards stable manifolds of points on the
unstable invariant set. We hope that the connec-
tions presented in Sec. 6, displayed in Fig. 3,
between stable and unstable foliations of the spa-
tially permuted map, and gradients of the lifetime
function will inspire interest in their own right.
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Appendix: Inward Pointing
Perturbations

A local increase of the continuous lifetime function
Eq. (7) by its gradiant is the basis of Algorithm A,
but the local increase can also be derived by a
geometric demand that perturbations upon first
exit must point back towards the exited set. See
Fig. 7. Consider contours of equal distance Eq. (6),
{z : z ¢ B,Rp(z) = k,k > 0}, which are also
locally level surfaces of the continuous lifetime func-
tion Eq. (7).

We wish to define the small pertubations upon
first exit which point back towards the exited set.
See Fig. 7. Starting at a point z € B, then after
first exit from B, at F"(z), the vector q is the
inward pointing vector which points directly back
to B, which is the normal that defines a half-plane
of “bad” perturbations (gray). Any vector x in the
complement, “good” half-plane is defined,

(a,x) >0, (A.1)

Fig. 7. Pulling back inward point vector q after first exit
from B, to p in tangent space.

for an inner-product, (-, -). Define the vector p in the
tangent space to be the pulled-back (pre-iterate) of
the normal vector q. We wish to calculate p, since
it defines the plane of vectors which will be inward
pointing after first exit at F"(z).

Let,
Dy = x, (A.2)
where we have abbreviated,
D = DF"|,, (A.3)

is the tangent map at z; see Eq. (17). Then substi-
tution of Eq. (A.2) into Eq. (A.4) gives,

(a, Dy) >0, (A.4)
from which follows,
(D'a,y) >0, (A.5)

where with respect to the inner product (-,-), D?
denotes the adjoint of D, or transpose since D is a
real matrix. Therefore, the vector,

p = D'q, (A.6)
is the normal of the half-plane of “good” pertur-
bations which will push forward under the tan-
gent map to the half-plane of inward pointing
vectors. One could use this vector p with success
in Algorithm A.



