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Abstract

We present in this paper an approach to approximate the Frobenius-Perron
transfer operator from a sequence of time-ordered images, that is, a movie
dataset. Unlike time-series data, successive images do not provide a direct ac-
cess to a trajectory of a point in a phase space; more precisely, a pixel in an
image plane. Therefore, we reconstruct the velocity field from image sequences
based on the infinitesimal generator of the Frobenius-Perron operator. More-
over, we relate this problem to the well-known optical flow problem from the
computer vision community and we describe a validity of using the continuity
equation derived from the infinitesimal operator as a constraint equation for
the optical flow problem. Once the vector field, and then a discrete transfer
operator are found then, in addition, we present a graph modularity method
as a tool to discover basin structure in the phase space. Together with a tool
to reconstruct a velocity field, this graph-based partition method provides us
a way to study transport behavior and other ergodic properties of measurable
dynamical systems captured only through image sequences.

1 Introduction

A development of computational methods in the burgeoning field of measurable dy-
namics to model and identify transport activity in both deterministic and stochasti-
cally perturbed dynamical systems, specifically through approximating the Frobenius-
Perron transfer operator, demonstrate numerous applications in number of domains [1–
3]. Our primary interest is to develop a numerical tool in a framework of the
Frobenius-Perron transfer operator to study basin structure, transport behavior, and
other ergodic properties all through processing time-series data from movies of a
dynamical evolution of a probability density profile I(x, y, t), for example, when ob-
serving a satellite image, one may ask about what is the underlying velocity field, and
also are there any almost invariant sets. In this paper we will relate the optical flow
problem to reconstruct the displacement field that transform an image to the next
image to problems of measurable dynamics through the Frobenius-Perron operator.

To construct the Ulam-Galerkin approximation of the transfer operator we are re-
quired to have a knowledge of a family of transformations, see Section 2.3. However,
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a sequence of images does not provide a direct access to the trajectory of a point
in a phase space. Successive images instead only describe an evolution in time of a
distribution of brightness of image pixels. For this reason, the primary interest of
this paper is to reconstruct a velocity field from a two-dimensional image sequence
that transforms the intensity pattern from one image to the next image in a sequence,
which is called optical flow computation [4]. The problem of determining the optical
flow has been intensively studied in the last two decades in many areas of computer vi-
sion to perform motion detection and tracking, object segmentation, time-to-collision
estimation, and etc. Recently, the analysis of the optical flow has been applied to
many other science areas such as meteorology, oceanography, climatology, where im-
age sequences from satellite platforms are the main source of their information [5–12].
However, the application of this optical flow analysis has not yet been demonstrated
in the area of the measurable dynamical system, in particular, to approximate the
Frobenius-Perron transfer operator from a sequential image data.

In this paper we assume that the desired velocity field is autonomous throughout
the image region and so the trajectory of a point in the image region is governed by
the following equation:

dx

dt
= u(x, y)

dy

dt
= v(x, y),

(1)

where u(x, y) and v(x, y) are two unknown velocity fields to be approximated from a
sequence of images, which provides to us only a temporal variation of the brightness
pattern. We describe this temporal variation in a framework of the Frobenius-Perron
operator. In section 2 we will show that this evolution can be expressed as the
solution of the partial differential equation derived from the infinitesimal operator
of the Frobenius-Perron operator [13]. This partial differential equation turns out
to be the well-known continuity equation in fluid mechanics, and it will serve as the
constraint equation for the optical flow computation, see Section 3. We will focus here
on the application of using optical flow to generate the finite-rank approximation of
the Frobenius-Perron operator instead of developing an advance algorithm to find the
optical flow.

Obtaining an approximated velocity field from an image sequence permits us to
approximate the Frobenius-Perron operator based on the Ulam-Galerkin method,
which will be described below. The approximation will be in the matrix form called
the Ulam-Galerkin matrix. Then we may generate a graph network corresponding to
the Ulam-Galerkin matrix. Furthermore, we also determine the phase space parti-
tion of the dynamical system of the image sequence described by the approximated
optical flow. This partition identifies the regions in the phase space that should be
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dynamically grouped(those in the same basin). In the view point of the graph theory,
we must discover the community structure of the graph-the partition that groups to-
gether those nodes within which they are densely connected, but their connection to
other nodes are comparatively sparse [14]. The approach to discover the community
structure of the network used in this paper is called the modularity method [14–17]
based on the optimization of the modularity measure of the network. Note that in
a different approach, recent efforts have focused to identify the number and location
of almost invariant sets; those subsets of a state space where trajectories tend to
stay for comparatively long periods of time before they leave into other regions, in a
context of the congestion of a graph based on a multi-commodity flow on the graph
[18–21]. In this sense, the graph community structure and the almost invariant sets
are essentially the same tool to approximate the basin structure of the phase space.

2 Background

We review in this section some properties of the Frobenius-Perron operator that will
help us to relate the inverse problem of the optical flow computation, which will be
reviewed in Section 3, to the approximation of the Frobenius-Perron transfer operator.

2.1 Frobenius-Perron and Koopman operators

Let (X, A, µ) be a measure space. Let F : X → X be a non-singular measurable
transformation on (X, A, µ),that is,

µ(F−1(A)) = 0 for each A ∈ A such that µ(A) = 0. (2)

The Frobenius Perron operator, P : L1(X) → L1(X) with respect to F is defined
by [13],

Pf(x) =

∫
X

δ(x− F (y))f(y)dy, (3)

where f(x) is a probability density function (PDF) defined in L1(X). Thus Pf(x)
gives us a new probability density function, which is unique a.e., and depend on
the discrete time transformation F and the probability density function f(x). For
all measurable sets A ⊂ A the Frobenius-Perron operator satisfies the discrete-time
continuity equation [13]∫

F−1(A)

f(x)dx =

∫
A

Pf(x)dx, for each A ∈ A (4)

The operator K : L∞ → L∞, called the Koopman Operator with respect to F , is
defined by

Kg(x) = g(F (x)) (5)
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for g ∈ L∞. For us, the key property of the Koopman operator is that it is adjoint
to the Frobenius-Perron operator. That is for every ρ ∈ L1, g ∈ L∞,

〈Pρ, g〉 = 〈ρ, Kg〉, (6)

where we denote the bilinear form 〈·, ·〉L1(X)×L∞(X) by 〈·, ·〉 throughout this paper.

2.2 Infinitesimal generators

In this section we review some background of the infinitesimal generator of the semi-
group of the Frobenius-Perron operator, of which the details can be found in Lasota
and Mackey [13]. The key result in this section will form the main constraint equation
used in the optical flow computation.

Consider a d-dimensional system of ordinary differential equations

dxi

dt
= Fi(x), i = 1, . . . , d, (7)

where x = (x1, . . . , xd) ∈ Rd. This system gives a continuous time process {St}t≥0

defined by

St(x
0) = x(t), (8)

where x(t) is the solution of Eq. (7) with the initial condition x0 = x(0). Assum-
ing that existence and uniqueness of solutions of Eq. (7) are satisfied, one can show
that the family {St}t≥0 forms a continuous semigroup of transformations correspond-
ing to Eq.(7). Additionally, we can also defined the Frobenius-Perron operator and
the Koopman operator for a continuous time process associated to the semigroup of
transformation {St}t≥0 in the same fashion of a discrete time process as previously
described, that is,∫

S−1
t (A)

f(x)dµ =

∫
A

Ptf(x)dµ for eachA ∈ A, (9)

and
Ktg(x0) = g(St(x

0)). (10)

Now we can state the aim of this section more precisely. That is we want to
discuss about the evolution of time-dependent density function I(t, x) ≡ Ptf(x) for
some initial density function f(x) in L1(X). This can be developed by using the
infinitesimal operator as discussed in Lasota and Mackey [13]. We will briefly repeat
this concept here for a sake of completeness, and we will emphasize how we will relate
it to the optical flow computation.
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For a semigroup of contractions {Tt}t≥0 we define by D(A) the set of all f(x) ∈
Lp(X), 1 ≤ p ≤ ∞, such that the limit

Af = lim
t→0

Ttf − f

t
, (11)

exists in the sense of strong convergence, that is,

lim
t→0

∥∥∥∥Af − Ttf − f

t

∥∥∥∥
L

= 0. (12)

The operator A : D(A) → L is called the infinitesimal generator. Let I(t) ≡ I(t, x) =
Ttf(x) for fixed f(x) ∈ D(A). The function I ′(t) ≡ I ′(t)(x) ∈ Lp(X) is said to be the
strong derivative of I(t) if it satisfies the following condition:

lim
t→0

∥∥∥∥I ′(t)− I(t)− f(x)

t

∥∥∥∥
Lp

= 0. (13)

In this sense, I ′(t) describes the derivative of the ensemble of points with respect to
time t. It is shown in [13] that for t ≥ 0 and I(t, x) ∈ D(A) we have that I ′(t) exists
and satisfies the equation

I ′(t) = AI(t) (14)

with the initial condition I(0) = f(x).
We are now in a position to discuss about the infinitesimal generator of the

Frobenius-Perron operator generated by the family of transformation {St}t≥0 and the
evolution of time-dependent density function I(t, x) under an action of the Frobenius-
Perron operator. This will be done indirectly through the adjoint property of the
Forbenius-Perron and Koopman operators.

It follows directly from the definition of the Koopman operator Eq. 10 that the
infinitesimal of the Koopman operator AK is

AKg(x) = lim
t→0

g(St(x
0))− g(x0)

t
=

g(x(t))− g(x0)

t
. (15)

If g is continuously differentiable with compact support, we can apply the mean value
theorem to obtain

AKg(x) =
d∑

i=1

∂g

∂xi

Fi(x). (16)

Combining equations (14) and (16) we conclude that the function

I(t, x) = Ktf(x) (17)
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satisfies the first-order partial differential equation

∂I

∂t
−

d∑
i=1

∂I

∂xi

Fi(x) = 0. (18)

Now we are able to discuss about derivation of the infinitesimal generator for the
semigroup of Frobenius-Perron operators generated by the family {St}t≥0 associated
the ode given by Eq. (7).

Let f ∈ D(AFP ) and g ∈ D(AK), where AFP and AK denote the infinitesimal
operators of the semigroups of the Frobenius-Perron and Koopman operators, respec-
tively. Using the adjoint property of the two operators it can be shown that

〈(Ptf − f)/t, g〉 = 〈f, (Ktg − g)/t〉. (19)

Taking the limit as t → 0 we obtain

〈AFP , g〉 = 〈f, Akg〉. (20)

Provided that g and f are continuously differentiable and g has compact support we
can show that [13]

〈AFP , g〉 = 〈−
d∑

i=1

∂fFi

∂xi

, g〉. (21)

Hence, we can conclude that

AFP = −
d∑

i=1

∂fFi

∂xi

= 0. (22)

Again, we can use equations (14) and (22) to conclude that the function

I(t, x) = Ptf(x) (23)

satisfies the partial differential equation (continuity equation)

∂I

∂t
+

d∑
i=1

∂IFi

∂xi

= 0. (24)

Note that this equation is actually the same as the well-known continuity equation
in fluid mechanics, but now it is a statement of conservation of density function of
ensembles of trajectories. This equation will play an important role as a constraint
equation to the approximation of the optical flow from an image sequence. Note
also that we are using I(t, x, y) to denote the continuous time density profile, which
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we have denoted I in deference and relating this measurable dynamic notion to the
usual notation for similar ideas in image processing using optical flow technique.
Comparing the two approaches will help guide us toward a robust method for our
problem in measurable dynamics.

Let us summarize here an application of materials presented in this section to
our problem of the optical flow computation. First, recall that we view a sequence
of two-dimensional images as a family of time-dependent density functions I(t, x, y)
and we assume that these density functions evolve in time under the action of the
Frobenius-Perron operator associated to the continuous semigroup of transformation
{St}t≥0 corresponding to Eq. (7). Note that the continuous time-dependent density
relates to the discrete time density by sampling at t ∈ Z. Therefore, base on this idea,
we can relate evolution of time-dependent images I(t, x, y) to the velocity field, which
we want to reconstruct, via Eq. (24). For this particular case, it can be rewritten by,

∂I

∂t
+ div(Iv) = 0, (25)

where v = [u(x, y), v(x, y)] is the unknown velocity field to be reconstructed from a
sequence of images. Therefore, we have to solve an inverse problem of the Frobenius-
Perron operator. This problem is clearly an ill-posed problem since we need to solve
for two unknown velocity fields from Eq. (25) alone. We defer our discussion of this
problem to later section.

In the subsequent section we will discuss about the finite-rank approximation of
the Frobenius-Perron operator. Note that our main interest is to construct this matrix
approximation of the Frobenius-Perron operator, called the Ulam-Galerkin matrix,
from an image sequence and to identifies the almost invariant set corresponding to
this matrix. However, in order to achieve the Ulam-Galerkin matrix, we must first
reconstruct the underlying velocity fields from an image sequence, which subsequently
allows us to estimate the semigroup {St}t≥0 corresponding to Eq. (7). We will discuss
about this idea in later section.

2.3 Finite-rank approximation

We use the Ulam-Galerkin method, which is a particular case of Galerkin’s method [22,
23], to approximate the Frobenius-Perron operator. We use the projection of the in-
finite dimensional linear space L1(X) with basis functions {φi(x)∞i=1} ⊂ L1(X) on to
a finite dimensional linear subspace with a subset of the basis functions,

4N = span{φi(x)}N
i=1. (26)

For the Galerkin’s method this projection,

Π : L1(X) →4N , (27)
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maps an operator from the infinite-dimensional space to an operator of finite rank
N ×N matrix by using the inner product

Ai,j = 〈Pφi, φj〉 =

∫
X

Pφi(x)φj(x)dx. (28)

The quality of this approximation is discussed in many excellent references including
[24–28]. For the Ulam’s method [22] the basis functions are a family of characteristic
functions

φi(x) = χBi
(x) = 1 for x ∈ Bi and zero otherwise. (29)

By using Eq. (28) the matrix approximation of the Frobenius-Perron operator has
the form of

Ai,j =
m(Bi ∩ F−1(Bj))

m(Bi)
. (30)

where m denotes the Lebesgue measure on X and {Bi}N
i=1 is a family of boxes or

triangles of the partition that covers X and indexed in terms of nested refinements
[22]. This Ai,j can be interpreted as the ratio of the fraction of the box Bi that will
be mapped inside the box Bj after an application of a map to the measure of Bi.
Note that if we only have a test orbit {xj}N

j=1, which is actually the main interest of
this paper, the Lebesgue measure can be approximated by a counting measure λ and
the matrix approximation of the Frobenius-Perron operator becomes

Ai,j =
λ({xk|xk ∈ Bi and F (xk) ∈ Bj})

λ({xk ∈ Bi})
. (31)

3 Optical flow

The main body of this section describes an approach to extract the velocity field
that transforms an intensity pattern of one image into the next image in a sequence.
This problem is referred to as the optical flow problem in image processing. Based
on the framework of the Frobenius-Perron operator reviewed in the last section, this
problem is inherently an inverse problem and it is also ill-posed. There are numerous
methods to the optical flow problem which can be developed to emphasize different
aspects of the expected solution. We will review some of these below in order to
better understand how to apply optical flow methods to measurable dynamics.
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3.1 Optical flow constraint

As previously mentioned, we assume that the flow of an image pixel can be described
by a two-dimensional system of ordinary differential equations

dx

dt
= u(x, y)

dy

dt
= v(x, y),

(32)

where u(x, y) and v(x, y) are two unknown velocity fields to be approximated from a
sequence of images. Let I(x, y, t) represent a gray-scale intensity function of an image,
a function of brightness of a pixel at point (x, y) and (discrete) time t. Since the aim of
this work is to approximate the Frobenius-Perron operator from a sequence of images,
the optical flow constraint for this matter, which will be called the Frobenius-Perron
constraint (FPC), is the continuity equation (24) derived in the previous section:

∂I

∂t
+ div(Iv) = 0 (33)

where v = [u(x, y), v(x, y)] is the unknown velocity field. Recall that this equation
is derived from the infinitesimal generator of the Frobenius-Perron operator [13],
and so it describes the temporal variation of the distribution of brightness under
[u(x, y), v(x, y)]. In the language of fluid mechanics, this equation also describes the
temporal variation of the brightness within an infinitesimal volume as evolved by
the flux of the brightness through the boundary surface of the volume. As a special
case of this constraint when div(v) is zero throughout the image plane, we arrive at
the classical brightness constancy constraint, which is popularized by the Horn and
Schunck formulation of optical flow [4],

dI

dt
=

∂I

∂x
u +

∂I

∂y
v +

∂I

∂t
= 0. (34)

The above equation assumes that the intensity pattern of local-time varying image
regions are constant under a motion in a short time duration, which follows from the
first-order Taylor series expansion about I(x, y, t) and Eq. (34):

I(x + δx, y + δy, t + δt) = I(x, y, t) +
∂I

∂x
δx +

∂I

∂y
δy +

∂I

∂t
δt + O2. (35)

The challenge is that the optical flow computation based only either on the con-
straint equation (33) or (34) is an ill-posed problem because on each location and each
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time, we have to solve a single scalar equation for two scalar unknowns u and v. In
the case of the brightness constancy assumption, this is called the aperture problem,
where only the normal component of the velocity field, given in the direction of the
gradient ∇v can be solved from the constraint equation (34), but not the tangen-
tial component. Numerous methods have been proposed to overcome this ill-posed
problem, which can be categorized into two general classifications. The local methods
such as the Lucas-Kanade method [29] and the structure of tensor method [30] employ
the optimization of some local energy-like expression, whereas the global approaches
attempt to minimize a global energy functional [4]. Survey and comparison of various
methods was demonstrated by Barron [31], and Galvin [32].

We resort to the Tikhonov regularization technique [33], which belongs to the class
of global methods, to cope with the ill-posed problem. The idea is to approximate
the solution of the constraint equation by solving a minimization problem of the form

inf
v

∫
Ω

(F (v) + S(v))dΩ, (36)

where F (v) is the data fidelity term based either on the constraint equation (33)
or (34) and S(v) is an additional regularization term to stabilize the solution and to
relax the constraint used in the data fidelity term. The classical regularization term
proposed by Horn and Schunck [4] is the so-called smoothness constraint:

S(v) = α(‖∇u(x, y)‖2 + ‖∇v(x, y)‖2), (37)

where α is a constant and the norm is the standard L2 norm. This constraint claims
that neighboring pixels of a point in a sequence of images are likely to move in a similar
way, i.e. the motion vectors are spatially varying in a smooth way. Thus it encourages
the isotropic smoothness of the recovered optical flow without taking into account
the discontinuities at the edges where the gradient of intensity is large. Another
alternative to the smoothness regularizer is the so-called div-curl regularizer [34]

S(v) = α‖divv‖2 + β‖curlv‖2, (38)

which reduces to the smoothness constraint when α = β.

In this paper, we consider the case that image pixels in consecutive images do not
present a very strong loss or gain of luminance due to a large divergence of velocity
field, which is true in a video sequence with a high frame rate, and so the classical
brightness constancy equation is our preferable choice. However, it should be noted
that in satellite images of motion of cloud or a sequence of fluid imagery, cloud or
fluid may exhibit a high temporal deformation and large displacement between two
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Table 1: Matched pairs of pre-filter(p) and derivative kernels(di) of the ith order of
various sizes.

3-tap
p: 0.2298 0.5402 0.2298
d1: 0.4252 0.0000 -0.4252
d2: 0.3557 -0.7114 0.3557

5-tap
p: 0.0376 0.2491 0.4263 0.2491 0.0376
d1: 0.1096 0.2766 0.0000 -0.2766 -0.1096
d2: 0.2190 -0.0007 -0.4366 -0.0007 0.2190

7-tap
p: 0.0047 0.0693 0.2454 0.3611 0.2454 0.0693 0.0047
d1: 0.0187 0.1253 0.1930 0.0000 -0.1930 -0.1253 -0.0187
d2: 0.0543 0.1370 -0.0534 -0.2758 -0.0534 0.1370 0.0543

consecutive frames, and the brightness constancy cannot be nearly satisfied. In such
cases, the development of the minimization technique embedded by the FPC Eq. (24)
becomes more attractive [5, 6, 12]. Thus, in this paper we will solve the minimization
problem Eq. (36) using the brightness constancy constraint Eq. (34) for the data
fidelity term and the div-curl regularizer Eq. (38) for the regularization term:

inf
v

∫
Ω

(Ixu + Iyv + It)dΩ +

∫
Ω

α‖∇divv‖2 + β‖∇curlv‖2dΩ, (39)

The associate Euler-Lagrange equation for minimization of the problem Eq. (39) is
the following pair of PDEs:

αuxx + βuyy + (α− β)vxy = Ix(Ixu + Iyv + It)

βvxx + αvyy + (α− β)uxy = Iy(Ixu + Iyv + It).
(40)

3.2 Implementation

Numerical solution of the PDE Eq. (40) is presented in this section. First, regardless
of the technique to implement Eq. (40), appropriate evaluation of image derivatives is
required. We use the Simoncelli’s matched filter method [35] that was demonstrated to
have superior accuracy to the traditional central and backward differences. Simoncelli
formulated a set of matched pair of derivative filters and lower pass pre-filters as a
filter design problem. Below are pairs of matched pre-filters and derivative kernels
of various sizes. To obtain Ix we convolve the n-tap smoothing kernel in the time
dimension t,which combines n images into one image,and then convolves again the
resultant image with the smoothing kernel in the y dimension, and then convolves
that result with the differentiation kernel to obtain the final result, Ix. This procedure
can be summarized in the following equation:

Ix(x, y, t) ≈ d1 ∗ pT ∗ (p(0)I(x, y, t− n− 1

2
) + . . . + p(n)I(x, y, t +

n− 1

2
)). (41)
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The computation of Iy and It can be done in the same fashion.
Let us now discuss an algorithm to compute the solution of the PDE Eq. (40).

We denote by uij the approximation of u at the pixel (i, j). A numerical solution
of the Euler-Lagrange equation Eq. (40) via a finite different method resorting the
Simoncelli’s derivative kernels takes the following forms

(α + β + I2
x)uij + IxIyvij = (α + β)uij + (α− β)δxyvij − IxIt

IxIyuij + (α + β + I2
y )vij = (α + β)vij + (α− β)δxyuij − IxIt,

(42)

where uij = (αux
ij + βuy

ij)/(α + β), ux
ij = (u ∗ wxx)ij, wxx = d2 ∗ pT but setting the

element (n/2 + 1/2, n/2 + 1/2) to zero, uy
ij = (u ∗wyy)ij, wyy = dT

2 ∗ p but setting the
element (n/2+1/2, n/2+1/2) to zero, and δxyuij = (u∗wxy)ij for wxy = d1∗pT ∗dT

1 ∗p.

Thus we may estimate [uij, vij] iteratively by

un+1
ij = un

ij −
Ix(Ixu

n
ij + Iyv

n
ij + It) + L1

α + β + I2
x + I2

y

vn+1
ij = vn

ij −
Iy(Ixu

n
ij + Iyv

n
ij + It) + L2

α + β + I2
x + I2

y

,

(43)

where L1 and L2 are given by

L1 =
α− β

α + β

[
(α + β + I2

y )δxyv
n
ij − IxIyδxyu

n
ij

]
L2 =

α− β

α + β

[
(α + β + I2

x)δxyu
n
ij − IxIyδxyv

n
ij

]
.

(44)

4 Graph modularity method

Here we present a computational method for discovering almost invariant regions
for understanding basin structures and basin leakage. After obtaining the optical
flow we may use it as a velocity field to transform randomly chosen points on a
grid partitioning of the phase space using Eq. (32)so that we can generate the Ulam-
Galerkin matrix, a finite-rank approximation of Frobenius-Perron operator. Note that
since we have merely a sequence of images to start with and lack of the knowledge
of the physical domain of the phase space, we can just choose the doain of the phase
space arbitrarily. As such we choose our domain to be the unit box [0, 1] × [0, 1],
and we select random points in this domain. Next, we generate a graph network
corresponding to the Ulam-Galerkin matrix by solving Eq. (32) using those randomly
selected points in the grid partitioning of the unit box as the initial points. The
nodes in the graph represent the grids used to partition the phase space and the

12



edges describe the transport between each grid. However, to obtain a meaningful
graph we need to determine the time duration of the trajectory of the initial points.
If the time duration is too short, some initial points may remain in the same grid
in which they initially reside, see Figure 1. This circumstance induces some self-
connected edges in the graph network that do not provide useful information for a
graph partition method. Nevertheless, a self-connected edge generated by a grid that
contains a fix point cannot be avoided. A useful criteria to choose the time duration
can be formulated using the well-known Gronwall’s inequality [36].

Figure 1: When solving Equation (32) the time duration has to be chosen in a way
that the (triangular) grid is expanded far enough so that it lie across itself as less
as possible. Then the solution of the majority of randomly chosen points will not
remain inside the initial grid. This prevents us from generating a graph network with
inapplicable self-connected edges.

Now our purpose is to discover community structure in the graph network to iden-
tify the existing basin structure in the phase space. Therefore, our point of view is to
map the problem of phase space partition of the dynamical system captured through
a sequence of image into a problem of partitioning a graph network representing the
action of the transfer operator. Note that although points in the phase space may
not travel across from one basin to another, it is possible to have edges in the graph
that connect between each community; this represents a basin in the phase space,
due to the grids that lie across the basin boundary as seen in Figure 2. However, this
is only a small boundary effect. Likewise, there can be a small amount of spurious
basin leakage due to finite grid effects.

Many methods have been proposed in recent years [14–16, 37] to appropriately
partition a graph network. Loosely, community structure is a partition of the network
into subgraphs such that there are relatively more connections within each defined
component than between components, a sort of self clustering. We again note that the

13



Figure 2: The phase space in this figure are partitioned by triangular grids. The
edges that connect the nodes corresponding to the triangles that lie across the basin
boundary are the intergroup edges, which connect between each community in the
graph network.

problem of identifying the number and location of almost invariant sets is equivalent
to that of discovering the graph community structure, and an approach for such a
problem has been recently proposed in [18–21] in a context of the congestion of a
graph based on a multi-commodity flow on the graph. In this paper, we employ
a new and efficient algorithm proposed by Newman [16] for detecting community
structure based on the optimization of the “modularity” measure.

First we discuss the concept of the modularity as a measure of quality of a proposed
community partition. The modularity is a cost function associated with a partitioning
of a given graph G,

Q : PG → <, (45)

where PG is the set of all sub partitions P , of a given graph G. Given a graph G
and a (test) partition, P ∈ PG, P = ∪kPk, each P is a set of subsets Pk, and Pk is a
collection of vertices of G. P includes all of the vertices of G. We will refer to Pk as
“community”-k. The modularity of the partition P is meant to reflect the quality of
the split into self clustered elements Pk A modularity measure is defined by,

Q(P) =
∑

(eii − a2
i ), (46)

where eij is the fraction of edges that connect vertices in community i to those in
community j and,

ai =
∑

eij, (47)

represents the fraction of edges that connects to community i. Thus Q(P) measures
the difference between the fraction of the within-community edges and the expecta-
tion of the same quantity in the network with same community partition created by

14



randomizing all connections between vertices. Therefore, Q(P) approaches 0 for a
randomly connected network, and approaches Q(P) = 1, if the network has a strong
community structure. We may then optimize Q over all possible partitions to discover
the best community structure

Q = max
P∈PG

Q(P). (48)

The true optimization is, however, very costly to implement in practice for very
large networks as an NP problem. Clauset, Newman, and Moore [17] proposed an
approximate optimization algorithm based on greedy optimization. Suppose that we
have a graph with n vertices and m edges. This algorithm starts with each vertex
being the only member of one of n communities. At each step, the change in Q(P)
is computed after joining a pair of communities together and then choosing the pair
that gives the greatest increase or smallest decrease in Q(P). The algorithm stops
after n − 1 such joins in which a single community is left. This algorithm therefore
runs in time O((m + n)n), or O(n2) on a sparse graph (n ∼ m). Note that using
more sophisticated data structure as introduced in [17] can reduce a run time to
O(n log2 n).

5 Results

5.1 Example 1

Consider the following differential equation as the first example:

dx

dt
= −sin(2πx)cos(2πy)

dy

dt
= cos(2πx)sin(2πy).

(49)

Now we may use the flow continuity equation (24) to numerically translate an initial
distribution in time to generate a synthetic movie data set I(x, y, t) representing a
time evolving spatial density function. Figures 3(a) and 3(b) illustrate, respectively,
the velocity field of this system and a given initial distribution function and Figures
4(a)- 4(d) show a sequence of some images that are captured from our numerical
simulation of Eq. (24).

Based on this sequence of images we benchmark our approach by comparing
the approximated optical flow field extracted from the images by the regularization
method explained in Section 3 and the exact velocity field in Equation (49). First,
let us investigate the sensitivity of the method with respect to variation of the pa-
rameters α and β defined in Eq. (38). We quantitatively evaluate our result via the
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(a) (b)

Figure 3: (a) The velocity field of the dynamical system (49). It can be seen that
there consists of four basins separated by two nullclines x = 0.5 and y = 0.5. (b) The
initial distribution at time t = 0.

(a) (b)

(c) (d)

Figure 4: A sequence of some images captured from the numerical simulation of the
flow continuity equation (24) with the velocity field given by the ode (49).
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Figure 5: A plot of the average angular error with respect to parameters α and β.
The thick line represents the case of the smoothness constraint (37) where α = β.
Although it is not conclusive that the smoothness constraint performs better than the
div-curl regularizer in this experiment, our experimental result demonstrates that the
optimal value is obtained when using the smoothness regularizer with α = β = 0.01

average angular error:

eang = arccos

(
uexue + vexve + 1√

(u2
ex + v2

ex + 1)(u2
e + v2

e + 1)

)
, (50)

where (uex, vex) denotes the exact velocity field and (ueve) is the estimated velocity.
Remark that we do not evaluate the error via a norm because in general we would lack
information about the physical domain of the image plane and we can only recover
the velocity field whose dynamics is in some representative of the true dynamical
system, perhaps in the sense of “almost conjugacy” [38]. Observe that for the images
sequence in this example the smoothness regularizer performs better than the div-curl
regularizer at the experimentally optimal value β = 0.01, see Figure 5. Nevertheless,
the div-curl regularizer produces better results for other value of β. To evaluate the
results qualitatively we lay the exact velocity field on the estimated velocity fields for
α = β = 0.01 and α = 1, β = 0.01 as illustrated in Figure 6. We notice that the div-
curl regularizer does not isotropically smooth the velocity field; hence we obtain only a
velocity field where the motion take places meaning that there is a nontrivial support
of the dataset I(x, y, t). However, the smoothness regularizer produces the velocity
field throughout the whole image region, notwithstanding an absence of motion in
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some regions, see also Figure 7. Moreover, we observe that the approximated velocity
field from the smoothness constraint maintains qualitative qualities of the exact ve-
locity fields. Therefore, we want to investigate the topological structure of the result.
Note that the phase portrait of the exact velocity field has four centers with eigen-
values ±2πi at points {(0.25, 0.25), (0.25, 0.75), (0.75, 0.25), (0.75, 0.75)}and a saddle
point with eigenvalue ±2π at the central point (0.5, 0.5) of the phase space. We com-
pute the eigenvalue of the points in the image region corresponding to those points
for the velocity field approximated from the smoothness constraint with α = 0.01
and plot the result in Figure 8. The result shows that we recover the saddle node at
the central point of the image region, but we obtain four spiral sinks at those points
instead of center nodes; however, the real part of their eigenvalues are much smaller
than the imaginary parts, which indicates that they are suggestive of a type of center
node.

(a) (b)

Figure 6: (a) Exact velocity field(in green arrows) and the optical flow field for
α = 1, β = 0.01 shown in black arrows. (b) Exact velocity field(in green arrows) and
the optical flow field for α = β = 0.01 shown in black arrows.

Now let us discuss how to apply the optical flow result to approximate the Ulam-
Galerkin approximation of the Frobenius-Perron transfer operator. We use the ap-
proximated velocity field to advance randomly distributed points in time to generate
a finite-rank approximation of the Frobenius-Perron operator as described in Sec-
tion 2.3. Figures 9(b) and 9(a) show the Ulam-Galerkin matrix generated by the
exact velocity fields in Eq. 49 and by the approximated optical flow field, respec-
tively. As seen in Figure 3(a) there exist four basins and hence we may expect the
Ulam-Galerkin matrix to be diagonalizable to four diagonal blocks. To reveal this
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(a) A plot of the velocity field u =
−sin(2πx)cos(2πy) and its approximation
from the image sequence

(b) A plot of velocity field v =
cos(2πx)sin(2πy) and its approximation
from the image sequence

Figure 7: Comparison between the exact and approximated velocity fields from the
image sequence using the smoothness parameter α = β = 0.01. The transparent solid
lines illustrate the exact velocity field and the colored plots represent the approxima-
tion.

correct block-diagonal form based on the modularity method we first partition the
phase space into small triangles and index them to generate a graph network that rep-
resents the transport between these triangles. Then we apply the modularity method
to discover the community structure of the graph network and use this structure to
reorder the Ulam-Galerkin matrix. The results of the Ulam-Galerkin after reordering
are shown in Figures 10(a) and 10(b). They reveal to us the four basins and the
sorted Ulam-Galerkin matrix generated by the exact velocity is now in the correct
block-diagonal form, whereas the sorted matrix generated by the optical flow is in the
“almost” block-diagonal form due to the imperfection of the approximated velocity
field that causes the transport between the basins.

5.2 Example 2

Our next example is a simulation result obtained from a numerical solution of the
complex Ginzburg-Landau eqaution(CGLE). Figures 11 illustrates the initial distri-
bution and a time series of brightness patterns. By a careful observation one may
expect that there exists two sinks in the phase space located by the arrows in Fig-
ure 11(a). Since the analytic solution for this example is not priorly known, we
ascertain our result only qualitatively.
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Figure 8: The plot shows the eigenvalues of the centers and the saddle node in the
phase space of the exact velocity field in cross markers. The square markers locate
the eigenvalues of those points computed from the estimated velocity field with the
smoothness constraint α = 0.01.

(a) The Ulam-Galerkin matrix generated by
the exact velocity

(b) The Ulam-Galerkin matrix generated by
the optical flow

Figure 9: The Ulam-Galerkin matrix generated by the exact velocity fields expressed
in Equation 49 and by the approximated optical flow field using 200000 randomly
chosen points.

20



(a) The sorted Ulam-Galerkin matrix gener-
ated by the exact velocity

(b) The sorted Ulam-Galerkin matrix gener-
ated by the optical flow.

Figure 10: The Ulam-Galerkin matrix after sorting using the modularity method.

The estimated velocity fields with different values of parameters β but fixed α = 1
are shown in Figure 12. We observe that when β is small, the velocity field at the
region where occlusion occurs is strongly emphasized compared to other regions in
the image whereas the magnitude of the velocity field is distributed more isotropically
throughout the image region while increasing the value of β. To have a better view
of this phenomenon, we plot in Figure 13 the contour line of the magnitude of the
velocity onto the image of the initial distribution. We also notice that the velocity
field becomes discontinuous where the occlusions take place. Nonetheless, we still
observe the discontinuity of velocity field in those regions in the case of large β. Note
that similar results can also be obtained when β is fixed and α is varied.

Next, we compute the matrix approximation of the Frobenius-Perron operator
shown in Figure 14(a). Then we apply the modularity method to the graph generated
from the semigroup of transformation of the ode (32) based on the estimated velocity
field. We obtain two large communities and several trivially small communities from
the result. Thus we group all those small communities together. Subsequently, we
use the new ordering based on the community structure to reordered the Ulam-
Galerkin matrix to reveal the “almost” block diagonal form, see Figure 14(b), and
we also paint the phase space according the community structure discovered by the
modularity method as shown in Figure 15, where the two large communities are
painted in different colors and those small communities are not painted. Notice that
there are three blocks in sorted matrix, where the middle block corresponds to those
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(a) The initial distribution at frame 1. (b) The distribution at frame 40.

(c) The distribution at frame 80. (d) The distribution at frame 120.

Figure 11: A sequence of some images captured from the numerical simulation of
the Complex Ginzburg-Landau equation. The arrows point at the sinks that can be
found through a careful observation and as revealed by the Ulam-Galerkin matrix
analysis as in Figure 12- 15
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of several small communities that we group them together and the other two blocks
represent the two large communities.

6 Conclusion

In this paper, we have presented a computational method to construct the finite-rank
approximation of the Frobenius-Perron operator from successive images, which essen-
tially requires a technique to recover velocity fields from image sequences. We have
related this to the famous optical flow problem in various forms. Thus we present a
mathematical model to this problem and we demonstrate its validity based on the
theory of the infinitesimal generator of the Frobenius-Perron operator. We employ
a regularization method to solve an ill-posed problem to reconstruct the desired ve-
locity field. Subsequently, we resort to the resultant velocity field to identify number
and location of the almost invariant sets using the graph modularity method. We
have demonstrated our methods on synthetic data to demonstrate their usefulness to
study a qualitative behavior, transport phenomena, and other ergodic properties of
measurable dynamical systems captured through image sequences.
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(a) (b)

(c) (d)

(e) (f)

Figure 12: The velocity fields approximated from the div-curl regularization with
various values of parameters α and β are plotted side by side with the corresponding
magnitude of the velocity fields.
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(a) (b)

Figure 13: (a) For a small β at α = 1, the magnitude of the velocity field is more
emphasized at the region where occlusion occurs. In this region the velocity become
discontinuous. (b) For a large β at α = 1, we observe that the velocity field is
isotropically distributed throughout the image region. Nonetheless, the discontinuity
can still be observed at the region where occlusion take places.

(a) The unsorted Ulam-Galerkin matrix (b) The sorted Ulam-Galerkin matrix

Figure 14: The Ulam-Galerkin matrix before and after sorting. Notice that the
“almost” block diagonal form is unveiled after sorting. The middle block corresponds
to those of several small communities that we group them together. The other blocks
represent the two large communities.
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Figure 15: The phase space are partitioned into three regions corresponding two
basins of the sinks corresponding to two communities discovered by the modularity
method and the region that an initial point does not converge to neither basins.
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