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Abstract. Matching dynamical systems, through di↵erent forms of conjugacies and equivalences, has long been
a fundamental concept, and a powerful tool, in the study and classification of nonlinear dynamic
behavior (e.g., through normal forms). In this paper we will argue that the use of the Koopman
operator and its spectrum is particularly well suited for this endeavor, both in theory, but also
especially in view of recent data-driven algorithm developments. We believe, and document through
illustrative examples, that this can nontrivially extend the use and applicability of the Koopman
spectral theoretical and computational machinery beyond modeling and prediction, towards what
can be considered as a systematic discovery of “Cole–Hopf-type” transformations for dynamics.
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1. Introduction. A central concept in dynamical systems theory since the inception of
the field (dating back to foundational work by Poincaré) has been the concept of classifying
systems “up to” some notion of equivalence [24], such as, for example, conjugacy of flows,
that is, a homeomorphism between the state spaces such that the flows commute.

However, even if such a homeomorphism is known to exist, constructing it in closed form
may be quite di�cult. Our own previous work [37] has focused on fixed point iteration
methods to construct conjugacies when they exist or measure the defect from conjugacy
when they do not exist, but the application was limited and, alternatively, we tried sym-
bolic dynamics methods [3]. In this paper, we will develop a methodology to tackle the
problem of homeomorphism construction. Even though this will only be possible for us un-
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der significantly restrictive assumptions, we believe that the methodology is nontrivial and
informative, and we will find the homeomorphism explicitly in many examples. We also
introduce a computational method for the purely data-driven approximation of this map-
ping. Our methodology is based on the fact that conjugacy—that is, existence of a spatial

isomorphism—between two dynamical systems directly implies the existence of a spectral iso-
morphism between them. This spectral isomorphism relates the Koopman operators of the
two systems [34].

In the Koopman operator framework, the central objects of study are observables, which
are functions of the state of the dynamical system. The action of the Koopman operator on
these functions describes their temporal evolution, driven by the underlying dynamics. The
operator acts linearly on the function space, a central property that makes it interesting for
numerical approximation. Typically, a certain number of eigenfunctions of the operator are
obtained (in closed form or numerically), and then a linear combination of them is used to
approximate a given observable. A particular observable of interest is the identity function
on the state space, because the temporal evolution of this observable directly corresponds to
the temporal evolution of di↵erent initial conditions.

The concept of “matching” dynamical systems by the spectrum of their Koopman oper-
ators is not new. In fact, it lies at the heart of ergodic theoretical developments, since the
classic work of von Neumann and Halmos, [31, 13]; for a review, see [34]. Yet the classical
literature appears more concerned with proving the existence of the transformation, rather
than with systematically obtaining it in closed or data-driven form. The notion of conjugacy
for maps, and orbit equivalence for flows, is known to imply strong statements connecting the
Koopman eigenfunctions of the conjugate systems, [27, 20]; (semi)conjugacies (factors) also
play an important role in Koopman spectral analysis; see [28] for an approximation from data.
In particular, many examples of nontrivial eigenfunctions can be, and have been, found given
a conjugacy between a general nonlinear system and a simpler system (linear) and when the
homeomorphism connecting them is known. In particular, Lan and Mezić [20] expanded the
linearizing transformations of a nonlinear system to the full basin of attraction of an equilib-
rium. Their work extended the local homeomorphism beyond the usual neighborhood of the
equilibrium, where it can be constructed using the famous Hartman–Grobman theorem [33].
In [27] there are remarks relating this extension to the flow-box theorem. In [23], the authors
discuss how Koopman spectral analysis relates isostables and isochrons to transformations to
the classical action-angle decomposition of systems in the neighborhood of an attracting limit
cycle. Likewise, [20] contains examples where the linearizing transformations are Koopman
eigenfunctions with eigenvalue one. Recently, Mohr and Mezić [29] introduced a concept of
principal eigenfunctions of a nonlinear system with an asymptotically stable hyperbolic fixed
point. They developed a construction of a sequence of approximate conjugacies (in a finite-
dimensional Banach space) which, in the spirit of the Stone–Weierstrass theorem, converges
uniformly to a di↵eomorphism transforming the nonlinear system (i.e., matching it) in a cer-
tain domain to a linear one. Our work builds on these prior benchmarks. We expand on the
concept that spectrally matching eigenfunctions may implicitly include information concern-
ing the conjugacy connecting the state spaces. Given appropriately matched eigenfunctions
(a concept that we define below), we might directly construct the conjugacy transformation
between systems.
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MATCHING SYSTEMS BY KOOPMAN EIGENFUNCTIONS 1927

In considering using the Koopman operator machinery towards such a construction, note
that when the Koopman operator is restricted to an attractor (e.g., a quasi-periodic torus, or
say, a Lorenz attractor), or is only considered in an ergodic setting, the restricted operator
is unitary [25, 5]. Di↵erent types of ergodic systems, characterized by mixed, both point and
continuous spectra of the operator, are also being studied [8], in combination with numerical
techniques to select smooth eigenfunctions [11]. Yet for a quantitative analysis of more general
dynamical system applications, it is also important to be able to usefully deal with nonergodic
invariant sets. Here, we focus on such sets and use them to construct transformations whose
domain of validity will be defined below.

Instead of approximating a large number of eigenfunctions (necessary to improve prediction
accuracy through their linear combinations), for matching purposes we only make use of
a specific subset of eigenfunctions for each system, in number equal to the dimension of
the corresponding state spaces. We use these two sets of eigenfunctions (assumed to be
known a priori), to reconstruct the homeomorphism between the two systems. Computational
experiments along these lines have started to appear in the literature (involving the current
authors); the first example arose in a data-fusion context [43], and the second in a more
general study of gauge invariance in data mining [16].

One requirement is that the eigenfunctions are selected in pairs, one per system, each pair
associated with the same eigenvalue. However, it is not enough to require that the paired
eigenfunctions are associated with the same eigenvalue—they also have to be related by the
homeomorphism between the two flows. This would be trivial if a single eigenfunction were
associated with each eigenvalue—but this is not the case, in general, as we will rationalize
through the construction of the eigenfunctions through a simple linear PDE which represents
the infinitesmal operator.

Selection of the particular eigenfunctions constituting the two sets is, therefore, a di�cult
problem which we “assume away.” We do, however, point out a way to circumvent this problem
by appropriately restricting the function space in which we assume they lie. We discuss
this possibility in detail, and present a framework of assumptions such that the selection of
corresponding pairs of eigenfunctions can be based on matching eigenvalues alone.

As we will discuss, the computational implementation of our framework (which we will call
“matching extended dynamic mode decomposition (EDMD)” (EDMD-M) is closely related
to the EDMD method for which working algorithms are readily available [41, 43, 22]. We
illustrate our EDMD-M framework in two ways: by finding, in closed form, a homeomorphism
between a linear and a conjugate nonlinear, two-dimensional system and, numerically, for the
van der Pol oscillator and a system conjugate to it.

An obvious, yet exciting application of the matching concept is its relation to the classic
topic of “rectification,” that is, matching to the constant vector field, ż = (1, 0, . . . , 0), which
is arguably simpler than a linear dynamical system. In this sense, our approach realizes the
well-known flow-box theorem, [33] also known as “rectifying” the problem [7, 38]. We demon-
strate this possibility by first (partially) matching a nonlinear system to a linear one, then
(partially) matching the linear system to its rectification, and then composing the resulting
homeomorphisms to rectify the nonlinear system.

The remainder of the paper is organized as follows: section 2 briefly outlines the mathe-
matical background of topological orbit equivalence, the Koopman operator, and its infinites-
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1928 E. M. BOLLT, Q. LI, F. DIETRICH, AND I. KEVREKIDIS

imal generator. With these prerequisites, we define and prove the main contribution of the
paper—an explicit construction (under, we repeat, specific assumptions) of the homeomor-
phism between topologically orbit equivalent systems in section 3. We discuss the nontrivial
geometric multiplicity of eigenvalues of the Koopman operator in section 4, and then show
how the function space of observables can be restricted appropriately so as to circumvent this
multiplicity of the spectrum. The use of the ideas in the paper is demonstrated throughout
via analytical as well as numerical examples.

2. Background. In this section, we review some standard theory of dynamical systems,
leading to the Koopman operator and its infinitesimal generator as a PDE, the proof of
which is in Appendix A, with examples in Appendix B. This section serves not only to recall
important, albeit standard material, but also it allows us to cast this standard language for
our specific interest of matching systems through spectral concepts. A thoroughly familiar
reader may wish to skip forward to section 3.

2.1. Review of matching systems, conjugacy, and orbit equivalence. A central problem
in dynamical systems is the notion of equivalence, standard definitions of which are topological
in nature. Two discrete time maps, F (1) : X ! X and F (2) : Y ! Y are called conjugate
if there is a homeomorphism (a regular change of coordinates) between X and Y, that is,
y = h(x) : X ! Y, such that I: h is a homeomorphism between topological spaces X and
Y, (that means h is (1) one-to-one, (2) onto, (3) continuous, (4) the inverse is continuous,
and together this defines the spaces as topologically equivalent), and II: the maps commute
with respect to the change of variables; formally stated, h � F (1)(x) = F (2) � h(x) for all
x 2 X. If, furthermore, h and h�1 are continuously di↵erentiable, then the maps are called
di↵eomorphic, which is a stronger form of equivalence. When stating F (i), the superscript
refers to the ith system. Subscript x

i

denotes the ith coordinate.
When discussing continuous time systems, the notion of topological orbit equivalence is

relevant. If two (semi)flows S(1)
t

: X! X and S
(2)
t

: Y! Y are topologically orbit equivalent,

there exists a homeomorphism, h : X ! Y, such that S(2)
t

(h(x)) = h(S(1)
t

(x)) for every t � 0
(or for every t 2 R if they are each flows).

Conjugacy between dynamical systems defines an equivalence relation between vector
fields on a manifold: two vector fields F (1), F (2) on spaces (manifolds) X and Y respectively
are equivalent if and only if their induced dynamical systems ẋ = F (1)(x) and ẏ = F (2)(y) are
topologically orbit equivalent. When such a topological orbit equivalence h : X ! Y exists
between the induced flows, we call the two systems “matched.”

2.2. Review of the Koopman operator, and its eigenfunctions. Here we recall the def-
inition for the Koopman operator structure of a flow. Consider, for example, a di↵erential
equation in Rd,

(1) ẋ = F (x),

associated with a (here, autonomous) vector field,

(2) F : Rd ! Rd.
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MATCHING SYSTEMS BY KOOPMAN EIGENFUNCTIONS 1929

Note that a nonautonomous problem, f(x, t) : Rd⇥R! Rd, can be written in d+1 dimensions
as an autonomous problem by augmenting with a time variable ⌧ = t, appending ⌧̇ = 1 to f
so that F = [f, 1]T . Depending on F , we assume an invariant flow [33] S

t

: M !M for each
t 2 R (or semiflow for t � 0), where M ✓ Rd denotes an invariant set. We write x(t) := S

t

(x0)
for a trajectory starting at x(0) = x0 2M .

The associated Koopman operator (also called composition operator) describes the evolu-
tion of “observables” or “measurements” along the flow [5, 26]. These “observation functions”
g : M ! C are elements of a space of observation functions F , for example, F = L2(M) =
{g :

R

M

|g(s)|2ds < 1}, which is commonly useful in numerical applications that utilize the
inner product associated with the Hilbert space structure [25, 5, 11, 19, 27]. The Koopman
operator K

S

t

is associated with the flow S
t

, such that

(3) K
S

t

[g](x) = g � S
t

(x).

That is, for each x, we observe the value of an observable g not at x but “downstream” by
time t, at S

t

(x). This defines the operator as a flow K
S

t

=: K
t

: F ! F on the function space
F for each t 2 R (or as a semiflow if the relation only holds for t � 0). An interesting feature
of the Koopman operator is that it is linear on F , but at the cost of being infinite dimensional,
even though the flow S

t

may be associated with a finite-dimensional and nonlinear vector field
(1)–(2). The spectral theory of Koopman operators [10, 5, 26] concerns eigenfunctions and
eigenvalues of the operator K

t

, which may be stated in terms of the equation

(4) K
t

[g](x) = btg(x) = e�tg(x).

See Figure 1 for a visualization of the action described in (4), and the discussion in Appendix A.
We will write an eigenvalue-eigenfunction pair of the Koopman operator as (�, g

�

(x)), and call
the pair a “KEIG.” For convenience, we will say “KEIGs” either when referring to Koopman
eigenfunctions or to the eigenvalue and eigenfunction pairs. We shall assume that g

�

2 F .
The multiplying factor may also be written in terms of the eigenvalue, b = e�.

Despite the importance and popularity of the Koopman operator in an ever broadening
theoretical, computational, and applied literature in the field of dynamical systems, [26, 5, 19],
there are surprisingly few explicit example dynamical systems, meaning explicit vector fields,
for which KEIG pairs (�, g(z)) can be explicitly written, analytically, in closed form. There is
the linear case, that we now state, but beyond that, we are not aware of many other examples,
other than those produced through conjugacy to the linear system. Instead, the literature
emphasizes descriptive statements about the role and importance of the KEIGs, and then
numerical methods, notably either the matrix methods called dynamic mode decomposition
(DMD), [35, 19] (and variants such as EDMD [41, 43, 42], including EDMD with dictionary
learning [22]), are used. Our goal in this section is to note how the infinitesimal generator
of the Koopman operator defines a first order PDE whose solutions are eigenfunctions. Note
that this fact has also been recently utilized in [14] as a central element in developing control
laws.

The adjoint of the Koopman operator is the Perron–Frobenius operator [25] (or transfer
operator). Several methods for the approximation of the transfer operator through its eigen-
functions have been developed, including the use of its infinitesimal generator [17]. The same
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Figure 1. Illustration of the action of a Koopman operator K
t

corresponding to a flow z(t) = S

t

(z
0

) as the
observation of a function g(z) along an orbit. (Left) The notation K

t

[g](z) = g ��
t

(z) denotes that we measure
g at �

t

(z), t time units downstream on the trajectory initialized at z. An eigenfunction f satisfies the equation
K

t

[f ](z) = e

�t

f(z), implying that f also satisfies the linear equation (112).

holds for the Koopman operator [26, 5, 41, 42, 43] and its generator [14]. Transfer and Koop-
man operators are often studied in the ergodic or stochastic setting. Given an Ito di↵usion
process with a smooth vector field as the drift term, the infinitesimal generator of the trans-
fer operator defines the Kolmogorov forward equation (or Fokker–Planck equation), whereas
the Kolmogorov backward equation is related to the infinitesimal generator of the Koopman
operator [17].

The linear problem is the example with an explicit KEIGs solution that is often discussed,
where

(5) ż = F (z) = az

as a special case of (1) where a, z(t) 2 R. The KEIG pairs of this system may be described
as the state observer,

(6) (�, g(z)) = (a, z),

meaning the identity function and the growth factor serve as a KEIG. This is easy to directly
confirm, using the solution of the flow z(t) = S

t

(z0) = eatz0. It follows that

(7) K
t

[g](z) = g � S
t

(z) = eatz = btg(z).

The eigenvalue � = a also provides the multiplying factor, b = e�. Likewise, in a multivariate
linear case, if z(t) 2 Rd then we use the notation, [·]

i

: Rd ! R to denote the projection
function that selects the ith component of z. Then if ż = F (z) = Az and A = ⌃ = diag(a

i

) is a
diagonal matrix, then (a

i

, [z]
i

) are KEIGs. The general linear problem is handled, accordingly,
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MATCHING SYSTEMS BY KOOPMAN EIGENFUNCTIONS 1931

by standard linear theory, by considering similarity transformations to Jordan block form [12];
see [27] for details and definition of generalized eigenfunctions.

We now describe the simple linear PDE whose solutions are eigenfunctions of the Koopman
operator (for a case of the PDE used in control of dynamical systems, see [14]). This will help
us to proceed toward the goal of this paper, which is to use KEIGs to develop the conjugacy
between related systems.

Theorem 1. Given a domain X ✓ M ✓ Rd

, z 2 X, and ż = F (z) with F : X ! Rd

, then

the corresponding Koopman operator has eigenfunctions g(z) that are solutions of the linear

PDE,

(8) rg · F (z) = �g(z),

if X is compact and g(z) : X! C is in C1(X) or, alternatively, if g(z) is C2(X).
The proof of this Koopman PDE theorem by discussion of infinitesimal generators is in

Appendix A, along with a statement concerning the formulation for weak solutions. Explicit
examples of Koopman eigenfunctions as solutions of this PDE are given in Appendix B.

3. Constructing orbit equivalence from eigenfunctions. Having established the mathe-
matical background for Koopman operators and topological orbit equivalence in the previous
section, we will now describe the main contribution of the paper: an approach to the con-
struction of the transformation function between two (already assumed) conjugate systems.
We proceed by stating the commonly used relationship between eigenfunctions of conjugate
systems in Theorem 2. Then, we argue that the transformation can be recovered if matching
pairs of eigenfunctions are given. We formulate this in two corollaries, Corollary 1 for the
one-dimensional case and Corollary 2 for higher dimensions.

The reason for the distinction between the two corollaries is that in higher dimensions,
the subspace spanned by eigenfunctions associated with a given eigenvalue can be larger
than one dimensional. We refer to this property of the Koopman operator as “nontrivial
geometric multiplicity,” in analogy with linear algebra of matrices. The multiplicity results
in a significant complication to our goal of matching systems, because it is no longer clear
which eigenfunction in one system “matches” a particular eigenfunction of the other system—
equality of the associated eigenvalues is not enough.

In all of the examples and statements below, we focus on systems with nonzero, real
eigenvalues. In case a statement is valid for a larger set of eigenvalues, for example, the
whole complex plane, we will state it explicitly. The following theorem [5] describes the
relationship between eigenfunctions of topologically equivalent flows. The related theorem for
topologically conjugate maps is found, for example, in [26, 5]. A stronger statement of the
following, including treatment of generalized eigenfunctions is found as Proposition 3.1 in [27].

Theorem 2. If two (semi)flows S
(1)
t

: X ! X and S
(2)
t

: Y ! Y are topologically orbit

equivalent by h : X ! Y, and each of these two flows has a Koopman operator structure as

reviewed in section 2.2, and if g
(2)
�

(x) is a Koopman eigenfunction of K(2)
t

associated with S
(2)
t

and with an eigenvalue �, then

(9) g
(1)
�

(x) = g
(2)
�

� h(x)
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is an eigenfunction associated with the Koopman operator K(1)
t

of S
(1)
t

, and is associated with

the same eigenvalue �.

A proof of this is found in [5], which we restate here in our notation:

e�tg
(2)
�

� h(x) = e�tg
(2)
�

(y) = K(2)
t

[g(2)
�

](y)

= g
(2)
�

� S(2)
t

(y) = g
(2)
�

� S(2)
t

� h(x)

= g
(2)
�

� h � S(1)
t

(x) = K(1)
t

[g(2)
�

� h](x).(10)

Theorem 2 is stated as if the homeomorphism (the function h) is known. Additionally, it

is assumed that some KEIG (�, g(1)
�

(x)) for the X-system is also known. Then, the matching

KEIG (�, g(2)
�

(y)) for the Y-system is given by solving (9) for g(2)
�

.
In the following two sections (3.1) and (3.2), we flip what is usually considered known

and unknown in Theorem 2. If we know the matching eigenfunctions g(1) and g(2) (or two
matching sets of eigenfunctions in higher dimensions; see section 3.2), we can recover the
transformation h.

3.1. Constructing orbit equivalence in the real line. In this section, we assume knowl-
edge of two matching eigenfunctions, one for each system, associated with the same eigenvalue,
and by Theorem 2 with some unknown h. This information can be used to explicitly con-
struct the change of variables h between the two systems. We formulate this construction in
the following corollary as a local statement at a point x 2 X, and then discuss the domain of
validity around that point.

Corollary 1. Consider two systems with states in invariant subsets X,Y ✓ R, and with con-

tinuous time flows S
(1)
t

and S
(2)
t

that are topologically orbit equivalent through an (unknown)

homeomorphism h. Assume one Koopman eigenfunction g
(i)
�

, i = 1, 2, is given for each system,

associated with identical, nonzero eigenvalues, �(1) = �(2). Also assume that the eigenfunc-

tions are related at a given point x 2 X by h such that g
(1)
�

(x) = (g(2)
�

� h)(x) = g
(2)
�

(y)|
y=h(x).

If g
(2)
�

has an inverse, the transformation between the spaces may be written

(11) y = h(x) = g
(2),�1
�

� g(1)
�

(x).

Alternatively, by the implicit function theorem, if the Jacobian (in one dimension, the deriva-

tive) J = @

@x

g(2) is invertible at the point y = h(x), there exists an open set A ⇢ X with x 2 A
such that the transformation y = h(x) exists for all x 2 A, and thus (11) holds on A. This

transformation will have as much regularity at each x 2 X as g
(1)
�

and g
(2)
�

.

Note that, in particular, to use h as we intend, i.e., to match di↵erential equations, a local
di↵eomorphism is required. Corollary 1 of Theorem 2 applies only locally around a given
point x. We can extend the domain of the constructed function h by the following arguments.
Denote the domain and range of g(1)

(12) D1 = D(g(1)
�

,X) = {x : x 2 X, g(1)
�

: X ! C exist},

(13) R1 = R(g(1)
�

, D1,C) = {z|z = g
(1)
�

(x), x 2 D1, z 2 C},

D
ow

nl
oa

de
d 

07
/1

1/
18

 to
 1

28
.1

53
.1

3.
11

9.
 R

ed
ist

rib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls/

oj
sa

.p
hp



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MATCHING SYSTEMS BY KOOPMAN EIGENFUNCTIONS 1933

and, likewise, D2 ⇢ Y ⇢ R and R2 for g
(2)
�

. Also relevant is the preimage of R2 \ R with

respect to g
(1)
�

,

(14) g
(1),�1
�

(R2 \ R) = {x|z = g
(1)
�

(x), z 2 (R2 \ R), x 2 X}.

Then with this notation, the domain of h in X for (11) may be written as

(15) D(h,X) = D(g(2),�1
�

� g(1)
�

,X) = g
(1),�1
�

(R2 \ R).

Note that we may restrict X to the subset D(h,X), so that the change of variables h will be
defined on that subset of the domain (whenever it is not empty). This domain may not be
invariant under the flow. In this case, it is possible to discuss eigenfunctions in terms of the
corresponding subflows and subdomains [27].

3.1.1. Example 1: Linearizing a nonlinear problem in one dimension. As an illustrative
problem, we attempt to linearize (that is, to match to a linear system)

(16) ẋ = F (1)(x) = x2, x(0) = x0.

A function h transforming system (16) to a linear system is only valid for x 2 R/{0}; possibly
better thought of as the two domains R+ and R�. These two domains will be derived below,
with a reference to (15), as soon as the eigenfunctions are available. Equation (16) illustrates
the classic scenario of blowup in finite time, since the solution flow is

(17) x(t) = S
(1)
t

(x0) =
1

1
x

0

� t
.

The blowup time is

(18) t⇤ =
1

x0
,

and this is called a movable singularity, since it depends on the initial condition. The di↵er-
ential equation whose solutions are Koopman eigenfunctions g

�

(from (119)) is

(19) rg
�

· F (1)(x) =
dg

�

dx
x2 = �g

�

(x).

By integrating factors, we find a general solution,

(20) g
�

(x) = ce�
�

x

for a constant c = g0e
�

x

0 that we can neglect since it appears on both sides of the equation.
Note that a related quadratic problem and its eigenfunctions were described by Mezić [27],
where the derivation was through transformations found from center-manifold theory as a
classic example in Kelley [15].

We see that the g
�

are indeed KEIGs by definition (4):

(21) K
t

[g
�

](x) = K
t

[e�
�

x ] = e��(S
t

(x))�1

= e��( x

1�xt

)�1

= e�(t�
1

x

) = e�te�
�

x = e�tg
�

(x)

for any � 2 C. In Figure 2(right) we show the behavior of this KEIG function for � = 1.
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Figure 2. (Left) Typical trajectories of the ODE (16), where F

(1)(z) = z

2 leads to blowup in finite time

at t⇤ = 1

z0
. (Right) The eigenfunctions g

�

(z) = e

�

�
z , one in each half-line, chosen with � = 1 from (20) are

plotted (also blown up in the inset near z = 0). The domain is best described as the two domains R� and R+

with corresponding ranges g(z) 2 (1,1) and (0, 1). The initial condition selects the relevant domain.

It turns out for our purpose of matching systems, the choice of � is not important here, as
long as it is nonzero and has the same value for both systems. Nevertheless, the choice of �
influences whether the eigenfunction is complex or real valued, and also imposes restrictions
on the domain of the associated eigenfunction. We choose � to equal the parameter a of the
linear system we match to, which is real and positive, and here, without loss of generality, is
set to 1. With this choice, the domain of definition of the transformation will be R/{0} (the
union of R+ and R�), as shown below.

The goal of the example is to find a transformation h from states of the nonlinear problem
to states of the linear problem,

(22) ẏ = F (2)(y) = y, y 2 R,

which has a solution as the flow

(23) y(t) = S
(2)
t

(y0) = ety0.

In this case, the KEIG di↵erential equation specializes to (8),

(24) rg · F (2)(y) =
dg

dy
y = �(2)g(y).

There is a general solution that can be found by integrating factors, g(y) = ky�
(2)

, with

k = g0x
��

(2)

0 , but by similar arguments we may choose

(25) g(2)(y) = y�
(2)

,

and note that this corresponds to what is called the “state observer” if �(1) = �(2) = 1 for the
sake of simplicity in defining the inverse of the resulting state observer: if z = g(2)(y) = y, then
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the inverse is y = g(2),�1(z) = z, the identity function. Considering Corollary 1, the range R2

of g(2) is R2 = R, the domain of g(1) is (R+ [ R�) and, hence, following the definition of the
domain for the transformation h in (15), we have

(26) D(h,X) = g
(1),�1
�

(R2 \ R) = g
(1),�1
�

(R) = (R+ [ R�).

Therefore, the linearization of system (16) is valid for all positive values of x(t) (with time
derivative defined through (16)), and also for all negative values of x(t). The value 0 where the
mapping is undefined, is excluded. By Theorem 2 and Corollary 1, if there is a homeomorphism
y = h(x), then in each of the two domains,

(27) y = h(x) = g(2),�1 � g(1)
�

(x) = g
(1)
�

(x) = e�
�

x .

The KEIG g(1) from the nonlinear problem is, therefore, the transformation function h that
linearizes the system in each domain; by changing the variables, the nonlinear system (with
variable x) becomes the linear system (with variable y),

ẏ = Dh(x)ẋ = Dh(h�1(y))F (1)(h�1(y))

=

 

e�
�

x

x2

!

�

�

�

�

x=h

�1(y)

(x2)|
x=h

�1(y) =

 

e�
�

x

x2

!

�

�

�

�

x= ��

log y

(x2)|
x= ��

log y

= e�
�

x |
x= ��

log y

= y.(28)

While this is an easy transformation to obtain (or maybe even to guess!) in each of the two
half-lines, in its way it is a “Cole–Hopf-type” transformation, even if only for a scalar ODE:
it takes a nonlinear problem to a linear one away from singularities.

3.1.2. Example 2: Rectifying a nonlinear problem in one dimension. We again use the
quadratic ODE from (16) as our X-system. To rectify this problem, we need to match to the
Y-system,

(29) ẏ = F (2)(y) = 1.

After the eigenfunctions are available, we will find below that D = R+ through (15). For the
Y-system, the flow is

(30) y(t) = S
(2)
t

(y0) = t+ y0.

The KEIG di↵erential equation in this case becomes

(31) rg · F (2)(y) =
dg

dy
1 = �g(y),

and there is a solution, g(2)
�

(2)

= ce�
(2)

x, c = e��

(2)

x

0g0. Again, we can neglect the constant c,
hence,

(32) g
(2)
�

(2)

(y) = e�
(2)

y.
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For real valued �(2) and y, the function g(2) has range R2 = R+. The inverse of z = g
(2)
�

(2)

(y)

is y = g
(2),�1
�

(2)

(z) = ln z

�

(2)

, which is only defined on the domain D1 = R+. This domain of the

inverse of g(2)
�

, together with the range R2, yields the domain D = R+ of h (see (15)). Then,

(33) y = h(x) = g
(2),�1
�

2

� g(1)
�

(1)

(x) =
ln
⇣

e
��

(1)

x

⌘

�(1))
=
��(1)

�(2)x

and

ẏ = Dh(x)ẋ = Dh(h�1(y))F (1)(h�1(y))

=
�(1)

�(2)
1

x2
|
x=h

�1(y)(x
2)|

x=h

�1(y)

=
�(1)

�(2)
= 1,(34)

because we assumed that the eigenvalues are equal (Corollary 1). In summary, the system
can be rectified for x 2 D = R+, so that ẏ = 1. It is easy to see that if we defined the inverse
of g(2) in (33) for negative z instead, the system can be rectified on R�. This result is in
agreement with the flow-box theorem, [33, 38, 7]. Here, we have found the transformation
explicitly through matching KEIGs.

3.2. Constructing orbit equivalence in more than one dimension: Problems with non-
trivial geometric multiplicity. A central requirement for matching systems through Corol-
lary 1 is a systematic way to select the appropriate eigenfunctions, one pair for each eigen-
value. In dimensions greater than one, this selection can be di�cult because of the nontrivial
geometric multiplicity. In general, eigenfunctions are unique up to an equivalence class of
scalar, complex multiples. In the univariate setting, every eigenvalue is associated with a
single equivalence class of eigenfunctions. However, in the multivariate setting, many such
classes of eigenfunctions may be associated with a single eigenvalue, so that the eigenspace
spanned by the eigenfunctions has a dimension larger than one.

This can be rationalized by considering the construction of the eigenfunctions through the
KEIG’s PDE. In the univariate case, prescribing a multiple of the initial condition at a point
will give rise to another eigenfunction within the trivial (scalar multiple) equivalence class,
due to linearity of the PDE. In the multivariate setting, the KEIG’s PDE depends on initial
data g0(z) defined on a codimension-one set ⌃, which has to be chosen so that the flow S

t

of the ODE is transverse to it. (Reminder, we reiterate here that a method to construct the
set numerically is described in Appendix B.3; and it is standard, as reviewed in Appendix B,
that the solution curves z(t) = S

t

(z0) of ż = F (z), z0 2 ⌃, serve as characteristics along which
the initial data g0(z) : ⌃ ⇢ Rd ! R “propagate.” This propagation embodies the method of
characteristics.) In general, any initial data function g0(z) that is compatible with the PDE
and with the initial set, ⌃, generates a solution. Hence, the set of functions G

�

⇢ C1 that solve
(8) for each given � 2 C may be uncountable. Formalizing this argument requires pursuing
sharp conditions concerning the domain of the transformation h, and the regularity of the
vector field F concerning existence and uniqueness of global solutions of the ODE and the
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KEIG’s PDE (8); all these are nontrivial issues that we did not tackle in this paper. A formal
treatment of this problem is handled by the concept of open eigenfunctions (see Definition 4.1
and Lemma 2 in [27]).

This nontrivial geometric multiplicity in dimensions higher than one presents a major di�-
culty in matching, leading us to make the following, weakened matching statement, describing
the homeomorphim in terms of two sets of eigenfunctions, one set for each system. Similarly
to Corollary 1, the statement is local, and the domain of definition for the transformation h
will be extended afterwards.

Corollary 2. Consider invariant subsets X,Y ⇢ Rd

, with continuous time flows S
(1)
t

and

S
(2)
t

that are topologically orbit equivalent by h : X ! Y, and that each has eigenfunctions

g
(1)
�

i

(x), and g
(2)
�

i

(y), with eigenvalues �
i

, i = 1, . . . , d. The eigenfunctions are organized in

two (column) vector valued functions G(1)
and G(2)

,

G(1)(x) = [g(1)
�

1

(x), g(1)
�

2

(x), . . . , g(1)
�

d

(x)]T ,

G(2)(y) = [g(2)
�

1

(y), g(2)
�

2

(y), . . . , g(2)
�

d

(y)]T ,(35)

consisting of d matching pairs of eigenfunctions, each pair associated with its own eigenvalue

�
i

= �
(1)
i

= �
(2)
i

, and related by the same homeomorphism h as in (9). We assume that the

function G(2) : Rd ! Rd

is invertible in an open set around a point y 2 Y. Equivalently, we

can assume that the Jacobian of G(2)
is nonsingular at the point y, so that there is an open

set A ⇢ X with x 2 A such that y = h(x) is defined for all x 2 A. In this case, we call

(G(1),G(2)) a complete set of eigenfunctions and, together with the relation by h, we call them

a componentwise matched complete set of eigenfunctions. Furthermore, when G(2),�1
exists,

the transformation between the spaces may be written

(36) y = h(x) = G(2),�1 � G(1)(x).

Again the degree of regularity follows that of the vector valued functions G(j)
.

Note that as in Corollary 1, the implicit function theorem allows for existence and con-
tinuation of an inverse in a neighborhood of a point y where the Jacobian is nonsingular, but
this time not for a single eigenfunction, but rather the function G(2), that is, the complete set
of “stacked” eigenfunctions of the second system. Perhaps another useful standard geometric

interpretation of such a function is that the level sets of each g
(2)
�

j

will be transverse to g
(2)
�

i

in A when i 6= j. The same is true for g
(1)
�

j

if h is a di↵eomorphism in A. To discuss the

domain of h, we may adapt the notation from Corollary 1, (13)–(15) to state the following
generalization of (15):

(37) D(h,X) = \d
i=1D(g(2),�1

�

i

� g(1)
�

i

,X) = \d
i=1g

(1),�1
�

i

(R2,i \ Rd).

Stating Corollary 2 in terms of a matched complete set of eigenfunctions is crucial, because
for this set, it is assumed that there exists a homeomorphism h that relates across all of them.

For the nonmultiplicity scenario, where there exists exactly one eigenfunction for each eigen-
value, this assumption would be automatically satisfied if we could find appropriate eigenvalue
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pairs. The next example (3) demonstrates a scenario where a set of matched, two-dimensional
eigenfunctions is known explicitly. After this example, we will discuss how allowing ourselves
to constrain the function space can alleviate the nontrivial geometric multiplicity problem.

3.2.1. Example 3: Factorizing a quadratic transformation in two dimensions (2D). We
now demonstrate the matching of a two-dimensional nonlinear system to a diagonal, linear
system of the same dimension. Finding the homeomorphism h in this example also factorizes
(diagonalizes) the nonlinear dynamical system. Consider the following nonlinear example in
a two-dimensional domain. Let x(t) = (x1(t), x2(t))T 2 R2 evolve according to

ẋ = F (1)(x) =

✓

�2a2x2(x21 � x2 � 2x1x22 + x42) + a1(x1 + 4x21x2 � x22 � 8x1x32 + 4x52)
2a1(x1 � x22)

2 � a2(x21 � x2 � 2x1x22 + x42)

◆

=

✓

(x1 + 4x21x2 � x22 � 8x1x32 + 4x52) �2x2(x21 � x2 � 2x1x22 + x42)
2(x1 � x22)

2 (x21 � x2 � 2x1x22 + x42)

◆✓

a1
a2

◆

.

(38)

The linear PDE (8) becomes

rg · F (1)(x) =
@g

@x1
(z)[�2a2x2(x21 � x2 � 2x1x

2
2 + x42) + a1(x1 + 4x21x2 � x22 � 8x1x

3
2 + 4x52)]

+
@g

@x2
(z)[2a1(x1 � x22)

2 � a2(x
2
1 � x2 � 2x1x

2
2 + x42)] = �g(x).(39)

By substitution, we can confirm that there are (at least two) solutions to this PDE,

g
(1)
1 (x) = (x1 � x22),(40)

g
(1)
2 (x) = (�x21 + x2 + 2x1x

2
2 � x42).(41)

By using the solution of the ODE,

x(t) =

✓

x1(t)
x2(t)

◆

,(42)

where

x1(t) = ea1t(x1,0 � x22,0) + e2a2t(�x21,0 + x2,0 + 2x1,0x
2
2,0 � x42,0)

+ 2e(2a1+a

2

)t(x1,0 � x22,0)
2(�x21,0 + x2,0 + 2x1,0x

2
2,0 � x42,0)

+ e4a1t(x1,0 � x22,0)
4,

x2(t) = e2a1t(x1,0 � x22,0)
2 + ea2t(�x21,0 + x2,0 + 2x1,0x

2
2,0 � x42,0),(43)

we can confirm by definition (4) that these are KEIGs. In Figure 3, we show the level sets
of these KEIGs, (40), (41). It turns out, by our own construction, that they are in fact a
matched complete set. We confirm this formally, by showing that they allow the construction
of a transformation function h matching this to the diagonal, linear system (44).

Let y(t) = [y1(t), y2(t)]T , and let

(44) ẏ = Ay = diag(a1, a2)y.
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-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

x2

x
1

Figure 3. Level sets of the KEIGS g

1

(x) (red) and g

2

(x) (black) from (40), (41).

We know that this linear system has eigenfunctions that are state observers of each component,

g
(2)
1 (y) = [y]1 = y1,(45)

g
(2)
2 (y) = [y]2 = y2.(46)

Defining the vector valued function,

(47) G(2)(y) = [g(2)
�

1

(y), g(2)
�

2

(y)]T = [y1, y2]
T ,

and using this as the matching complete set, Corollary 2 specializes to

y = h(x)

= G(2),�1
�

� G(1)
�

(x) = G(1)
�

(x) = [g(1)
�

1

(x), g(1)
�

2

(x)]T

= [(x1 � x22), (�x21 + x2 + 2x1x
2
2 � x42)]

T .(48)

The inverse of the transformation follows,

(49) x = h�1(y) = [y1 + y41 + 2y21y2 + y22, y
2
1 + y2]

T .

With this transformation h, we confirm that

(50) ẏ = Dh(x)|
x=h

�1(y)ẋx = h�1(y) = Dh(x)|
x=h

�1(y)F
(1)(x)

x=h

�1(y).

Notice that written this way, Dh is a Jacobian matrix since h has a two-dimensional domain
and range. It is straightforward to see that

(51) Dh(x) = [rg(1)
�

1

(x),rg(1)
�

2

(x)]T
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is a matrix whose rows are gradients of the eigenfunctions of the F1 system (38). It then
follows that

ẏ = [rg(1)
�

1

(x) : rg(1)
�

2

(y)]TF1(x)

= [rg(1)
�

1

(x) · F (1)(x),rg(1)
�

2

(x) · F (1)(x)]T

= [a1g
(1)
�

1

(x), a2g
(1)
�

2

(x)]T (transforming now to y = h(x))

= [a1g
(1)
�

1

(x), a2g
(1)
�

2

(x)]T |
x=h

�1(y)

= [a1g
(2)
�

1

(y), a2g
(2)
�

2

(y)]T

= [a1y1, a2y2]
T = diag(a1, a2)y.(52)

The second step is, remarkably, a crisp restatement of the KEIG PDE (Theorem 1) that
appears naturally in the change of variables statement. The step from the third to the fourth
line follows the matching of the KEIGs described as state observers. This line emphasizes the
matching problem where we expand the description,

(53) [a1g
(1)
�

1

(x), a2g
(1)
�

1

(x)]T |
x=h

�1(y) = [a1y1, a2y2]
T .

This crucially relies on the assumption that the eigenfunctions are a matched complete set,
all related by the same homeomorphism. We know that this can fail to be true even if the
eigenvalues are equal (as illustrated in Appendix C).

At this point, we confess that in the above example we knew that we had a matched
complete pair, because the nonlinear system was constructed through a transformation of the
linear system in the first place; we then “threw away” the transformation, so that we could
(re)discover it through Corollary 2. In section 4, we show that if we su�ciently restrict the
function space over which the solutions of the KEIG’s PDE exist, we can guarantee that
the associated Koopman operator no longer has nontrivial geometric multiplicity. In the
appropriately restricted context, we can recover the same homeomorphism h for the example
discussed here, without the additional assumption of a matched complete set. The overall
approach is generically applicable, and even has a numerical extension, which we describe in
section (4.5).

3.2.2. Example 4: Rectifying the linear problem in 2D. We now demonstrate the rectifi-
cation of the diagonal linear problem in 2D (here, on R+⇥R+; other quadrants will also work;
see below). Obviously, if successful, we can then rectify the nonlinear problem of the previous
section through the composition of the two transformations (in the appropriate domain). We
will use the KEIGs to transform the linear diagonal system (54) into the rectified system (56).
The linear system is again

(54) ẋ = F (1)(x) = diag(a1, a2)x

with S
(1)
t

(x0) = [x0,1ea1t, x0,2ea2t]T . The vector valued functions are (see (45), (46)),

(55) G(1)(y) = [g(1)
�

1

(x), g(1)
�

2

(y)]T = [x1, x2]
T .
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To rectify the system, we choose the following system as the target to match to:

(56) ẏ = F (2)(y) = [1, 0]T ,

so that the flow is S(2)
t

(y0) = [y0,1 + t, y0,2]T . The corresponding KEIG’s PDE becomes

(57) rg · F2(y) =
@g

@y1
1 +

@g

@y2
0 = �g,

which has a solution

(58) g
(2)
�

(y) = e�
(2)

y

1

+q(y
2

),

where q is an arbitrary C1 function, which can be considered as representing initial data on
an initial set that is transverse to the flow (see the discussion at the beginning of section 3.2).
Specifically, this initial set could be taken to be the y2-axis, S = {(y1, y2) : y1 = 0}, which
is clearly transverse to the flow, and q(y2) = g0(0, y2) represents the initial data. This choice
is consistent with the PDE, which has trivial characteristics. We define the vector valued
KEIGs, with y 2 R2, to be

(59) G(2)
�

(y) = [e�
(2)

1

y

1eq(y2), e�
(2)

2

y

1eq(y2)]T ,

where the vector of eigenvalues � = [�(2)1 ,�
(2)
2 ]T must be chosen so that �(2)1 6= �

(2)
2 , to ensure

a complete set of KEIGs. The inverse follows in R+ ⇥ R+ (for positive z1 and z2),

(60) y = G(2),�1
�

(z) =

"

log z1 � log z2

�
(2)
1 � �

(2)
2

, q�1

 

�
(2)
1 log z2 � �(2)2 log z1

�
(2)
1 � �

(2)
2

!#

T

,

when the function q is invertible. For simplicity, choose q to be the identity function. It is
important to note that di↵erent, invertible functions q would give di↵erent transformations,
and thus di↵erent rectifications (see Figure 4). Then following Corollary 2, (36),

(61) y = h(x) = G(2),�1 � G(1)(x) =

"

log x1 � log x2

�
(2)
1 � �

(2)
2

,
�
(2)
1 log x2 � �(2)2 log x1

�
(2)
1 � �

(2)
2

#

T

for x 2 (R+ ⇥ R+) =: D, the domain of h. As a check that this change of variables rectifies
the problem, when the Jacobian derivative Dh|

x

exists at points x = h�1(y), we see that

ẏ = Dh|
x

· ẋ = Dh|
x=h

�1(y) · F (1)(x)|
x=h

�1(y) =
1

�
(2)
1 � �

(2)
2

 1
x

1

�1
x

2

��

(2)

2

x

1

�

(2)

1

x

2

!

✓

a1x1
a2x2

◆

=
1

�
(2)
1 � �

(2)
2

 

a1 � a2

�
(2)
1 a2 � �(2)2 a1

!

=

✓

1
0

◆

if �(2)1 = a1 and �(2)2 = a2, but only if a1 6= a2.(62)
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Figure 4. Choosing di↵erent initial values on the initial set leads to di↵erent homeomorphisms h. The plots
show the original coordinates (left) with x

1

level sets as thin black lines, and x

2

level sets as colored lines. The
coordinates resulting from the homeomorphisms h ( (60) are shown in the middle and right plot, with q

�1

1

= x

and q

�1

2

= ln(10 + exp(�x)). Notice that changing q results in a system with the same di↵erential equations,
but di↵erent coordinates.

Figure 5. Schematic representation of the rectification of a nonlinear system (left), either by matching to
a linear system first (middle), and rectifying the linear system (right), or directly matching the nonlinear to the
rectified system.

Thus the linear system can be rectified, if the eigenvalues �(2)1 and �(2)2 are chosen to match the
eigenvalues of the Jacobian of the linear system, at least in the spatial domain where all of the
transformations exist and are continuously di↵erentiable. In this example, the domain of h is
the first quadrant of R2, considering the logarithms involved in (60). Other quadrants are also
possible, depending on the choice of G(2). Since in Example 3 we showed that the nonlinear
example can be linearized, thus by composition this nonlinear example can be rectified on the
domain D of h. See Figure 5. Indeed, matching to a reference system provides a systematic
way of matching two arbitrary systems. Here, a simple system such as a linear system or a
“flow-box” system (meaning a system with constant vector field) is su�cient. It reminds the
authors of matching between two dynamical systems by matching each one of them to the
appropriate normal form.

4. An approach to circumvent nontrivial geometric multiplicity. The previous section
discussed the problem of nontrivial geometric multiplicity: building complete sets of eigen-
functions does not necessarily imply that they are matched (that each pair is related by the
same homeomorphism). Consider, for example, the case of the identity transformation h to a
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perfect copy of a system. By the nontrivial geometric multiplicity, a complete set of eigenfunc-
tions G(1)(x) may be developed for system F (1), and likewise G(2)(x) for system F (2) = F (1),
but G(1) 6= G(2). If a solution to the equation h(x) = G(2),�1 � G(1)(x) exists, it may not be
the identity function, h(x) = x (see Appendix C for an explicit example). Clearly, nontriv-
ial geometric multiplicity is a major obstacle for systematic spectral matching of dynamical

systems through KEIGs. If there is a solution to the spectral matching problem, then it is
necessary to have a way to systematically select representatives g

�

i

2 G
�

i

in a consistent way,
leading to a complete matched set (see Corollary 2), where G

�

i

is the set of all admissible
eigenfunctions for a given eigenvalue �

i

. We will show here that this can be circumvented by
su�ciently restricting the function space.

4.1. The EDMD-M framework. The approach we propose bears conceptual and algorith-
mic similarities with a computational algorithm for approximating Koopman eigenfunctions
known as EDMD [41, 43, 22]. For that reason, we will call our approach EDMD-M. An im-
portant step in EDMD is the (computationally practical) choice of a finite dictionary. In our
case, this choice does not conceptually have to be finite, although it will become so in certain
computational implementations. The crucial additional step in EDMD-M is the selection of
the same dictionary for the two systems to be matched, and the assumption that the matching
function h lies (possibly approximately) in the span of this dictionary.

Consider two dynamical systems,

ż(1) = F (1)(z(1)),(63)

ż(2) = F (2)(z(2)),(64)

both in Rd, for which there exists some h : Rd ! Rd such that the two systems are topologi-
cally orbit equivalent through z(2) = h(z(1)). One way to circumvent the problem of nontrivial
geometric multiplicity is to consider finite-dimensional projections of the two corresponding
Koopman operators. Let K

F

(i)

denote the two Koopman operators arising from the corre-

sponding two infinitesimal generators A(i)
K

, i = 1, 2. In addition, denote by C
h

the composition
operator associated with the map h, i.e.,

K
F

(i)

� := � �A(i)
K

,(65)

C
h

� := � � h.(66)

Fixing N , consider a set of functions  := ( 1, 2, . . . , N

),  
j

2 F , and denote their span

(67) U := Span( ) =

8

<

:

N

X

j=1

a
j

 
j

, a 2 CN

9

=

;

.

We make the following crucial assumptions:
(A1) K

F

(i)

U ✓ U for i = 1, 2.
(A2) C

h

U ✓ U .
(A3) { 1, . . . , N

} are linearly independent.
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Here, (A1) states that the projection of the Koopman dynamics on U is closed and (A2) states
that the composition mapping by h is also closed on U . Let us denote the restrictions (to U)
of K

F

(i))

by K(i) 2 CN⇥N and C
h

by H 2 CN⇥N , i.e., for any � 2 U with

(68) � = aT =
N

X

j=1

a
j

 
j

,

we have

(69) K
F

(i)

� = aTK(i) , C
h

� = aTH .

From “usual EDMD” analysis [41], it is clear that if v(i)
�

is a left eigenvector of K(i) with
eigenvalue �, then

(70) g
(i)
�

= v
(i),T
�

 2 U

is an eigenfunction of K
F

(i)

with the same eigenvalue �. Let us prove a converse statement.

Lemma 1. Let i 2 {1, 2}, � 2 C, and g
�

2 U such that K
F

(i)

g
�

= �g
�

. Suppose assump-

tions (A1) and (A3) hold. Then, there exists a unique v
�

2 CN

such that g
�

= vT
�

 and

vT
�

K(i) = �vT
�

.

Proof. Since g
(i)
�

2 U , we write

(71) g
�

= vT
�

 

for some v
�

2 CN , which is unique since { 
j

} are linearly independent (A3). Assuming (A1),
using the definition of K(i) (69) we have for each z

(72) �vT
�

 (z) = �g
�

(z) = K
F

(i)

g
�

(z) = vT
�

K(i) (z).

Hence,

(73)
h

�vT
�

� vT
�

K(i)
i

 (z) = 0

for all z 2 Rd. By linear independence (A3) we have

(74) �vT
�

= vT
�

K(i).

With Lemma 1, we can prove the following theorem that guarantees the reconstruction
of the function h using separate spectral analysis of systems (1) and (2), admittedly under
restrictive conditions. In particular, we make the additional assumptions:
(A4) The coordinate-projection maps P

k

(z) = [z]
k

= z
k

, k = 1, . . . , d, belong to U , i.e.,
there exists B 2 Rd⇥N s.t. P = B .

(A5) We have access to a pair of matching values z(1)0 , z
(2)
0 = h(z(1)0 ) 2 Rd, such that

(75)
N

X

k=1

V
(1)
jk

 
k

(z(2)0 ) 6= 0

for all j = 1, . . . , N , where V (i) a matrix whose jth row is a left eigenvector of K(i).
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The matching pair required in (A5) fixes the constant factors of the eigenfunctions, and this
selects single elements from each equivalence class (as also noted in [43]). This selection can
be interpreted as a pinning condition for symmetries that might be present in the systems.

Theorem 3. Consider a dictionary  for which assumptions (A1)–(A3) are satisfied. Sup-

pose further that for each i = 1, 2, K(i)
is diagonalizable with distinct eigenvalues. Then,

(i) K(1)
and K(2)

are similar.

Assume further (A4), (A5) are satisfied, then

(ii) h(z) = B
⇥

V (2)
⇤

�1
DV (1) (z),

where V (i)
’s rows are eigenvectors with matched eigenvalues and D is a diagonal matrix with

entries

(76) D
jj

=

P

N

k=1 V
(2)
jk

 
k

(z(2)0 )
P

N

k=1 V
(1)
jk

 
k

(z(1)0 )
.

Proof. Let
n

�
(2)
1 , . . . ,�

(2)
N

o

be the N distinct eigenvalues of K(2) with corresponding left

eigenvectors
n

v
(2)
1 , . . . , v

(2)
N

o

. For each j, we know that

(77) g
(2)
j

:= v
(2),T
j

 2 U

is an eigenfunction of K
F

(2)

with eigenvalue �(2)
j

. By conjugacy, we know that

(78) g
(1)
j

:= g
(2)
j

� h

is an eigenfunction of K
F

(1)

with the same eigenvalue �(2)
j

. From assumption (A2), we know

that g(1)
j

2 U and, hence, by Lemma 1, there exists a unique v
(1)
j

such that

(79) g
(1)
j

= v
(1),T
j

 , v
(1),T
j

K(1) = �
(2)
j

v
(1),T
j

.

In particular, v(1)
j

is a left eigenvector of K(1) with eigenvalue �(2)
j

. Since the eigenvalues of

K(1) are distinct, they must also be
n

�
(2)
1 , . . . ,�

(2)
N

o

. Hence, K(1)and K(2) are similar and

this proves (i).
Next, observe that

(80) K
h

(V (2) ) = (V (2) ) � h =

0

B

@

g
(2),T
1 � h

...

g
(2),T
N

� h

1

C

A

=

0

B

@

g
(1),T
1
...

g
(1),T
N

1

C

A

= DV (1) ,

where D is a diagonal matrix yet undetermined, because eigenvectors are only unique up to
a multiplicative constant. Now, for each j, we have

(81) D
jj

v
(1),T
j

 (z) = v
(2),T
j

 � h(z)
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for all z 2 Rd. Using (A5), we can determine D as

(82) D
jj

=

P

N

k=1 V
(2)
jk

 
k

(z(2)0 )
P

N

k=1 V
(1)
jk

 
k

(z(1)0 )
.

Since C
h

(V (2) ) = DV (1) , using the definition (69) of H, we get

(83) V (2)H = DV (1) =) H =
h

V (2)
i

�1
DV (1).

Since the projection map P 2 U with P = B , we have

(84) h = P � h = K
h

P = BH = B
h

V (2)
i

�1
DV (1) .

4.2. Example 5: Matching two two-dimensional linear systems. Consider two two-
dimensional linear dynamical systems

(85) F (1)(x) =

✓

x2
x1

◆

, F (2)(y) =

✓

y1
�y2

◆

.

These are matching systems with the transformation

(86) y = h(x) =

✓

x1 + x2
x1 � x2

◆

.

We aim to discover this transformation from separate Koopman analyses of the two systems.
We take as a dictionary

(87)  = (z1, z2)

which satisfies conditions (A1)–(A4) with B = I. We denote z
i

both for x
i

and y
i

, as the
dictionary is the same for both systems. The projections of the two Koopman operators onto
this subspace are easily obtained by following the actions of the generators F (i) · r on the
functions  1(z) = z1, 2(z) = z2. We have

(88) K(1) =

✓

0 1
1 0

◆

, K(2) =

✓

1 0
0 �1

◆

.

Clearly, K(1) and K(2) are similar with eigenvalues (�1,+1) and eigenvector matrices

(89) V (1) =

✓

�1 1
1 1

◆

, V (2) =

✓

0 1
1 0

◆

.

Now assume that x0 = (1, 2) and y0 = h(x0) = (3,�1) are known, hence, D = diag(1,�1).
Using formula (ii) in Theorem 3, we get

(90) h(x) = B
h

V (2)
i

�1
DV (1) (x) =

✓

1 1
1 �1

◆

 (x) =

✓

x1 + x2
x1 � x2

◆

.
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4.3. Example 6: Quadratic example in 2D using a finite-dimensional projection. In
the previous example, we easily found a finite-dimensional subspace U = Span( ) on which
various operations are closed. This is due to the linear structure of the problem. For general
nonlinear systems or transformations, such a finite-dimensional subspace may not (and, in
general, will not) exist. However, we show in the example that follows that formally, this
approach also works in the countably infinite-dimensional setting. We revisit the problem of
Example 3 and apply the EDMD-M method:

(91) F (1)(x) =

✓

a1(x1 � x22)(1 + 4x1x2 � 4x32)� 2a2x2((x1 � x22)
2 � x2)

2a1(x1 � x22)
2 � a2((x1 � x22)

2 � x2)

◆

and

(92) F (2)(y) =

✓

a1y1
a2y2

◆

.

The goal is to find

(93) y = h(x1, x2) =

✓

x1 � x22
�x21 + x2 + 2x1x22 � x42

◆

using Theorem 3. Let us consider the set of functions

(94)
n

 ̃
m,n

= zm1 zn2 : m,n � 0,mn 6= 0
o

.

The form of  ̃
m,n

is reminiscent of the Carleman linearization [39, 6, 1, 18], which has
been useful lately for system identification by least-squares minimization, l1 minimization
(sparse/compressed sensing-type) [4, 30, 40, 44], or conjugacy defect minimization [36]. In
fact, the matrices K approximating the Koopman operators here play the same role as the
Carleman matrices. However, following the ideas from the original EDMD [41, 43], we could
have chosen any suitable dictionary, not just multinomials. In fact, in the numerical example
described in section 4.5, we will use a neural net to find the dictionary from data without
prescribing it.

To improve indexing, we can use the bijective Cantor-pairing function

(95) c : N⇥ N! N

with

(96) c(m,n) =
1

2
(m+ n)(m+ n+ 1) + n.

Then, we define

(97)  
j

=  ̃
c

�1(j),  = ( 1, 2, . . . ), U = Span { } .
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For concreteness, the first 9 components are

(98)  (z) =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

z1
z2
z21
z1z2
z22
z31
z21z2
z1z

2
2

z32
...

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

.

With this choice, it is clear that (A1)–(A4) are satisfied. For (A5), we pick z
(1)
0 = (2, 2) so

that z(2)0 = h(z(1)0 ) = (�2,�2) and assume that we have this pair of points.
With the current indexing one can check that the projections of K

F

(i)

to U is very simple:
they are given by
(99)

K(1) =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

a1 0 0 0 �a1 + 2a2 0 4a1 � 2a2 0 0
0 a2 2a1 � a2 0 0 0 0 �4a1 + 2a2 0
0 0 2a1 0 0 0 0 �2a1 + 4a2 0
0 0 0 a1 + a2 0 2a1 � a2 0 0 �a1 + 2a2
0 0 0 0 2a2 0 4a1 � 2a2 0 0
0 0 0 0 0 3a1 0 0 0 · · · · · ·
0 0 0 0 0 0 2a1 + a2 0 0
0 0 0 0 0 0 0 a1 + 2a2 0
0 0 0 0 0 0 0 0 3a2

...
. . .

...
. . .

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

and

(100) K(2) =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

a1 0 0 0 0 0 0 0 0
0 a2 0 0 0 0 0 0 0
0 0 2a1 0 0 0 0 0 0
0 0 0 a1 + a2 0 0 0 0 0
0 0 0 0 2a2 0 0 0 0
0 0 0 0 0 3a1 0 0 0 · · · · · ·
0 0 0 0 0 0 2a1 + a2 0 0
0 0 0 0 0 0 0 a1 + 2a2 0
0 0 0 0 0 0 0 0 3a2

...
. . .

...
. . .

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

.
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Again, these matrices are obtained by following the action of the generators F (i) · r on the
functions in  . Notice that both K(1) and K(2) have distinct (and identical) eigenvalues

(101) �
j

= c�1(j)T
✓

a1
a2

◆

.

We can calculate their eigenvector matrices (which we will not write down for brevity). The
projection operators are also included with P = B and

(102) B =

✓

1 0 0 0 · · ·
0 1 0 0 · · ·

◆

.

We shall take the first eigenvector’s first 14 dimensions (enough to span h). With this choice,
we get

(103) D = Diag

⇢

�1, 1,�5

3
, 1,�1, 17

4
,�5

3
, 1, 3, 1,�5

2
, 1,�5, 1

�

.

Using the formula

(104) h = B
h

V (2)
i

�1
DV (1) 

we have indeed

(105) h(x) =

✓

x1 � x22
�x21 + x2 + 2x1x22 � x42

◆

.

Notice that this result was already arrived at by other means in (48).

4.4. Numerical implementations of EDMD-M. In the above examples, we treated
EDMD-M as a method to find the matching transformation symbolically. We now briefly
discuss a possible numerical approach. The key is to find a dictionary set  that has the
desired properties (A1)–(A4). Note that (A4) is easy to satisfy by simply including the pro-
jection maps into the dictionary set. The rest of the dictionary elements must be selected to
be broad enough so that (A1) and (A2) can be satisfied simultaneously, but not so large so
that (A3) is not satisfied. This can be achieved by adapting the dictionary to both dynam-
ical systems (1) and (2) simultaneously and finding a common invariant subspace. One can
perform this numerically via the recently developed dictionary-learning-based EDMD method
[22], and we demonstrate it through a numerical example in the next section. In essence,
we rephrase the question into finding the best approximation of h in some adaptively chosen
subspace U , which satisfies (A1), (A2), and (A4) approximately. If U is broad enough, this
may well form a good approximation, at least on bounded domains. To make this statement
rigorous, one will need to relax Theorem 3 into an “approximate” version. Last, we have as-
sumed throughout that we have access to at least one “matching data point” satisfying some
nondegenerate conditions (A5). This stems from the fact that eigenfunctions (and projected
eigenvectors) are only unique up to a constant—which must be fixed in order to perform
matching. We will return to this “matching data point issue” below.
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Figure 6. Original trajectory of the van der Pol system (blue) and the transformed trajectory (green), with
parameters a = 1.2, b = �1.5.

4.5. Numerical example for EDMD-M. We now apply EDMD-M in a numerical example,
to test and demonstrate that the method gracefully degrades when loosening the assumptions.
Consider the van der Pol system with inverted stability, such that the limit cycle is repelling
and the steady state is attracting:

d

dt
x1 = �x2,(106)

d

dt
x2 = �µ(1� x21)x2 � x1,(107)

where we choose µ = 1. We focus on a small domain around the steady state at (0, 0), away
from the limit cycle. Then, a (possibly nonlinear) homeomorphism h = (h1, h2) transform-
ing states (x1(t), x2(t)) into (y1(t), y2(t)) = (h1(x1(t)), h2(x2(t))) will yield trajectories of a
topologically orbit equivalent system. For this example, we choose

h
i

(x
i

) = ln (a+ exp (bx
i

)) , a > 0, b 2 R/{0},(108)

h�1
i

(x0) = ln (exp(x
i

)� a) /b.(109)

We will again pretend to not know these transformations, and then use EDMD-M to (re)dis-
cover them. We only kept one matching data point to satisfy (A5). Figure 6 shows an example
trajectory at a = 1.2, b = �1.5 of the original system defined through (106)–(107) and its
transformation through h(x1, x2) = (h1(x1), h2(x2)). We now apply EDMD-M as outlined in
the previous section to recover the transformation h as an approximation ĥ from data of the van
der Pol system and the system we want to match it to. The data are sampled independently,
in an area around the steady state of the respective systems. In the usual EDMD-DL [22], we
parameterize a dictionary set  by a multilayer neural network, whose trainable weights are
represented by ✓. That is,  (·; ✓) is an RN -valued function. One can then proceed as in the
usual EDMD algorithm and minimize the loss function J(K, ✓) =

P

x,x

0

k (x0, ✓)�K (x, ✓)k2,
where x, x0 are pairs of data where x = x(t) and x0 = x(t + �t) for a trajectory x(t). The
main di↵erence is that EDMD-M requires us to use the same dictionary  for both systems.
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Figure 7. An illustrative trajectory of the transformed system with a = 1.2, b = �1.5, generated with the
transformations h and ĥ. The left plot shows the exact values from h

1

(x
1

(t)) overlayed with the values of
ĥ

1

(x
1

(t)) from EDMD-M; the right plot shows h

2

(x
2

(t)) and ĥ

2

(x
2

(t)).

Therefore, we define a combined loss function for both systems in the form

J(K(1),K(2), ✓) =
X

x

0

,x,y

0

,y

k (x0, ✓)�K(1) (x, ✓)k2 + k (y0, ✓)�K(2) (y, ✓)k2,(110)

where the sum is over all data points x, x0, y, y0 2 R2 of the form x0 = x(t+�t), x = x(t), y0 =
y(t+�t), y = y(t) for some trajectories x(t), y(t) for systems (1) and (2), respectively. For the
current application, we use a three-layer fully connected neural network with tanh activation
functions to represent  . The learning phase of the network iterates between computing the
matrices K(1),K(2) by evaluating the current dictionary  , and then updating the dictionary
(the neural network) with fixed K(1),K(2):

1. Compute K(1),K(2) by assigning K(i)  (G(i)(✓) + �I)�1A(i)(✓).
2. Update  (x; ✓) by changing ✓  ✓ � �r

✓

J(K(1),K(2), ✓).
The matrices K(1),K(2) obtained in step 1 will in general not be similar, i.e., will not have
the same spectrum, even though they have the same singular values; we do not discuss this
problem in detail, as it does not appear to matter for this example. To direct the iterations
to converge on matrices K(1),K(2) which at least have the same singular values �1, . . . ,�n, we
introduce an intermediate optimization step, splitting step 1 into

1(a) compute K(1),K(2) from ✓ as before;
1(b) use K(1), K(2), and a random, square matrix P as initial conditions for

(111) (K(10),K(20), P ) = min
(A,B,P

0)
{�kP 0A�BP 0k2 + J(A,B, ✓)}.

Here, � is some regularization parameter, which we take to be 100;
1(c) assign K(1)  K(10), K(2)  K(20).

We solve the optimization problem in step 1(b) with sequential least-squares programming
with the constraint that kPk2

F

� 1 to remove the trivial, zero solution. In fact, we should also
require P to be invertible in order to ensure similarity of K(10),K(20). However, empirically
we found that the matrix P resulting from the quadratic program above is invertible and
thus further regularization was not performed. Figure 7 shows a matched trajectory of the
transformed system, computed through the approximated transformation ĥ defined in Theo-
rem 3(ii). We use a random point (x1, x2)0 paired with h((x1, x2)0) as the required matching

pair. Figure 8 shows relative errors |h

i

(x(t))�ĥ

i

(x(t))|
|h

i

(x(t))| for both coordinates, averaged over 100
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Figure 8. Relative errors for both coordinates x

1

and x

2

, averaged over 100 trajectories with randomly
sampled initial conditions. The error is about five percent for the initial conditions and then rapidly decays.

Figure 9. The dictionary used in EDMD-M. The first three elements are the constant and two identity
functions; the remaining five are obtained from the neural network.

trajectories with random initial conditions. The relative error is about five percent for the
initial conditions and then rapidly decays.

5. Conclusion. Classifying dynamical systems up to an equivalence relationship is perhaps
the foundational concept of the field. In this paper we have demonstrated a way of inferring
such transformations between dyamical systems, when they are so related. We have described
how the recently repopularized (but classical in egodic theory) spectral theory of Koopman
operators o↵ers a way to associate dynamical systems when an exact transformation between
them exists. There are several major obstacles to this program that we discussed in this pre-
liminary work. We have shown that the PDE associated with the infinitesimal generator of
a Koopman (composition) operator allows the explicit construction of these eigenfunctions in
many cases. Specifically, it is known that spectral matching is not su�cient for system match-
ing in the general scenario: two systems can be related by a spectral isomorphism, but not
have a spatial isomorphism [34]. Even if there exists a spatial isomorphism, finding it through
eigenfunctions is a challenge due to the geometric multiplicity of eigenvalues in higher dimen-
sions. Despite this, we have shown that there are special cases where we can still use spectral
matching to compute orbit equivalences through the matched eigenfunctions. Beyond these
special examples, we have then developed a computational optimization framework leading to
what we call EDMD-M that attains useful solutions (see Figure 9). Furthermore, this leads to
a notion of approximate matching that may be a useful alternative to the “conjugacy defect”
arrived at via fixed point iteration methods [37, 3].
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We already know that the flow-box theorem guarantees that any vector field can be locally
transformed to be the trivial flow ż = (1, 0 . . . , 0)T away from singularities. This implies that
the transformation we try to construct through our methods exists locally, since matching
each of our two candidate systems to the trivial flow also allows us to locally match them to
each other. The major di�culty then lies in determining how far one can extend the domain
and range of the resulting transformation, in other words, “how big a patch can we match.”
Clearly, this is limited by the same singularities that cause the global breakdown in the proof
of the flow-box theorem. Promising ideas addressing the regularization of singularities in
various branches of mathematics (from topological compactification [32] to postfocusing PDE
solutions [9]) should provide both inspiration and possible road maps towards tackling these
limitations.

Appendix A. The PDE for Koopman eigenfunctions.
The defining relation of a KEIGs pair, K

t

[g](z) = e�tg(z), describes the rate of growth of
an observation. Figure 1 illustrates this behavior. Inspection of the definition of evolution of
g along orbits suggests that we are demanding an equation for g that satisfies

(112) ġ = �g.

Recall that g is a function g : M ! C. The notation ˙( ) = d( )/dt of the time derivative of g
is an abbreviation for the statement that the function values change over the trajectory z(t)
in the way given through (112). By the chain rule,

(113) ġ = d(g(z))/dt =
X

i

@g(z)

@z
i

ż
i

= rg · ż = rg · F (z).

Hence, combining (112) and (113), we get the following (repeating Theorem 1).

Theorem 4. Given a domain X ✓ M ✓ Rd

, z 2 X, and ż = F (z) with F : X ! Rd

, then

the corresponding Koopman operator has eigenfunctions g(z) that are solutions of the linear

PDE

(114) rg · F (z) = �g(z)

if X is compact and g(z) : X! C is in C1(X) or, alternatively, if g(z) is C2(X).
Remark 1. When the domain X is chosen too large, then solutions to (8) may only exist

in a weak sense,

(115) �
Z

g div(Fv)dx = �

Z

gvdx

for test functions v in an appropriately chosen function space. In this paper, we focus on
strong solutions, restricting X where necessary.

Equations (8), (114) follow more rigorously through a discussion of the infinitesimal gen-
erator of the Koopman operator. This infinitesimal generator, which we denote A

K

, acts on
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observables g such that

(116) A
K

g(x) = lim
t!0

g(S
t

(x0))� g(x0)

t
= lim

t!0

g(x(t))� g(x0)

t
,

which follows from the definition of the operator (3). If g is continuously di↵erentiable on a
compact set X, g 2 C1(X), we can apply the mean value theorem to obtain

A
K

g(x) =
d

X

i=1

@g

@x
i

F
i

(x)(117)

= rg · F (x).(118)

Further details can be found in [21, 2]. Alternatively, for more general X, this also holds for
g 2 C2(X). Now we complete the proof of Theorem 1, (4) which is immediate. Equation (112)
together with (118) give the KEIGS linear PDE,

(119) rg · F (x) = �g(x).

In Appendix B we discuss several example solutions of this problem. Generally, it can be
solved using the method of characteristics, when function values on an appropriately chosen
initial curve are given.

Appendix B. On solutions of the linear Koopman PDE. The linear Koopman PDE, (8)
of Theorem 1 may be solved by either the method of integrating factors in the case of one
spatial domain (ODE), or by the method of characteristics for higher dimensional domains
(PDE), both of which we review here. This will allow us to discuss the nature of the spectrum
and eigenfunctions. Most relevant to our discussion is the fact that the KEIGs may have
nontrivial geometric multiplicity if d > 1.

B.1. One-dimensional spatial domain, the ODE case. In the single-variable case, for a
given F (x), the ODE from Theorem 1, (8) becomes

(120)
dg

dx
F (x) = �g, g(x0) = g0.

The standard method of multiplying factors is to define

(121) M(x) = e
R
x

x

0

�

�

F (s)

ds

from which a perfect derivative is developed

(122)
d

dx
(g(x)M(x)) = 0

and

(123) g(x) = e
R
x

x

0

�

F (s)

ds

g0

follows. Notice that only the scalar constant g0 di↵ers, and we consider eigenfunctions di↵erent
up to a scalar constant as an equivalence class.
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B.2. The PDE case, d > 1. In the multivariate case, the PDE in Theorems 1, 4 (8),
(114), has solutions that can be understood in terms of propogating initial data. The problem
may be solved by the method of characteristics, and it is straightforward (in our case) to derive
that characteristic curves along which initial data propogate are the solutions of the underlying
ODE. Initial data may be defined on any codimension-one surface ⌃ that is transverse to the
flow. Considering that on ⌃, one may choose arbitrary C1(⌃) functions g0(z). For this
reason, we see that there can be an uncountable number of solutions of the PDE, even for
a single eigenvalue �, and in a given domain. This is the source of what we have called the
nontrivial geometric multiplicity of Koopman eigenvalues in section 3.2. We will illustrate
this phenomenon with the following two-dimensional examples.

B.2.1. Two-dimensional spatial domain, Example 1. Consider the two-dimensional non-
linear system

ẋ = y, x(0) = x0,

ẏ =
y2

x
, y(0) = y0

for (x, y) 2 R2\ {0}. The solution is

(124) x(t) =
x20

x0 � ty0
y(t) =

x20y0
(x0 � ty0)2

.

Now, consider the linear PDE defining the KEIGs

(125) rg(x, y) · F (x, y) = �g(x, y),

where

(126) F (x, y) =

✓

y,
y2

x

◆

.

Let us set

(127) g(x, y) = eG(x,y).

Then, we have

(128) rG(x, y) · F (x, y) = �.

This is a linear PDE solvable by the method of characteristics. To obtain unique solutions,
we have to prescribe the function value of G on some curve ⌃ ⇢ R2. Let us pick the curve
⌃ := {(x, y) : x = y} (of course, other curves can be chosen) and suppose G(x, y) = G0(x) on
⌃ for some function G0 : R! R. Then, on the characteristic

(129)
d

ds
(x(s), y(s)) = F (x(s), y(s))

we have

(130)
d

ds
G(s) ⌘ d

ds
G(x(s), y(s)) = �.

We can solve (129) and (130) to get

(131) x(s) =
x20

x0 � sy0
, y(s) =

x20y0
(x0 � sy0)2

, G(s) = �s.
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It turns out in this case that the characteristics do not cross and, hence, we can invert the
expressions for (x(s), y(s)) to get

(132) x0(x, y, s) =
x2

x+ sy
, y0(x, y, s) =

x2y

(x+ sy)2
.

Backtracking, we can find the time s at which the characteristics cross ⌃. By setting x0 = y0
to solve for s = s(x, y), we get

(133) s(x, y) =
y � x

y

and so

(134) x0(x, y, s(x, y)) = y0(x, y, s(x, y)) =
x2

y
.

Therefore, we have the solution

G(x, y) = G0(x0(x, y, s(x, y))) + �s(x, y)

= G0

✓

x2

y

◆

+ �

✓

y � x

y

◆

and, hence,

(135) g(x, y) = e
G

0

(x
2

y

)+�( y�x

y

)

with G0 : R! R an arbitrary C1(⌃) function. In other words, we have a family of eigenfunc-
tions indexed by a function G0, all with the same eigenvalue �.

B.2.2. Two-dimensional spatial domain, Example 2. As a second example, we take

(136) F (x, y) = (ax, by).

As before, we can take eG(x,y) = g(x, y) and solve

(137) rG · F = �.

The characteristic equation solutions are

(138) x(s) = x0e
as, y(s) = y0e

bs,

which inverts to

(139) x0(x, y, s) = xe�as, y0(x, y, s) = ye�bs.

It remains to define a curve on which we assign the function values. We consider

(140) ⌃ =
n

x, y : x2 + |y|
2a

b = 1
o

.

Then all characteristics emanating from ⌃ (for s 2 R) cover all of R2\ {0}. In particular, we
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find the crossing time s(x, y) by solving [x0(x, y, s)]
2 + |y0(x, y, s)|

2a

b = 1, which gives

(141) s(x, y) =
1

2a
log(x2 + |y|

2a

b )

and

(142) x0(x, y, s(x, y)) =
x

q

|y|
2a

b + x2
, y0(x, y, s(x, y)) =

y

(x2 + |y|
2a

b )
b

2a

.

Hence, the general solution is

G(x, y) = G0(x0(x, y, s(x, y)), xy(x, y, s(x, y))) + �s(x, y)

=
�

2a
log(x2 + |y|

2a

b ) +G0

0

@

x
q

x2 + |y|
2a

b

,
y

(x2 + |y|
2a

b )
b

2a

1

A ,

which gives

(143) g(x, y) = (x2 + |y|
2a

b )
�

2a g0

0

@

x
q

x2 + |y|
2a

b

,
y

(x2 + |y|
2a

b )
b

2a

1

A ,

where g0 : ⌃! R is an arbitrary C1(⌃) function.

B.3. Numerical construction of the initial set. The solution to the PDE of section B.2
with the method of characteristics requires an appropriately chosen codimension-one initial
set ⌃ ⇢ X in the state space, which is everywhere transverse to the flow. The initial set
can be a level set of an eigenfunction if the associated eigenvalue has a nonzero real part.
The requirement of starting with an eigenfunction to construct other eigenfunctions (you
got to have money to make money!) through the PDE might seem restrictive, but Laplace
averages provide a means to find such a level set by numerical continuation, circumventing the
e↵ort to construct the initial eigenfunction over all of the state space. Laplace averages are
eigenfunctions f⇤ of the Koopman operator [23], and are defined when given an observation
function f : X! R and the eigenvalue � associated with the eigenfunction. Then,

(144) f⇤(x) :=

Z

1

0
(f � S

t

)(x) exp(��t)dt,

if the integral exists. To construct a level set of this eigenfunction, we proceed through
numerical continuation, given a point x0 in the state space X. First, we compute the absolute
value of the Laplace average at the starting point, |f⇤(x0)| = c. This value fixes the level set

L
c

= {x 2 X : |f⇤(x)| = c},

the connected part of which can now be constructed through numerical continuation. For un-
stable fixed points, the Laplace average has to be computed backwards in time [23]. Figure 10
shows a level set, constructed through numerical continuation, close to the fixed point of the
van der Pol system (see (106)) at µ = 0.5.D
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Figure 10. Black line: Level set of an eigenfunction of the van der Pol system (106), computed through
Laplace averaging and numerical continuation, starting at the point x

0

(red cross). The colored contour lines
show the level sets of the eigenfunction computed on the whole domain shown, to verify that the numerical
continuation successfully found one of them.

Appendix C. Example of problems in matching due to nontrivial geometric multiplicity.
The nontrivial geometric multiplicity of the Koopman eigenvalues poses a problem in the
context of matching systems. Let us consider the example in Appendix B.2.2. Suppose that
we have two systems both with dynamics F (1) = F (2) = [ax, by]T . We have, from before, the
general solution of the eigenfunction

(145) g(x, y) = (x2 + |y|
2a

b )
�

2a g0

0

@

x
q

x2 + |y|
2a

b

,
y

(x2 + |y|
2a

b )
b

2a

1

A ,

where g0 : ⌃ ! R is an arbitrary C1(⌃) function. Now, notice that for any g0, g is an
eigenfunction with eigenvalue �. Moreover, both dynamical systems (1) and (2) have eigen-
functions of this form. Therefore, if we ignore this nontrivial geometric multiplicity and pick,
say, g0 (x, y) = 1 for system (1) and g0 (x, y) = x for system (2), we would have the stacked
vector valued functions (cf. Cor. 2)

G(1) (x, y) =

"

⇣

x2 + |y|
2a

b

⌘

�

1

2a

,
⇣

x2 + |y|
2a

b

⌘

�

2

2a

#

T

,

G(2) (x, y) =

2

6

6

4

x
⇣

x2 + |y|
2a

b

⌘

�

1

2a

q

x2 + |y|
2a

b

,
x
⇣

x2 + |y|
2a

b

⌘

�

2

2a

q

x2 + |y|
2a

b

3

7

7

5

T

.

Obviously, G(2),�1 � G(1) (x, y) 6= (x, y).
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[20] Y. Lan and I. Mezić, Linearization in the large of nonlinear systems and Koopman operator spectrum,
Phys. D, 242 (2013), pp. 42–53.

[21] A. Lasota and M. C. Mackey, Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics, Appl.
Math. Sci. 97, Springer, New York, 1994.

[22] Q. Li, F. Dietrich, E. M. Bollt, and I. G. Kevrekidis, Extended dynamic mode decomposition with
dictionary learning: A data-driven adaptive spectral decomposition of the Koopman operator, Chaos,
27 (2017), 103111, https://doi.org/10.1063/1.4993854.D

ow
nl

oa
de

d 
07

/1
1/

18
 to

 1
28

.1
53

.1
3.

11
9.

 R
ed

ist
rib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls/
oj

sa
.p

hp



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1960 E. M. BOLLT, Q. LI, F. DIETRICH, AND I. KEVREKIDIS
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