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A basic systems question concerns the concept of closure, meaning autonomy (closed) in the sense
of describing the (sub)system as fully consistent within itself. Alternatively, the system may be
nonautonomous (open), meaning it receives influence from an outside subsystem. We assert here
that the concept of information flow and the related concept of causation inference are summarized
by this simple question of closure as we define herein. We take the forecasting perspective of Weiner-
Granger causality that describes a causal relationship exists if a subsystem’s forecast quality depends
on considering states of another subsystem. Here, we develop a new direct analytic discussion, rather
than a data oriented approach. That is, we refer to the underlying Frobenius-Perron (FP) transfer
operator that moderates evolution of densities of ensembles of orbits, and two alternative forms
of the restricted Frobenius-Perron operator, interpreted as if either closed (deterministic FP) or not
closed (the unaccounted outside influence seems stochastic and we show correspondingly requires
the stochastic FP operator). Thus follows contrasting the kernels of the variants of the operators,
as if densities in their own rights. However, the corresponding differential entropy comparison by
Kullback-Leibler divergence, as one would typically use when developing transfer entropy, becomes
ill-defined. Instead, we build our Forecastability Quality Metric (FQM) upon the “symmetrized” vari-
ant known as Jensen-Shannon divergence, and we are also able to point out several useful resulting
properties. We illustrate the FQM by a simple coupled chaotic system. Our analysis represents a new
theoretical direction, but we do describe data oriented directions for the future. Published by AIP
Publishing. https://doi.org/10.1063/1.5031109

Causation inference in the sense of G-causality (Granger
causality) refers to the concept of reduction of variance.
That is, to answer the basic question, does system X allow
for sufficient information regarding forecasts of future
states of system X or is there improved forecasts with
observations from system Y. If the latter is the case, then
we declare that X is not closed, as it is receiving influence,
or information, from system Y. Such a reduction of uncer-
tainty perspective of causal influence is not identical to
the concept of allowing perturbations and experiments on
two systems to decide what changes influence each other.
Methods, such as Ganger causality, transfer entropy, cau-
sation entropy, and even cross correlation method, are
premised on the concept of alternative formulations of
the forecasting question, with and without considering
the influence of an external state. Thus, the idea is to
decide if a system is open or closed. Here we assert that
the underlying transfer operator, called the Frobenius-
Perron operator, that moderates not the evolution of single
initial conditions but the evolution of ensembles of ini-
tial conditions allows for a direct and sensible analysis of
information flow to decide the question of open or closed.
Note that a restricted form of the transfer operator to a
subsystem, queried either with or without the states of the
other subsystem(s), allows for a new analytically tractable
formulation of the question of information flow. In this
philosophy, the exterior system becomes an “unknown”
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influence onto the interior system. Therefore, it becomes

formulated as a stochastic influence with a corresponding
stochastic transfer operator. In this philosophy, it becomes
clear that even though the exterior system may be deter-
ministic, it appears stochastic within focus on the interior
system. As an explicit measurement for this concept, we
build a Forecastability Quality Metric (FQM) based on
Jensen-Shannon divergence, applied directly to alterna-
tive forms of the transfer operator, noting that a transfer
entropy like application of Kullback-Leibler divergence
would be impossible. However, this choice of metric like
measurement allows for several especially elegant proper-
ties that we annunciate here. Application is described and
future empirical directions are described.

I. INTRODUCTION

We assert that a basic question when defining the con-
cept of information flow is to contrast versions of reality for a
dynamical system. Either a subcomponent is closed or alterna-
tively there is an outside influence due to another component.
The details of how this question is posed and how it is decided
gives rise to various versions of concepts of information
flow, which are related to causation inference. This includes
the celebrated Nobel work1 behind Granger Causality2–4

and closely related by Wiener.5 The popular transfer
entropy,6,7 follows this logic, but the related causation entropy
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furthermore uncovers the differences between direct and indi-
rect influences.8–11 Finally we mention direct forecast meth-
ods include Convergent Cross-Mapping method (CCM).12 We
shall generally interpret the problem causation inference, as
estimated from observed data, to relate to the question of
reduction of uncertainty associated with forecasts; that is, we
ask if a subcomponent may be forecasted well on its own, or
rather if a fuller model allowing for external variables pro-
vides for better forecasts. If the latter, then the subsystem
is not closed since it must be receiving outside information.
Information flow as a concept of reduction of uncertainty is
often discussed as related to concepts of causation. Causa-
tion inference has overlapping philosophical roots,13 and we
have also allowed our own previous writings on these top-
ics to overlap these distinct concepts, but here in this paper
we will simply discuss information flow as a form of reduc-
tion of uncertainty. In fact, there is a beautiful connection
between Granger causality and transfer entropy in the spe-
cial case of Gaussian noise.4 Furthermore, in Ref. 4 there is
distinguished the concept of Weiner-Granger causality (G-
causality)2,5 that between two inter-dependent variables, X
and Y , in a statistical sense “Y G-causes X ,” if measurements
of Y can improve forecast of future values of measurements of
X better than would be possible by measurements of X alone;
this is what we mean by the reduction of uncertainty and this
is the nonintervention philosophy that we will maintain here.
This perspective is in contrast to the related but distinct con-
cept of “physically instantiated causal relationship” in a sense
that can only be truly uncovered by perturbations (also called
interventions) to the system, as the statistics of causation by
interventions and observations described in Pearl’s extensive
work enunciates.14

Most studies on information flow are in terms of data and
the statistical inference concepts cited above,2–4 sometimes
by information theoretic methods.6–11,15–20 Notably, however,
see Liang-Kleeman,21 as a more analytical approach that
involves both the dynamical system and the concept of infor-
mation flow and also leading to transfer operators. There
is an important distinction in approach in that the Liang-
Kleeman approach considers the intervention whereby one of
the variables is held fixed, whereas we consider here the pos-
sible absence of the external variable; as such, our results are
not identical but we do find both questions interesting. Note
also our own prior work relates synchronization as a pro-
cess of sharing information.22 This current work then builds
on Ref. 22 that we refer directly to transfer operators when
describing the degree to which a system may or may not be
open. That we work directly with the transfer operators is per-
haps the most significant difference to previous approaches
leading to transfer entropy, but also we will point out that there
is a nuanced difference how this relates to the associated con-
ditional probabilities, and then correspondingly a necessary
difference in which kind of information divergence may be
used.

In this paper, we describe a new approach formalism
of analysis of the underlying concept of reduction of uncer-
tainty in terms of evolution of densities. The question of how
ensembles (densities) of initial conditions evolve under orbits
of a dynamical system is handled by the Frobenius-Perron

operator that is the dynamical system on the associated space
of densities.7,23 Within this framework of transfer operators,
we may recast the question of information flow by more
rigorously presenting the two versions of the basic question,
which is to decide one of the two alternatives:

• Is the subsystem closed?
• Does the subsystem receive influence from another sub-

component?

Our own previous work considered the relationship of evo-
lution of densities as moderated by the Frobenius-Perron
operator, together with the information theoretic question of
information flow by transfer entropy.7,22 However, the details
of our previous work were discussed in terms of estimat-
ing the associated probability density functions (pdf’s) at
steady state, and furthermore, through estimation of the trans-
fer operator’s action on the space of densities by the famous
Ulam-Galerkin’s methods of projection on to a linear sub-
space, �N , as P : L2(�) → �N ⊂ L2(�) to describe finite
matrix computations. There is a long history to the Ulam’s
method,7,23–33 but this approach generally relies on cover-
ing the space with boxes and estimating probabilities in a
histogram-like fashion at steady state so that the estimations
can be statistically stationary. This current work takes a sig-
nificant departure of the theme of steady state, and we do
so directly within the scope of transfer operators by a new
interpretation of external influences described analytically as
a random variable like term.

A unique outcome of our study is that attempting to use
the Kullback-Leibler divergence, DKL, analogously to how
it is done when developing transfer entropy, but here we
wish to examine directly the kernel of the transfer operator,
leads to an unbounded measure. Instead, we use the so-called
symmetrized version of KL-divergence, called the Jensen-
Shannon divergence, DJS . Not only does this approach fix
an otherwise unpleasant nonconvergence problem, but also it
brings with it several beautiful new properties and interpre-
tations that underlie the theory special to the JS divergence.
With these new interpretations in mind, we call this variant
of information flow, the Forecastability Quality Metric, writ-
ten FQMy→x in analogy to the notation one uses typically for
transfer entropy, Ty→x between subsystem y and subsystem x.

The work presented herein could be considered theoret-
ical in nature, marrying the theories of transfer operators,
statistics, and information theory in a unique way to well
define a concept of information flow in terms defining the dif-
ference between closed and not closed subsystems. Thus in
standing up a new perspective of these questions within the
formal language of these disparate fields, we hope to better
sharpen the general understanding of these important ques-
tions. Nonetheless, we will point out at the end of the paper
directions in which this perspective could be turned into a data
oriented methodology.

II. BASIC PROBLEM SETUP

A most basic version of the discussion of a full system
with subcomponents follows consideration of two coupled
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oscillators:
xn+1 = f1(xn) + ε1k(xn, yn),

yn+1 = f2(yn) + ε2k(yn, xn).
(1)

We might ask if the “x-oscillator” is “talking to” the
“y-oscillator,” and vice versa. Defining the concept of “talk-
ing to” may be made in various forms. Avoiding philosophical
notions, we take the perspective of predictability, by asking if
x variables improve forecasts of future states of y-variables
better than considering just y variables alone, in the sense of
reduction of uncertainty, thus G-causality.

Now we recast the typical symmetrically coupled prob-
lem, Eq. (1), to a general form of partitioned dynamical
systems on a skew product space X × Y ,

T : �X × �Y → �X × �Y . (2)

This emphasizes that the full system is a single dynamical
system where the phase space is a skew product space, so
examples such as Eq. (1) discuss information flow between
the �X and �Y states. In this notation then, the two compo-
nent coupled dynamical systems of the x and y component
variables may be written

T(x, y) = [Tx(x, y), Ty(x, y)], (3)

where
Tx : X × Y → X

xn �→ xn+1 = Tx(xn, yn),

Ty : X × Y → Y

yn �→ yn+1 = Ty(xn, yn).

(4)

In the case of Eq. (1), let

Tx(xn, yn) = f1(xn) + ε1k(xn, yn) and

Ty(xn, yn) = f2(yn) + ε2k(yn, xn).
(5)

The notation x ∈ �X and y ∈ �Y allows that each may be vec-
tor valued and generally even differing dimensionality. We
write � = �X × �Y , but sometimes in the subsequent we
will write � as the phase space of an unspecified transfor-
mation, and these phase spaces will also serve conveniently
as outcome spaces when describing the dynamical systems as
stochastic processes.

III. INFORMATION FLOW AS ALTERNATIVE VERSIONS
OF FORECASTS IN PROBABILITY

Information flow is premised on a simple question of
comparing alternative versions of forecasts, stated probabilis-
tically. We ask the question as to if two different probability
distributions are the same, or different, which can be stated7

P(xn+1|xn) =? P(xn+1|xn, yn), (6)

and if they are different, the degree to which they are different.
This describes a degree of deviation from a Markov-property.
This statement as contrasted to Eq. (32) to come is a key dif-
ference in our measure, the FQM as derived directly from
comparing contrasting version of transfer operator kernels,
versus the transfer entropy (TE) information flow question
highlighted here in Eq. (6).

A. Information flow as transfer entropy

Specifically, the transfer entropy6 measures deviation
from the Markov-property question, Eq. (6) using the
Kullback-Leibler divergence

Ty→x = DKL[p(xn+1|xn)||p(xn+1|xn, yn)], (7)

in terms of the probability distributions associated with the
probabilities of Eq. (6). A useful outcome in using this
entropy-based measure to describe deviation from Markov-
ness is that the answer is naturally describing information
flow in units of bit/second. In subsequent sections, we will
point out problems in the Kullback-Leibler divergence that
are solved by answering the same question with the Shannon-
Jensen divergence instead, with some lovely special prop-
erties to also follow. Generally, the transfer entropy was
defined6 in terms of k-previous states in each variable, but
we take this simplification to single prior states to be asso-
ciated with the related problem of true embedding in delay
variables.34–36

Note that the probability density functions written in
Eqs. (6) and (7) are not generally the same functions. Fur-
thermore, they need not be assumed to be steady state prob-
abilities; this is an important distinction in the course of this
paper as departure from many previous works in information
flow. Instead generally consider them as nonequilibrium func-
tions representing the state of probabilities of ensembles of
orbit states (xn, yn), at time-n, following a random ensemble
of initial states (x0, y0) but observed at time n.

Here, we will keep with the description that the outcome
spaces may be continuous and state the differential entropy
version of a Kullback-Leibler divergence definition for trans-
fer entropy. A general definition that suits our purposes is as
follows. Let outcome space � have a measure μ, so that prob-
ability measures P1 and P2 are absolutely continuous to μ, so
that p1 = dP1

dμ
and p2 = dP2

dμ
, then DKL(P1||P2) may be written

DKL(P1||P2) =
∫

�

p1 log
p1

p2
dμ = −h(p1) −

∫
�

p1 log p2dμ,

(8)
using the standard notation for differential entropy,
h(p1) = ∫

�
p1 log = p1 = dμ. We will allow the abuse of

notation to write the KL-divergence in terms of the pdf’s
as the arguments, DKL(p1||p2). Therefore, when there are
continuous state spaces, let

Ty→x = DKL[p(xn+1|xn, yn)||p(xn+1|xn)]

=
∫

�

p(xn+1|xn, yn)[log p(xn+1|xn, yn)

− log p(xn+1|xn)]d�, (9)

and in this integral, � = Xn × Xn+1 × Yn. The expression for
Tx→y is similar,

Tx→y = DKL[p(yn+1|xn, yn)||p(yn+1|yn)]. (10)

There is, however, a significant technical difficulty with using
the Kullback-Leibler divergence in this way as generally
DKL(p1||p2) is only bounded if the support of p1 is con-
tained in the support of p2.37 This turns out to be untrue in
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a natural interpretation that follows when directly approach-
ing the description of the densities by the kernel of the transfer
operators. This will motivate our fix to the problem by devel-
oping the FQMy→x. Also the usual interpretation to assign
0 log 0

0 = 0 is useful here to emphasize continuity.
At this step, it is important to point out that there is

a significant technical difficulty with using the Kullback-
Leibler divergence in this way as is a theorem that
DKL(p1||p2) is only bounded if the support of p1 is con-
tained in the support of p2.37 This is easy to see since,
if support(p2) � support(p1) where support denotes the
set where the function is nonzero, then there are val-
ues x such that p1(x) log[p1(x)/p2(x)] = p1(x) log[p1(x)] −
p1(x) log[p2(x)], but log[p2(x)] is not defined when p2(x) = 0.
Normally this may not be a problem, for example, in standard
application by transfer entropy, but this important detail turns
out to arise in a natural interpretation of transfer entropy that
follows when directly applying the description of the densities
by the kernel of the transfer operators. This can be seen in the
illustration of example variants of the kernel functions already
in Fig. 2. On the other hand for standard transfer entropy or
also the Liang-Kleeman formalism, the issue does not arise as
by neither approach is the KL-divergence applied to the ker-
nel directly as it is here. This issue will motivate our fix to the
problem by developing the FQMy→x. Also, the usual inter-
pretation, to assign 0 log 0

0 = 0, is useful here to emphasize
continuity.

IV. EVOLUTION OF DENSITIES OF INITIAL
CONDITIONS BY THE FROBENIUS-PERRON
OPERATOR

The evolution of single initial conditions proceeds by
the mapping T : �X × �Y → �X × �Y . But the evolution
of many initial conditions all at once follows evolution of
ensemble densities of many states both before and after the
mapping is applied. The Frobenius-Perron operator is defined
to describe the associated dynamical system for evolution of
densities. First, we review this theory, and then we will spe-
cialize the concepts to both the full problem and the marginal-
ized problem, both considering with and without the coupling
term. What is especially new here is that in the coupled case,
the coupling influence of the other dynamical system enters
in a way that may be interpreted as a stochastic perturbation,
so associated to the stochastically perturbed Frobenius-Perron
operator.

A. The deterministic Frobenius-Perron operators

Remarkably, even considering a nonlinear dynamical
system

F : M → M , (11)

the one-step action of the map in the space of (ensembles
of initial conditions) densities is that of a linear transfer
operator,7,23 for a phase space, M ⊂ Rn. The Frobenius-
Perron operator generates an associated linear dynamical
system on the space of densities,

PF : L1(M ) → L1(M ), (12)

defined by

PF[ρ](x′) =
∫

M
δ[x − F(y)]ρ(y)dy =

∑
{x:F(x)=x′}

ρ(x)

|F ′(x)| ,

(13)
where the sum is taken over all pre-images, s, when the
map has a multiple branched “inverse.” Note also that
in the case of a multi-variate transformation F, m > 1,
then the term

∑
{x:F(x)=x′}

ρ(x)
|F′(x)| is instead replaced by∑

{x:F(x)=x′} ρ(x)|DF−1(x)|, meaning that the determinant of
the Jacobian derivative matrix of the inverse of the map
must be used. While this infinite dimensional operator is
typically not realizable in closed form, except for special
cases,7,23 there are matrix-methods in terms of approximat-
ing the action of the transformation as a stochastic matrix,
and weak convergence to the true invariant density is called
Ulam’s method,25,38–41 as a technique to project this operator
to a finite dimensional linear subspace �N ⊂ L2(M ) gener-
ated by the set characteristic functions supported over the
partitioning grid.25 The idea is that refining the grid yields
weak approximants of invariant density. The projection is
exact when the map is “Markov” using basis functions sup-
ported on the Markov partition.42–44 Roughly speaking, the
infinitesimal transfer operator45

L(x′, x) = δ[x′ − F(x)], (14)

when integrated over a grid square Bi which are small enough
so that DF(x) is approximately constant, and then this action
is approximated by a constant matrix entry Si,j. Under spe-
cial assumptions on F, statements concerning quality of
the approximation can be made rigorous. Recently, many
researchers have been using Ulam’s method to describe global
statistics of a dynamical system,39–41,46,47 such as invariant
measure, Lyapunov exponent, dimension, etc. A point of this
paper is to get away from three major aspects of this kind of
computation which are as follows:

1. The estimations based on the finite rank matrix computa-
tions.

2. The statistical approximations based on estimation of the
matrix entries.

3. The inherently steady state stationarity concept assump-
tions for collecting the statistics of Si,j; those assump-
tions were previously built into our own Ulam-Galerkin
based approach to transfer entropy by Frobenius-Perron
operator methods.22

Instead, our descriptions will be in terms of the full inte-
gral describing the transfer operator adapted to notions of
information flow, with no underlying assumption of steady
state.

B. The stochastic Frobenius-Perron operators

Now consider the stochastically perturbed dynamical
system,

Fg : M → M , (15)

x �→ F(x) + y, (16)

where y is a random variable with pdf g, which is applied once
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FIG. 1. Stochastic iteration, Eq. (15). At time n, x �→ F(x) “deterministi-
cally” and then also by convention at the same time n, random value y is
added to yield x′ = F(x) + y now at time, n + 1. A multiplicative scenario
can be handled comparably, according to Eqs. (18) and (19).

per each iteration. See Fig. 1 where we illustrate this simple
additive stochastic iteration, where we describe that x evolves
deterministically to F(x) and then a “random” value of y is
added, which we describe by convention as if at the same time
instant at time step, n. Then x′ = F(x) + y denotes the value
at time n + 1. Multiplicative can also be handled, according to
Eqs. (18) and (19). The usual assumption at this stage is that
the realizations yn of y added to subsequent iterations form an
i.i.d. (identical independently distributed) sequence, but since
we are allowing for just one application of the dynamic pro-
cess, the assumption is not necessary, and g maybe simply
be the distribution of yn at time n. If x is relatively small to
x′, then the deterministic part F has primary influence, but
this is not even a necessary assumption for this stochastic
Frobenius-Perron operator formalism. Neither is a standard
assumption for many stochastic analyses that require certain
forms of the noise term, such as Gaussian distributed, as we
do not require anything other than g is a measurable function,
which likely is the weakest kind of assumption possible. The
“stochastic Frobenius-Perron operator” has a similar form to
the deterministic case7,23

PFg [ρ](x) =
∫

M
g[x′ − F(x)]ρ(x)dx. (17)

It is interesting to compare this integral kernel to the delta
function in Eq. (13). Now a stochastic kernel describes the pdf
of the noise perturbation. We denote the stochastic Frobenius-
Perron operator to be PFg , vice PF for no noise version in
Eq. (13). In the case that the random map Eq. (15) arises

from the usual continuous Langevin process, the infinitesi-
mal generator of the Frobenius-Perron operator for Gaussian g
corresponds to a general solution of a standard Fokker-Planck
equation.23

Within the same formalism, we can also study multiplica-
tive noise,

z → ητ(x), (18)

(modeling parametric noise). It can be proved7,48 that the
kernel-type integral transfer operator is

K(z, s) = g[z/F(s)]/F(s). (19)

More generally, the theory of random dynamical systems49

classifies those random systems which give rise to explicit
transfer operators with corresponding infinitesimal genera-
tors, and there are well defined connections between the
theories of random dynamical systems and of stochastic
differential equations.

V. INTERPRETING CLOSURE BY EVOLUTION OF
DENSITY IN TERMS OF TRANSFER OPERATORS

Consider now the Frobenius-Perron operator Eq. (13),
term by term, as associated with relevant conditional and joint
probabilities. First, let y = x′ − F(x), which upon substitution
into Eq. (13) yields the following simplifications. The nota-
tion relates to when the stochastic process interpretation of
the variables take values, Xn+1 = x′, Xn = x, and Yn = y. The
substitution yields

ρ(x′) = PF[ρ](x′) =
∫

M
δ[x′ − F(x)]ρ(x)dx

=
∫

M

δ(y)

F ′[F−1(x′ − y)]
ρ[F−1(x′ − y)]dy. (20)

By a similar computation, with the same substitution, the
stochastic version of the Frobenius-Perron operator, Eq. (17)

FIG. 2. Contrasting the kernel functions, (left) δ[x − F(s)] and (right) g[x − F(s)], for contrasting versions of the transfer operator corresponding to a logistic
map, Eqs. (43)–(45), for closed versus open versions of the concept of the primary question of the associated conditional probabilities question in Eqs. (32) and
(33) as decided by the FQMy→x.
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can be written as

ρ(x′) = PFg [ρ](x) =
∫

M
g[x′ − F(x)]ρ(x)dx

=
∫

M

g(y)

F ′[F−1(x′ − y)]
ρ[F−1(x′ − y)]dy. (21)

(Again if the transformation is multivariate, then the determi-
nant of the Jacobian, or so-called Wronskian, must be used,
|DF−1|.) Now we have written the new distribution of points
as, ρ(x), evaluated at a point x ∈ M . Notice that these Eqs.
(20) and (21) are essentially the same in the special case that
the distribution g is taken to be a delta function, as if the noise
limits to a zero variance, in the sense of weak convergence.

Let us interpret these pdf’s as describing probabilities as
follows. It is useful at time n to associate

P[Xn ∈ (x, x + dx)] = ρ(x)dx, (22)

and

P[Xn+1 ∈ (x′, x′ + dx′)] = ρ(x′)dx′, (23)

and (x′, x′ + dx′) may denote small measurable sets containing
at x′ in the general multivariate scenario.

Take ρ to be the probability distribution associated with
samples of the ensemble of points along orbits, at time n and
likewise ρ, at time n + 1. Interpreted in this way as a stochas-
tic system (where the randomness is associated with the initial
selection from the ensemble) depends on which version of
the dynamics (with or without randomness, upon iteration)
whether version Eq. (11) or Eq. (15).

Recall that since [by general conditional probability for-
mula, P(A|B) · P(B) = P(A, B)], or a chain statement for
compound events,

P(A, B, C) = P(A|B, C) · P(B|C) · P(C). (24)

Then let events be defined

A = [Xn+1 = x′],

B = [Xn = F−1(x′ − y)],

C = [Yn+1 = y].

(25)

Again we refer to Fig. 1 for the notation. For convenience,
we will now drop the formal descriptions of small intervals
as dx, dx′, dy and the careful notation of probability events in
intervals, as noted in Eqs. (22) and (23). So more loosely in
notation now, we describe

P[Xn+1 = x′|Xn = F−1(x′ − y), Yn = y]

· P[Xn = F−1(x′ − y)|Yn = y] · P(Yn = y)

= 1

F ′[F−1(x′ − y)]
· ρ[F−1(x′ − y) · g(y)], (26)

with the interpretation,

P[Xn+1 = x′|Xn = F−1(x′ − y), Yn = y] = 1

F ′[F−1(x′ − y)]
,

(27)

P[Xn = F−1(x′ − y)|Yn = y] = ρ[F−1(x′ − y)], (28)

P(Yn+1 = y) = g(y), (29)

(but not necessarily normalized). The rigorous details behind
this interpretation bring us into the functional analysis behind

the Ulam’s method,26,27,42,50–52 for descriptions of regularity
and estimation of the action of a Frobenius-Perron opera-
tor, which has an extensive literature of its own beyond the
scope of this paper, with many remaining open problems
especially for multivariate transformations.53 For simplified
interpretation and description, we may presume a fine grid of
cells covering the domain and the functions described here
are piecewise constant in those cells and the transformation
is Markov. Beyond the rigorous analysis, these interpreta-
tion allow us to compute a conditional entropy of evolution
both with and without full consideration of externals to the
partitioned subsystem effects.

To explicitly interpret a transfer entropy described seam-
lessly together with the evolution of densities derived by the
Frobenius-Perron transfer operator, we may be interested to
understand the propensity of the mapping F to move densi-
ties and then in this context we may therefore assume that
a specific simple form, ρ, is uniform. This is not a neces-
sary but a simplifying assumption, since otherwise we would
need to include ρ in the subsequent discussion. Therefore
in this context, recombining Eqs. (27) and (29) suggests an
interpretation,

P[Xn+1 = x′, Yn+1 = y|Xn = F−1(x′ − y)]

= P[Xn+1 = x′|Xn = F−1(x′ − y), Yn = y]P(Yn+1 = y)

= g(y)

F ′[F−1(x′ − y)]
. (30)

Now we may work directly with this quantity in the subse-
quent, but instead we use this form simply for interpretation.
Instead, we find it more convenient in the subsequent, to work
directly with the original kernel, despite that it may be differ-
ent in scale, and we will explicitly normalize. Also noting by
Eq. (15) that x′(x, y) is a function of the initial position x and
the realization of the noise y, let

q(x, x′, y) = g[x′ − F(x)]∫
g[x′ − F(x)]dx

. (31)

This is just the integral kernel and we have explicitly normal-
ized as a probability distribution, for each x′, to be used in
Eq. (33).

While this is not the same as the original question leading
to transfer entropy, Eq. (6), P(xn+1|xn) =? P(xn+1|xn, yn), we
find comparing the kernel’s corresponding to a system that is
closed unto itself, versus that of a system that is receiving the
information at each step by the action of the associated trans-
fer operator, to be extremely informative. Now as we see, this
amounts to a slightly different but perhaps related question,

P(xn+1|xn) =? P(xn+1, yn+1|xn). (32)

Here too, for the sake of simplifying computation, we use
the related term as described above, q(x, x′, y), interpreted
as a variables changed version of Eq. (30). These two alter-
native stories, closed, or open, of what may moderate the
x-subsystem of the dynamical system,

q(x, x′, y) =? δ[x′ − F(x)], (33)

distinguish the cases whether the x-subsystem is closed, or
if it is open—receiving information from the y-subsystem.
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Therefore in the subsequent we will describe how to compare
these, within the language of information theory. See contrast-
ing versions of Eq. (33) in Fig. 2, described in details as the
example in Sec. VII.

VI. FORECASTABILITY QUALITY METRIC

To decide the forecasting question, by comparing alter-
native versions of the underlying transfer operator kernels for
closure of the system, Eq. (33), the seemingly obvious way by
a Kullback-Leibler divergence DKL[q(x, x′, y)||δ(x′ − F(x))]
is generally not well defined. The reason is in part because it
is a theorem that37 the KL-divergence is that not well defined
when the support of the second argument is properly con-
tained within the support of the first argument, which will
generally be a problem when stating a δ-function as the second
argument. Notice that this critical detail arises in our use of the
conditionals directly by the kernels of the associated transfer
operators, but the arguments do not lead here in other formula-
tions of information flow such as either to transfer entropy or
Liang-Kleeman formalism. So in the spirit of transfer entropy,
considering DKL[q(x, x′, y)||δ(x′ − F(x))] may seem relevant
but it is not fruitful.

Instead, the Jensen-Shannon divergence gives an alter-
native that allows several natural associated interpretations.
Let us define the Forecastability Quality Metric, from the
y-subsystem to the x-subsystem,

FQMy→x = DJS[(x, x′, y)||δ(x − Tx(s))]

= lim
ε→0

DJS[q(x, x′, y)||δε(x
′ − Tx(x))], (34)

using the notation of Eqs. (1) and (3)–(5), and replacing the
general F with the component function Tx. The influence of
y is encoded in the distribution g that has been normalized to
the form q from Eq. (31). More will be said on this below. The
Jensen-Shannon divergence is defined as usual54–56

DJS(p1||p2) = DKL(p1||m) + DKL(p2||m)

2
, (35)

where

m = p1 + p2

2
, (36)

the mean distribution. An important result is that the necessity
of support containment is no longer an issue.

The statement of the limit of terms, δε , may be taken as
any one of the many variants of smooth functions that progres-
sively (weakly) approximate the action of the delta function,
such as

δε(s) = e− s2
4ε

2
√

πε
, (37)

but normalized as in Eq. (31) for each s related to x′ − Tx(x).
The Jensen-Shannon divergence has several useful prop-

erties and interpretations that are inherited therefore by the
FQM. We summarize some of these here.

√
DJS(p1||p2) is

a metric, stated in the usual sense. Recall that a function
d : M × M → R+ is a metric if

1. Non-negative, [d(x, y) ≥ 0, ∀x, y ∈ M ],
2. Identity and discernible, [d(x, y) = 0 if x = y],

3. Symmetric, d(x, y) = d(y, x), ∀x, y ∈ M , and
4. Triangle inequality, d(x, y) ≤ d(x, z) + d(z, y), ∀x, y,

z ∈ M .

The terminology metric is reserved for those functions d
which satisfy 1-4, and distance while sometimes used inter-
changeably with metric is sometimes used to denote a function
that satisfies perhaps just properties 1-3. The term divergence
is used to denote a function that may only satisfy property one,
but it is only “distance-like.” So the Kullback-Leibler diver-
gence DKL is clearly not a distance, and only a divergence
because it is not symmetric.

The Jensen-Shannon divergence is not only a divergence
but “essentially” a metric. More specifically its square root,√

DJS(p1||p2), is a metric on a space of distributions, as
proved in Refs. 57 and 58. However, nonetheless through
Pinsker’s inequality there are metric-like interpretations of
the Kullback-Leibler divergence, which bounds from above,√

DKL(p1||p2)

2 ≥ ‖p1 − p2‖TV , by the total variation distance,

and for a finite probability space this even relates to the L1

norm.59,60 However, a most exciting insight into the mean-
ing of 1/DJS follows the interpretation that relates the number
of samples one would have to draw from two probability
distributions with confidence that they were selected from
p1 or p2 is inversely proportional to the Jensen-Shannon
divergence.61 Thus the Jensen-Shannon divergence is well
known as a multi-purpose measure of dissimilarity between
probability distributions, and we find it to be particularly use-
ful to build our information flow concept of “forecasting”
as defined, FQMy→x by Eq. (34) following comparing the
operator kernels of Eq. (33) as interpreted as conditional prob-
abilities. FQMx→y is likewise defined. Finally, we remark that
the property,

0 ≤ FQMy→x ≤ 1, (38)

is inherited from the similar bound for the underlying Jensen-
Shannon divergence. Therefore, the FQMy→x makes a partic-
ularly useful score for information flow.

VII. EXAMPLE—ONE WAY COUPLING AND THE FQM

Now we specialize the general two oscillator problem
Eq. (5) to specify just one way coupling as an explicit
computation of FQMy→x. Let ε2 = 0,

xn+1 = Tx(xn, yn) = f1(xn) + ε1k(xn, yn),

yn+1 = Ty(xn, yn) = f2(yn).
(39)

For simplicity of presentation assume diffusive coupling,

k(x, y) = (y − x), (40)

so that

xn+1 = f1(xn) + ε1(yn − xn) = f̃1(xn) + ε1yn, (41)

and that

f̃1(x) = f1(x) − ε1x. (42)

Thus we have a special case of a coupled map lattice.62,63
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Further for developing an explicit example,

f1(s) = f2(s) = 4s(1 − s), (43)

the logistic map. We take fi : R → R, but in the uncoupled
cases we know that [0, 1] is an invariant set for each compo-
nent. Since the y-subsystem is uncoupled, and we know its
absolutely continuous invariant density in [0, 1] is7,23

ρ(x) = 1

π
√

x(1 − x)
. (44)

We may take this as the distribution of yn ∈ �y = [0, 1] if
the y-subsystem is taken to be at steady state. However, we
emphasize a steady state distribution need not be assumed if
we assume simply that a distribution of initial conditions may
be chosen from the outside forcing y-subsystem. Since con-
sidering the form of the stochastic Frobenius-Perron operator,
Eq. (21), the outside influence onto the x-subsystem looks
like the noise coupling term ε1yn in Eq. (41). Notice that the
distribution of “noise” g is in fact

g(s) =
ρ( s

ε1
)

ε1
, (45)

which may seem as noise to the x-subsystem not knowing the
details of a y-subsystem, even if the evolution of the full sys-
tem may even be deterministic. In fact, this may be taken as
a story explaining noise generally as the (unknown) accumu-
lated outside influences on a given subsystem. So therefore
the appearance of “noise” of y-subsystem influence onto x
is simply the lack of knowledge of the outside influence
onto the not-closed subsystem x. It is a common scenario in
chaotic dynamical system that lack of knowledge of states has
entropy, and this is the foundation concept of ergodic theory
to treat even a deterministic system as a stochastic dynamical
system in this sense, as we expanded upon in Ref. 7.

We see in Fig. 2 the contrasting versions of Eq. (7),
P(xn+1|xn) =? P(xn+1, yn|xn) associated with contrasting q[x −
F(s)] to qε[x − F(s)] corresponding to alternative truths, that
the x-subsystem is closed, or open depending on y now consid-
ered as a stochastic influence. The point is within the transfer
operator formalism, the outside influence may be as if stochas-
tic, but nonetheless, the q is a well defined function, and the
question of FQMy→x is well defined by contrasting the two
kernels of the associated transfer operators as if pdf’s by the
DJS in Eq. (34).

In Fig. 3, we show a sequence of estimators illustrating
FQMy→x for Eq. (34). The system shown is relative to the
one-way coupled logistic map systems, Eqs. (1)–(42). Note
that nothing in the current computation requires a steady state
hypothesis since considering an ensemble of y values then the
resulting integration is well defined by whatever may be the
transient distribution. However, as ε → 0 in the definition,
then even though the FQMy→x is described by a limit of closed
form integrals, they become exceedingly stiff to capture reli-
able values for both ε and ε1 small. In another note, notice that
since our discussion in no way requires steady state, the two
way coupled problem is just as straightforward as the one way
coupled problem, which we highlighted purely for simplicity
and pedagogy reasons. Finally, we restate that since 1/DJS is
descriptive of the number of samples required to distinguish

FIG. 3. Computed FQMy→x for coupled logistic maps, in units of bits per
time unit of iteration, with varying ε1 increasing as shown on the horizontal
axis. According to the definition of FQMy→x, Eq. (34), Jensen-Shannon diver-
gences are computed for successive approximating values of ε decreasing,
ε = 0.035, 0.025, 0.01 shown from bottom to top listed in the same order. By
definition as a Jensen-Shannon divergence, note that 0 ≤ FQMy→x ≤ 1, and
0 is achieved if the distributions in Fig. 2 match, which is closely true when
ε = ε1 in terms of the coupling. However, as ε → 0 for a fixed positive but
exceedingly small coupling 0 < ε1 � 1 then the limit is numerically difficult
to estimate since the integration becomes singular, and we perform these esti-
mators of the integrals by the Monte-Carlo method; the estimation becomes
much more reliable for larger coupling ε1 > 0 where the direct numerical
integration becomes more stable.

the underlying two distributions, this sheds lights as interpre-
tation onto the FQMy→x curves in Fig. 3 which therefore may
be interpreted that as coupling ε1 decreases, the decreasing
entropy indicates that significantly more observations, either
more time, or more states from many initial conditions, are
correspondingly required to decide if there is a second cou-
pling system (open), or the system observed is autonomous
(closed).

As a final remark, note that this discussion has been
entirely for two oscillators, just as the original presenta-
tion of transfer entropy was for two oscillators. However
by appropriately conditioning out intermediaries, to distin-
guish direct versus indirect effects, we generalized transfer
entropy to become causation entropy,8–10 and a compara-
ble strategy might allow conditional FQM, by marginalizing
and conditioning restricted versions of the transfer operators
before measuring the differences using the Shannon-Jenson
convergence. This will also be a consideration in our future
works.

VIII. POSTSCRIPT AND CONCLUSIONS

We have described how noise and coupling of an out-
side influence onto a subsystem from another subsystem can
be formally described as alternative views of the same phe-
nomenon. Using these alternative descriptions of this concept,
by using the kernels from deterministic versus stochastic
Frobenius-Perron transfer operators to contrast the outside
influence of a coupling system as if it were noise, we can
explicitly enumerate the degree of information transferred



075309-9 Erik M. Bollt Chaos 28, 075309 (2018)

from one subsystem to another. This is the first time this for-
malism has been brought to consider information transfer. We
show furthermore that motivated by transfer entropy, using
the KL-divergence for the transfer operator concept based in
this context produces problems regarding boundedness. The
Jensen-Shannon divergence provides a useful alternative that
furthermore comes with several pleasant extra interpretations.

Outside influences may be summarized by the following
diagram and asking if it is possibly commuting, pointwise,

ρ ∈ L1(�)
PT−−−−→ ρ ′ ∈ L1(�)

Ry

⏐⏐	
⏐⏐	Ry ,

ρ1 ∈ L1(�y)
PTy−−−−→ ρ1

′ ∈ L1(�y)

(46)

where we reiterate that � = �x × �y states the proposed
subsystems, and

ry : � → �y,

(x, y) �→ y,
(47)

denotes a projection function, from the full phase space �

to the phase space of the y-subsystem, and likewise for the
projection rx. In this formulation, the main question of clo-
sure, if there is information flow or not, which we have
already stated in Eq. (33) as q[x − F(y)] =? δ[x − F(y)], also
amounts to asking if advancing the density of states of the
full system and then projecting by the operator correspond-
ing to marginalizing [integrate density onto just y variables,
Ry[ρ(x, y)] = ∫

�
ρ(x, ydx)] is the same as marginalizing first

and then advancing by the transfer operator of the subsystem:

Ry ◦ PT =? PTy ◦ Ry. (48)

In postscript, we already noted that the inverse of the Jensen-
Shannon divergence is proportional to the expected number of
samples required to distinguish the two distributions. There-
fore, the FQMy→x is inversely proportional to the number of
samples required to distinguish the degree of coupling influ-
ence of the y-variables onto the x-variables subsystems. In
this sense, in our follow-up work, we are planning a practical
numerical scheme to associate data observations. Specifically,
the Ulam’s method allows for a cell-mapping method to cover
the phase space with boxes (or say triangles), and then to
collect statistics of transitions, and besides the usual discus-
sion toward invariant density through the eigenvectors of
the resulting stochastic matrix, known as Ulam’s method,
we have already pointed out22 that there is information in
this numerical estimate of the transfer operator that can be
exploited to compute transfer operator. However, we real-
ize that the operator itself bears a great deal of information
regarding information flow, and so this points to the idea that
FQM might be estimated from data, by using the data to build
a stochastic matrix in the spirit of Ulam’s method. Such a
Markov chain model of the process can help distinguish open
or closed, but building the transition matrix directly from data,
and then applying the FQM, a DJS computation in alternative
formulations of the hypothesis. Therefore, we are working
toward this for future research, and considering error analysis
of the collected statistics has Markov-inequalities (including
Chebyshev inequality) underlying. Therefore while this more

practical data oriented approach is still in the works, what
we have offered in this paper is a new view on information
flow, which can be understood directly in terms of the underly-
ing transfer operators, and computations of entropies directly
from there.
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45P. Cvitanović, “Periodic orbits as the skeleton of classical and quantum
chaos,” Physica D 51, 138–151 (1991).

46M. Dellnitz, A. Hohmann, O. Junge, and M. Rumpf, “Exploring invariant
sets and invariant measures,” Chaos 7, 221–228 (1997).

47F. Y. Hunt and W. M. Miller, “On the approximation of invariant mea-
sures,” J. Stat. Phys. 66, 535–548 (1992).

48N. Santitissadeekorn and E. Bollt, “The infinitesimal operator for the
semigroup of the Frobenius-Perron operator from image sequence data:
Vector fields and transport barriers from movies,” Chaos 17, 023126
(2007).

49L. Arnold, Random Dynamical Systems (Springer Science & Business
Media, 2013).

50C. Bose and R. Murray, The exact rate of approximation in Ulam’s method,
Discrete Cont. Dyn. Syst. A 7, 219–235 (2001).

51J. Ding, T. Y. Li, and A. Zhou, “Finite approximations of Markov opera-
tors,” J. Comput. Appl. Math. 147, 137–152 (2002).

52J. Ding and A. Zhou, “A finite element method for the Frobenius-
Perron operator equation,” Appl. Math. Comput. 102, 155–164
(1999).

53J. Ding and A. Zhou, “Finite approximations of Frobenius-Perron oper-
ators. A solution of Ulam’s conjecture to multi-dimensional transforma-
tions,” Physica D 92, 61–68 (1996).

54M. Menéndez, J. Pardo, L. Pardo, and M. Pardo, “The Jensen-Shannon
divergence,” J. Franklin Inst. 334, 307–318 (1997).

55J. Lin, “Divergence measures based on the Shannon entropy,” IEEE Trans.
Infor. Theory 37, 145–151 (1991).

56B. Fuglede and F. Topsoe, “Jensen-Shannon divergence and Hilbert space
embedding,” in International Symposium on Information Theory, 2004,
ISIT 2004 (IEEE, 2004), p. 31.

57D. M. Endres and J. E. Schindelin, “A new metric for probability distribu-
tions,” IEEE Trans. Infor. Theory 49, 1858–1860 (2003).

58I. Vajda et al., “Anew class of metric divergences on probability spaces
and and its statistical applications,” Ann. Inst. Statist. Math. 55, 639–653
(2003).

59M. S. Pinsker, Information and Information Stability of Random Variables
and Processes (1960).

60E. Ordentlich and M. J. Weinberger, “A distribution dependent refine-
ment of Pinsker’s inequality,” IEEE Trans. Inf. Theory 51, 1836–1840
(2005).

61G. Tkacik, C. G. Callan, Jr., and W. Bialek, “Information capacity of genetic
regulatory elements,” Phys. Rev. E 78, 011910 (2008).

62K. Kaneko, “Coupled map lattice,” in Chaos, Order, and Patterns
(Springer, 1991), pp. 237–247.

63S. D. Pethel, N. J. Corron, and E. Bollt, “Symbolic dynamics of coupled
map lattices,” Phys. Rev. Lett. 96, 034105 (2006).

https://doi.org/10.1088/0951-7715/11/2/007
https://doi.org/10.3934/dcds.2010.26.1007
https://doi.org/10.1016/S0960-0779(99)00204-0
https://doi.org/10.1142/S0218127412300121
https://doi.org/10.1142/S0218127400000736
https://doi.org/10.1016/S0167-2789(02)00659-0
http://web.maths.unsw.edu.au/~froyland/a1362773.pdf
http://web.maths.unsw.edu.au/~froyland/a1362773.pdf
https://doi.org/10.1016/S0362-546X(97)00527-0
https://doi.org/10.1016/0021-9045(91)90105-J
https://doi.org/10.1137/070686111
https://doi.org/10.1016/0167-2789(91)90227-Z
https://doi.org/10.1063/1.166223
https://doi.org/10.1063/1.2742932
https://doi.org/10.3934/dcds.2001.7.219
https://doi.org/10.1016/S0377-0427(02)00429-6
https://doi.org/10.1016/S0096-3003(98)10039-5
https://doi.org/10.1016/0167-2789(95)00292-8
https://doi.org/10.1016/S0016-0032(96)00063-4
https://doi.org/10.1109/18.61115
https://doi.org/10.1109/TIT.2003.813506
https://doi.org/10.1007/BF02517812
https://doi.org/10.1109/TIT.2005.846407
https://doi.org/10.1103/PhysRevE.78.011910
https://doi.org/10.1103/PhysRevLett.96.034105

	I. Introduction
	II. Basic Problem Setup
	III. Information Flow as Alternative Versions of Forecasts in Probability
	A. Information flow as transfer entropy

	IV. Evolution of Densities of Initial Conditions by the Frobenius-Perron operator
	A. The deterministic Frobenius-Perron operators
	B. The stochastic Frobenius-Perron operators

	V. Interpreting Closure by Evolution of Density in Terms of Transfer Operators
	VI. Forecastability Quality Metric
	VII. Example—One Way Coupling and the FQM
	VIII. Postscript and Conclusions
	Acknowledgments

