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In this paper, we investigate the transport and mixing process of the batch mixers with two
different configurations, the centered-blade and offset-blade mixers, by using a dynamical system
approach. The 2-D velocity fields of the mixers measured using Particle Image Velocimetry (PIV)
are used to identify the Lagrangian coherent structures (LCSs). The results show that the LCSs
separate the physical space into two portions. In the case of the center-blade mixer the portion
bounded inside the LCS experiences a relatively slow mixing relative to the portion outside of
the LCS boundary. However, when the blade position is located near the wall, the LCS becomes
more complicated but it still separates regions of fast mixing from a slower one. We develop
a heuristic dynamical system model of our mixers to understand how the vorticity strength at
the blade tips influences the variation of the LCSs. Finally, we define an appropriate notion of
mixing to study the mixing rate of our mixing devices.
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1.

The Navy has an expressed interest in increasing
the safety of its shipboard energetic materials (i.e.
explosives, propellants, pyrotechnics). This desire
has been driven by past accidents involving ener-
getic materials, such as the USS Forrestal fire in
1967. The safety of such materials depends upon
both the components in the formulation as well
as in the uniformity of the mixing during produc-
tion. In the mixing process of solid particles, which
can be energetic crystals, solid oxydizers, or solid
fuels, there is a need for uniform distribution within
a highly viscous polymer. Like many other poly-
mer based materials, energetic materials are often
manufactured using batch (e.g. planetary) mixers.
Batch mixers, which are similar to food mixers,
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are the primary method for the processing of ener-
getic materials in the United States because they
offer several advantages including: the possibility
for long residence times (which increase the poten-
tial for uniform mixing), low damage potential to
the energetic crystals, and the ability to add multi-
ple ingredients relatively simply during processing.
These advantages are balanced by the inherent
drawbacks to a batch mixing process: inconsistent
mixture quality, residual voids and fissures, lower
allowed material viscosity which limits the solids
that can be loaded into the mixture, limited pot life
of the material being mixed, and the need for the
use of environmentally hazardous solvents. While
the use of batch mixers in industrial applications
has a long history, the understanding of the physics
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of mixing in these devices is limited. The flows are
highly viscous, non-Newtonian, and particle laden
which make them difficult to study. The experimen-
tal study of these devices is further complicated
by complex geometries, and device scaling issues.
Recent interest in developing more efficient, con-
trollable mixing processes has focused attention on
developing a better understanding on the physics of
these devices. To facilitate improvements in designs
and processes both experimental and computational
approaches have been utilized. The development of
computational tools is attractive in that such tools
allow for relatively rapid and simple changes to
both geometry and operating conditions to deter-
mine optimal mixing protocols. However, the devel-
opment of computational tools has been hampered
because of a lack of experimental data for model
development and comparative validation.
Experimental work on batch mixers is some-
what limited [Zhou et al., 2000; Tanguy et al.,
1996; Youcefi et al., 1997; Bohl, 2007]. Recently
researchers have begun to apply nonintrusive opti-
cal techniques to better understand the flow fields of
industrial mixing devices [Bohl, 2007; Jaffer et al.,
2000; Bakalis & Karwe, 2002; Yoon et al., 2005],
however, there continues to be a lack of fundamental
understanding of the fluid motions and mixing pro-
cesses. The current work was undertaken in support
of the development of computational tools for the
modeling of low Reynolds number mixing devices.
The goals of the experimental work were to: (1) map

Fig. 1.

out local flow properties (e.g. the velocity, vorticity)
to identify the fluid structures and inferred mixing
potential in a simplified batch mixer, (2) determine
the effects of Reynolds number on the flow struc-
ture, and (3) support the development of computa-
tional tools for the processing of energetic materials
being carried out in parallel with this study. In the
first phase, the code development motion of New-
tonian fluids in a 2D flow field is to be calculated.
This phase of the code work motivated the current
work which investigates the flow field of a simple 2D
mixer in a Newtonian fluid at low Reynolds number.

2. Experimental Methods

Details of the experimental methods can be found
in [Bohl, 2007]. Figure 1 shows a schematic of the
experimental apparatus. A clear acrylic cylindrical
flat bottomed container was constructed with an
inside radius of 7, = 6.93 cm. A flat stainless steel
blade was placed in the cylinder such that the long
axis of the blade was parallel to the z-axis of the
container. The blade had a width of r, = 2.99 cm
(0.437,,), a thickness of 0.14 cm (0.027,,) and could
be placed at various locations (i.e. offsets) with
respect to the wall. The blade was rotated about
its long axis by a DC motor to drive the fluid
motion. The data presented in this paper used glyc-
erin as the working fluid. The Reynolds number
was Re = 9, with the Reynolds number defined as
Re = 2fr2 /v where f is the rotational frequency
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Experimental mixing apparatus.



Analysis and Modeling of an Exzperimental Device by Finite-Time Lyapunov Exponent Method 995

of the mixing blade. The geometry was chosen as
a simplified first order model of a batch mixer to
provide simple, well-defined boundary conditions
that could be used to aid model development and
provide validation data for the developed computa-
tional tools.

The 2D velocity fields were measured using Par-
ticle Image Velocimetry (PIV). Briefly, PIV relies
on seed particles in a fluid that scatter light from
a thin laser sheet created in the plane of interest.
These particles may exist within the fluid naturally
or be added to the fluid before measurements are
made. The particles in the flow are imaged twice
with a short, known delay between images. The dis-
placement of the particles, or groups of particles, is
determined via pattern matching techniques and a
local velocity vector is calculated by dividing the
displacement by time between images. The veloc-
ity can be determined at discrete points over the
entire image and the 2D velocity field in the plane
of the laser sheet can be assembled. Other kinematic
quantities, such as vorticity, strain and stress, can
then be calculated using the planar velocity field. A
detailed discussion of PIV can be found in [Adrian,
2005].

In the current work, the working fluid was
seeded with 10 micron silver coated glass spheres.
Light was provided by a 4 Watt Spectra Physics
Argon Ion laser. The mixing blades were painted

y (cm)

with flat black paint to reduce the reflection of
the laser sheet in the measurement region. The
laser light was pulsed using a NM Laser Products
fast mechanical shutter. This shutter had a mini-
mum closed-open-closed cycle time of 1 msec. This
was short enough that the imaged particles did
not experience blurring during the exposure time.
Images were capture using a Cooke Corporation
Sensicam-QE CCD camera (8 bit, 1376 x 1040 pix-
els). The flow was viewed through the clear bottom
of the container to provide data in a plane perpen-
dicular to the long axis of the mixing blade (i.e. the
r—6 plane).

The displacement of groups of particles was
determined using the direct correlation technique
described in [Gendrich & Koochesfahani, 1996].
Each FOV was approximately 8.7c¢cm X 12cm in
size (0.0087 cm/pixel). Delay times between the
images were chosen to give maximum displacements
of nominally 10 pixels and the source windows used
in the correlation technique were 45 x 45 pixels
with a 50% overlap. The error in the velocity mea-
surements is limited by the ability to measure the
displacement of the particles between images. The
correlation technique used to process the data in
this work is well documented and has a 95% uncer-
tainly level of 0.1 pixel which corresponds to an
uncertainty in the instantaneous velocity measure-
ments of 0.08 cm/sec.

3
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Fig. 2.

Representative phase averaged velocity and vorticity fields from PIV data. Case shown is from the centered data.
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The flow field under investigation was periodic
in nature, with the periodicity linked to the motion
of the mixing blade, which allowed the data to be
phase averaged with respect to the motion of the
blade. The blade phase, was defined such that 1/2
rotation was given for ¢ = 0 to 1 (i.e. ¢ ranged
from 0 to 2 for a complete blade rotation). This
allowed data from multiple experiments and multi-
ple Fields of View (FOV) to be combined to form
a single data set. Phase averaging and the combin-
ing of multiple data sets allowed multiple individual
measurements to be averaged for a single measure-
ment location which reduces the estimated error in
the presented data by a factor of 2 to 0.04 cm/sec.
Local vorticity was calculated using a second order
finite difference method using the spatially nearest
velocity measurements. Vorticity error values were
estimated to be 0.38 and 0.16 sec™! for the high and
low frequency cases respectively. All data presented
in this work are from PIV measurements taken at
the mid-height of the fluid column. Data not shown
here indicate that the flow field was independent of
the z-location over the middle half of the mixing
blade.

Representative phase averaged velocity and
corresponding vorticity fields from the PIV data are
shown in Fig. 2 for the centered blade case. Of note
in this figure is the strong vortex that forms near
the tip of the blade and travels with the blade as
it sweeps through the fluid. A second region of vor-
ticity forms along the blade surface and along the
container bounding wall. A region of reverse flow is
observed between the tip vortex and the bounding
wall. Detailed discussion of this flow field can be
found in [Bohl, 2007].

3. Transport and Mixing
in the Mixers

In this section we demonstrate an analysis of trans-
port and mixing for our rotating flat plate mixer
by approximating the Lagrangian coherent struc-
ture (LCS) based on the finite-time Lyapunov expo-
nent (FTLE) [Haller & Poje, 1998; Haller, 2000,
2002]. For a steady flow, the LCSs, extracted from
the FTLE field, approximate stable and unstable
invariant manifolds of a hyperbolic fix point, which
separate regions exhibiting qualitatively different
activities. In general, LCSs have one less dimen-
sion than the dimension of a domain of a dynam-
ical system and they constitute pseudo-barriers to
transport and mixing; the flux of particles across

an LCS approaches zero as the integration time for
computation of the FTLE becomes larger [Shad-
den et al., 2005, 2006]. We intend to use these ana-
lytical tools to quantify mixing in various notions
to study mechanisms enhancement and/or inhi-
bition of mixing in future work. One of practi-
cal approaches to locate LCSs is to compute the
FTLE of a time-dependent velocity field, the local
stretch rate over a finite-time interval [Haller, 2000,
2002]. We consider a two-dimensional velocity field
on M C R?

o = ()
W )
= = @),

where v = (u(x,y,t),v(z,y,t)) is at least C2(M).
Hence we can integrate this velocity field to obtain
the flow map ¢, : x(t) — x(t + 7). The finite-
time strain tensor of the velocity field along the
trajectory x(t) is given by the the symmetric, time-
dependent, 2 x 2 matrix

do.x(t)* (1)
dx dx (2)

where A* denotes the adjoint of A. We assume that
on some finite time interval, the minimum and max-
imum eigenvalues, Apin(7) and Apax(7), of J; sat-
isfy the condition:

In Apin(7) < 0 < In Apax (7). (3)

Iy =

This condition implies that there are both compres-
sion in one direction and expansion in the other
along the trajectory. This type of trajectory of a
time dependent velocity field is refereed to as a
hyperbolic trajectory [Wiggins, 2003]. Also, we recall
that the spectral norm of the Jacobian d¢,x(t)/dx
is given by

H dorXO|” _ 5 () (4)

The FTLE, which represents the maximum stretch-
ing at the point x(t) along the trajectory with dura-
tion time 7, is given by

1

o (x(t)) = ] In

Amax(T)- (5)

One can define repelling and attracting LCSs
according to [Haller, 2002; Shadden et al., 2005]
as the maximum ridges of FTLE computed in for-
ward time (7 > 0) and backward time (7 < 0),
respectively.
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The PIV output provides discrete measure-
ments of the velocity field over a plane at finite
times which can be used to compute the FTLE
based on Eq. (5). However, an interpolation is
needed to integrate points where the velocity field is
not given in the PIV data. Furthermore, if the time
step for the integration is smaller than the dura-
tion of two consecutive experimental time steps, we
have to assume that the variation of velocity fields
between two consecutive velocity data is small so
that an interpolation in the time domain is also
suitable. Conditions for the existence of finite-time
hyperbolic trajectory can be found in [Haller &
Poje, 1998].

Figure 3 shows snapshots of the forward-time
FTLE of the mixer with the blade positioned at the
center. We set the integrating time to half of a full
rotation, 7 = 2.1342 seconds. Note that one period
of the vector field here is half of a full revolution
of the blade since there is no distinction between
the two tips of the blade. Numerically, at each time
t, we integrate samples of grid points by a fourth-
order Runge-Kutta method to find their positions
at time t47. The cubic method is used for an inter-
polation during the integration. Then, we compute
the spatial gradient of the flow d¢,x(t)/dx by a
central-difference scheme at each initial grid points.
The FTLE at time t for each initial point can be

x(cm)
(c)

Fig. 3.

x(cm)
(d)

The forward-time FTLE field of the mixer with the centered blade is computed at different time ¢ with the integrating

time 7 = 64At, where At = 0.033 seconds. From (a) to (f), the FTLE is computed at time ¢t = At, t = 10At, t = 20A¢t,
t = 30At, t = 40At and t = 60At, respectively. The initial particles are placed to straddle the LCS and they are advected to
demonstrate that the resulting LCSs serve as the transport barrier.
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Fig. 3.

evaluated according to Eq. (5). The SVD is used to
compute the eigenvalues of Eq. (2).

The LCS of the flow can be defined as ridges
of the FTLE field as shown in Figs. 3 and 4. We
observe the Lagrangian property of the LCS by trac-
ing the trajectory of particles straddling the LCS.
One can see that these particles do not transverse
the LCS. In order to understand the motion dif-
ferences between the two regions separated by the
LCS, we use the particle tracers shown in Fig. 5
to visualize the geometry of the flow. This further
suggests that the repelling LCS divide the space
mainly into two regions; the region surrounded by
the repelling LCSs experiences a very low degree
of mixing whereas a higher degree of mixing occurs
in the “outside” region. Furthermore, we compute

(Continued)

the backward-time FTLE of the flow of the same
mixer. Recall that the backward-time FTLE reveals
to us the attracting LCSs, which is a finite-time
version of an unstable manifold of a steady flow.
Therefore, the particles tend to accumulate along
the attracting LCSs as observed in Fig. 4. With the
aid of these forward and backward time FTLE, we
see that the stable and unstable of periodic points
form a trapping region (Fig. 6) that traps fluid par-
ticles inside itself and hence mixing has a potential
to occur only between the particles in the trapping
region. Notice that the boundary of the trapping
region moves along with the rotation of the blade
tips and also that the center point of the mixer is a
hyperbolic fixed point that is responsible for mixing
inside the trapping region.

x{cm)

(b) (c)

xfcm)

Fig. 4. The backward-time FTLE field of the mixer with the centered blade is computed at different time ¢ with the integrating
time 7 = 64At as in Fig. 3. From (a) to (c), the FTLE is computed at time ¢t = At, t = 60At and ¢ = 7 + 60At, respectively.
Here we observe that the initial particles are colored by the magenta accumulated along the ridge of the FTLE field. Thus the
ridge of the backward-time FTLE field may be regarded as an unstable manifold.
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Fig. 5. Snapshots of particle tracers for the mixer with the centered blade. Two sets are particles, A (green) and B (magenta)
are initially separated to occupy half of the physical space as shown (a). The initial particle distribution is then allowed to
change as dictated by the flow field for 1, 2, 3, 4, and 5 periods, (b)—(f), respectively.

Pz
Fig. 6. A heuristic rendering to a stable and unstable hete-
P roclinic tangle made of the mixing system inferred from the
observed time-dependent LCS structures. The periodic points
P; and P, correspond to the blade tips. The forward and
backward time FTLE fields in Figs. 3 and 4 suggest that the
transverse intersection by the stable and unstable manifolds
of P; and P» generate a trapping region that bounds the tra-

jectories of particles within this cell. Note that the mixing

inside the trapping region is a result of the hyperbolic fixed
point at the center of the mixer.
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We point out that the velocity field of our
mixer may be considered as a periodically per-
turbed Hamiltonian system. For such a system, it is
well-known that the stable and unstable manifolds
have an infinite length in general [Wiggins, 2003].
Therefore, we should expect the resulting LCS to
be revealed more as the integrating time increases.
However, this requires higher resolutions of sam-
ple points and hence a longer computational time,
see Fig. 7. One can see stretching and folding of
“stripes” in the mixer, which suggests a need of a
larger number of grid points to compute the FTLE
as the integrating time is increased.

We observe that FTLE fields for the mixer with
the offset blade, Fig. 8, reflects a high degree of
stretch near the wall where the tips of the blade
rotate. Again, the LCS occurs on the boundary
that separates strong and weak mixing as observed
from the tracer plot in the figure. However, the
mixed region in this case is smaller than that of

the centered-blade mixer and it is the mixed region
that is almost enclosed by the LCS instead of the
region with a weak mixing as in the case of the cen-
tered blade. Also, we notice a vanishing of the LCS
as one of the blade tips rotates away from the
wall and it reappears when the other tip rotates
toward the wall. Again, we observe the numeri-
cal displacement of the tracers to further under-
stand the transport. It is shown in Fig. 9 that the
LCSs in Fig. 8 separate the region of a relatively
higher degree mixing within the sweep of the blade
from that of a lower degree of mixing. This is dif-
ferent from the case of the centered-blade mixer
in which the region bounded inside by the LCSs
experience a lower degree of mixing than the other
region. Furthermore, the particle striation in this
case occurs in a more intricate fashion with a faster
mixing rate than in the case of the centered-blade
mixer. However, in this case the amount of particles
that are mixed together is clearly less than that of

Fig. 7. Compute the FTLE fields with different integrating times, 7 = T, 7 = 2T and 7 = 47T, respectively, where T is the

time for one period.

¥ (em)

Fig. 8.
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The forward-time FTLE field of the mixer with the offset blade is computed at different times ¢ with the integrating

time 7 = 64At. From (a) to (f), the FTLE is computed at time t = At, t = 10At, t = 20At, t = 30At, t = 40At and t = 50At,

respectively.
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Fig. 8. (Continued)
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(f)
Snapshots of particle tracers for the mixer with the centered blade. Two sets are particles, A (green) and B (magenta)

are initially separated to occupy half of the physical space as shown (a). The initial particle distribution is then allowed to
change as dictated by the flow field for 1, 2, 3, 4, and 5 periods, (b)—(f), respectively.

Fig. 9.
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the centered-blade mixer. We verify these mixing
behaviors again using the definition of mixing in
Sec. 5.

4. Mathematical Model of the Mixers

This section is aimed to define a mathematical
model of our mixing devices and we use it to inves-
tigate certain salient features of the FTLE fields
of the mixing devices. We suppose that at time
t = 0 the velocity field is constructed from a vortic-
ity field under assumption of two-dimensional flow
that the vorticity field is given by a vertical vortic-
ity, w = w,. Hence, we solve the Poisson’s equation
of the stream-function:

AH = —w,

u=0 on .

on €,

(6)

Here Q is the circular boundary of the mixer
(radius=7.0) and H is the Hamiltonian of the
velocity field, that is,

de  OH(z,y)

o )
dy _ OH(z,y)
dt ox

We then recast the above time-independent sys-
tem to a time-dependent system in a rotating frame
using the change of coordinate

x cost —sint] /2’ @®)

y/) |sint cost| \y' )~
Now that we have developed a mathematical
model for the mixer, we have to determine the vor-

ticity w, that is well suited to replicate the impor-
tant feature of the FTLE field of our mixing devices;

that is the pseudo-barrier observed in the preceding
section. We assume that the vorticity field w, is
given by

w, = Gy — C(G1 + Ga), (9)
where
Go = exp(—0o(00,.2% + 00,4y°))*" (10)
and

Gl,z = eXP(—01,2(01x,2z(ﬂf - 51,2)2 + Uly,2yy2))2'

(11)
Here C' determines the relative magnitude of the
vortices at the tips of the blade represented by the
bivariate Gaussian function G; and G5. The super-
Gaussian function is used to replicate the vorticity
due to the blade. Note the Gy becomes a bivari-
ate Gaussian function when m = 1. We vary the
parameter C to observe changes in the FTLE and
fix the other parameters to m = 2,09 = 100,00, =
0.4, 00,y = 2.5,0’1 = 02 = 400, 51 = 05, So =
—0.5,01; = 02, = 1.0 and o1y = o9y = 0.5.
Our specific choice of the form of Egs. (10) and
(11) and the values of the parameters is justified in
Figs. 10 and 11, remembering that our goal here is
to develop a model that contains the main topologi-
cal features of the true system, which is simplifying
but not necessarily predictive. Figures 10 and 11
show a comparison between the vorticity and veloc-
ity field of the given data and those numerically
computed by Eq. (7).

Figure 12 illustrates the change in FTLE field
at time ¢t = 0 as C is varied. First, we notice that the
FTLE fields of our model have a similar LCS, or a
transport pseudo-barrier, to that of the experimen-
tal data presented in the preceding section. Note
that the FTLE fields of our numerical model also

(b)

Fig. 10. The vertical vorticity field, omegaz, of (a) experimental data and (b) analytic model using Eq. (9) with C' = 2.0.
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(a) (b)

Fig. 11. The in-plane velocity field and representative streamlines for (a) experimental data and (b) analytical model with
C = 2.0. Note the spatial dimensions have been normalized by the radius of the cylinder.

x (cm) x (cm) x (cm)
(d) (e) ()

Fig. 12. The forward-time FTLE field at time ¢ = 0 of the model Eq. (7) in a rotating frame. The parameter C' in the
vorticity field Eq. (9) is varied to observe the change in the FTLE field. (a) C' = 0.5, (b) C' = 1.0, (¢) C = 1.5, (d) C = 2.0,
(e) C =2.5, and (f) C = 3.0.
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(d)

Fig. 13.

X {cm)

X (cm)
()

The backward-time FTLE field at time ¢ = 0 of the model Eq. (7) in a rotating frame. The parameter C' in the

vorticity field Eq. (9) is varied to observe the change of the FTLE field. (a) C' = 0.5, (b) C = 1.0, (¢) C = 1.5, (d) C = 2.0,

(e) C =2.5, and (f) C = 3.0.

rotate in the same fashion as observed in the sim-
ulation of the real data and so we show here only
the FTLE field at time ¢ = 0. It is clear that the
magnitude of the vortices near the tips of the blade
are responsible for the strong barrier, which is in
the region with large FTLE. Now, we observe the
backward-time FTLE field of the model illustrated
in Fig. 13. Again, as the magnitude of the vor-
tices increases, the region with a large backward-
time FTLE becomes more evident. Recall that the
backward-time LCS signifies a generalization of an
unstable manifold.

5. Mixing

For a study of mixing, consider first a measure
of regions with mixing of the mixer with a cen-
tered blade. We initially divide the phase space
into two distinct regions A and B as seen in
Fig. 5(a). We will then proceed in a fashion closely

motivated by the definition of a mixing system,
which demands relative measures become asymp-
totically distributed [Sturman et al., 2006]. We
identify the particles initially located in A species
Sa, and similarly Sy for those particles in B. We
then partition the space M into disjoint regions
Riyi = 1,...,Ng, such that M C JNE R;. Let
S = {R; : R; contains both species S, and Sp}.
Finally, we define the ratio of the regions includ-
ing both S, and S, by

Z n(R;)

_ R;€S

DR

where the measure u can be a Lebesgue (volume)
measure. Clearly, the quality of mixing depends on
the initial topology of sets A and B. For the sets
A and B initialized as in Fig. 5(a), the ratio R at

R (12)



Analysis and Modeling of an Ezperimental Device by Finite-Time Lyapunov Exponent Method 1005

0.8

07

06
05 S
o 0.4
03
02

01

0 5 10 15 20 25
Period
(a)

Fig. 14.
(b) The mixer with an offset blade.

each period is given in Fig. 14 for different scales of
Np. These results agree with the behavior observed
from the LCSs and tracers of the mixers in Sec. 3.
Although the mixing rate of the offset-blade mixer
is faster than that of the centered-blade, which can
be observed by comparing the slope of the ratio R
between Figs. 14(a) and 14(b) at the early periods,
the ratio R becomes saturated since only the small
region surrounded by the LCS, see Figs. 8 and 9,
experiences a high degree of mixing.

6. Conclusion

We have demonstrated an application of the FTLE
analysis for studying the transport behavior and
the physics of mixing for our mixing devices.
Particularly, we have extracted the time-varying
Lagrangian structures of the mixing devices with
different blade locations, which inhibit (passive)
particle transport across the structures. Roughly
speaking, the fluid particles initially separated by
the LCS are not mixed with each other. Further-
more, we have shown by observing the numerical
displacement of the tracers that the LCSs actually
separate the region with a high degree of mixing
from the region with the lower degree of mixing. By
visualizing the LCSs and observing the transport
behavior of the flow, we suggest a heuristic model
of the trapping region formed by the transverse
intersection of the stable and unstable manifolds of
the periodic points, which physically corresponds

0.5
0.45
0.4}
0.35
0.3

@ 0.25 N_=3200
0.2} - N, =7200
0.15 —~~N_=12800
0.1}
0.05 [/
0 5 10 15 20 25

Period
(b)

The plot of the ratio R in Eq. (12) at each period using different scales of Ng. (a) The mixer with a centered blade.

to the blade tips. In addition, we have suggested a
numerical model for our mixers and we have used
it to study how the vorticity strength at the blade
tips influences the LCSs. The results show that as
the vorticity strength increases the LCSs become
more evident, i.e. the heights of the FTLE ridges
become larger. This results in more inhibited trans-
port across these large pseudo-barriers. Finally, we
have defined the notion of mixing that is appropri-
ate to our work to investigate the mixing rate of
two different mixing devices. We have shown that
the results, based on this definition of mixing, agree
with our observation of LCSs and particle tracers.
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