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a b s t r a c t 

While local models of dynamical systems have been highly successful in terms of using extensive data 

sets observing even a chaotic dynamical system to produce useful forecasts, there is a typical problem as 

follows. Specifically, with k -near neighbors, kNN method, local observations occur due to recurrences in a 

chaotic system, and this allows for local models to be built by regression to low dimensional polynomial 

approximations of the underlying system estimating a Taylor series. This has been a popular approach, 

particularly in context of scalar data observations which have been represented by time-delay embedding 

methods. However such local models can generally allow for spatial discontinuities of forecasts when 

considered globally, meaning jumps in predictions because the collected near neighbors vary from point 

to point. The source of these discontinuities is generally that the set of near neighbors varies discontin- 

uously with respect to the position of the sample point, and so therefore does the model built from the 

near neighbors. It is possible to utilize local information inferred from near neighbors as usual but at the 

same time to impose a degree of regularity on a global scale. We present here a new global perspective 

extending the general local modeling concept. In so doing, then we proceed to show how this perspec- 

tive allows us to impose prior presumed regularity into the model, by involving the Tikhonov regularity 

theory, since this classic perspective of optimization in ill-posed problems naturally balances fitting an 

objective with some prior assumed form of the result, such as continuity or derivative regularity for ex- 

ample. This all reduces to matrix manipulations which we demonstrate on a simple data set, with the 

implication that it may find much broader context. 

© 2016 Elsevier Ltd. All rights reserved. 
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1. Introduction – local models, local forecasting 

Forecasting chaotic dynamical systems, from measured data, is

a topic that has seen a great deal of activity, at least for the

last thirty years, facilitated by the time-delay embedding methods.

In the time-delay embedding literature, forecasting from observed

states, embedding the states and then fitting local models based

on regression to the behavior of k -near neighbors (kNN) was put

forward and somewhat matured by the mid1990s, [4–10] . So, in

[13] we discuss the role of local models in model selection as it

relates to spatial scale, and some of that is reviewed here. In par-

ticular we have been interested in how local modeling [11] , and

see also [12] , relates to local polynomial models. 

Specifically note that local models are built for the transforma-

tion based on observing the orbits of near neighbors, and hoping

that there are a lot of sampled orbit segments due to recurrence

and a long orbit sample, then in any small neighborhood there

would be many samples. The “k” in kNN means to collect those

k points from the data set that are closest to the forecast point. If
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E-mail address: bolltem@clarkson.edu 

p  

o  

b  

http://dx.doi.org/10.1016/j.chaos.2016.10.007 

0960-0779/© 2016 Elsevier Ltd. All rights reserved. 
here is noise, or otherwise, model error, then a degree of smooth-

ng is implied by a least squares estimation of the local transfor-

ation. While a higher ordered model will tend to well fit more

erms in a Taylor polynomial estimation of the local model, there

re inherently many more parameters to be fitted when using a

igh degree polynomial, and so a much larger k would be required,

nd hence correspondingly the neighborhood would be larger. So

s discussed in [13] , there is a balancing between fine scale, data

ensity, and smoothing when performing local modeling by least

quares regression alone; here we add to this discussion that regu-

arity can be emphasized directly by using Tikhonov regularization

oncepts derived from convex optimization theory, [18,19] and also

ound in advanced matrix analysis, [16] , to find locally useful fore-

asts, which also have good global regularity properties, and with

ess data than perhaps a kNN method on its own. 

When a global model is not be available to forecast evolution of

 given point, a useful forecast may still be possible by observing

he evolution of k nearby points using regression to appropriately

average” between them. In terms of a polynomial basis, this ap-

roach develops a least squares regression of the first few terms

f a Taylor’s series for the unknown global model, in the neigh-

orhood of the point to be forecast, using the k neighbors as data.

http://dx.doi.org/10.1016/j.chaos.2016.10.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2016.10.007&domain=pdf
mailto:bolltem@clarkson.edu
http://dx.doi.org/10.1016/j.chaos.2016.10.007
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nough near neighbors must be chosen to allow for the minimal

tting of the polynomial model, and furthermore, somewhat more

han the minimal number of points should be chosen to allow for

ome degree of smoothing. This is akin to the familiar statistical

ssues faced when fitting a line to noisy data; more than 2 points

hould be used to confidently specify the line. Scale of the model

s a major issue: there are competing demands between local trun-

ation error that push toward small neighborhoods, but smooth-

ng and confidence push toward larger k , leading to larger neigh-

orhoods when using finite data sets. This trade-off was the topic

f [13] . In this paper, we furthermore address an important issue

verlooked in all previous studies on kNN local modeling, which

s that if a model is developed for each neighborhood based on

ear neighbors, then since two nearby points may have a different

et of near neighbors, this leads to lack of smoothness (regular-

ty) of the forecasts. We address this problem here, by expanding

ur previous work to include regularization by utilizing concepts

f Tikhonov regularization theory. 

Consider a dynamical system, 

 : M → M, 

y n +1 = T (y n ) . (1.1) 

et y ∈ M ⊂ R 

d . Assume that from the nonlinear dynamical system,

e have a large collection of observed iterations as an orbit of Eq.

1.1) , { y i } N i =0 
, such that y i +1 = T (y i ) . Here, T will stand for a dis-

rete time mapping as the transformation, throughout this paper,

nd note that if we have a continuous time process, then the dis-

rete time mapping may come either by Poincare’ section, or by

ime delay embedding, of a flow. For the modeling discussion be-

ow, these actually need not be a single orbit, but for the regular-

ty discussion to follow, it is best if we include that assumption

ow. Furthermore assume that there is uniformly enough regular-

ty of T so that there exists a Taylor’s expansion through order- K ,

hich we will exploit in the next Section 2 . The standard discus-

ion of local modeling is to put forward that these local polynomi-

ls can be estimated by nearby sampled points and their images,

enerally by a regression method. However, we also generally ex-

ect that these local models will vary continuously, or vary contin-

ously with respect to higher ordered derivatives of T , with respect

o variations in the sample point. We will show here that this de-

irable and physically expected property can be emphasized with

ikhonov regularity theory. 

Now the idea is that for any point w as an initial condition

hat we may wish to forecast but that may not be amongst the

bserved orbit values, w �∈ { y i } N i =0 
, we proceed with local models

uilt from first collecting near neighbors to w , amongst the data.

 standard way to forecast a dynamical system, when presented

ith many previous states, is to collect ‘ ‘k -near” neighbors (kNN)

n the phase space, and in some manner, average, regress, or oth-

rwise associate the current forecast to those previous forecasts.

he simplest version of these associations would be the method of

nalogues [9] from classical weather forecasting, namely forecasts

re identified with the most same measured state. From [11–13] ,

e review local forecasting in terms of local polynomial models. 

Note that perhaps we may either estimate a discrete time map

 ( y ) from many observations as just stated, with the hope that

here is low dimensionality, or a popularly common scenario is

hat we will only observe a single scalar time series, measured

rom a vector valued, y and the time delay embedding represen-

ation will be used. That is, a time-series from a “chaotic” dynam-

cal system allows a data-only analysis by embedding attractor re-

onstruction, [1,2,4,6,7,10] . Recall that if an autonomous dynamical

ystem, 

˙ 
 = F (x ) , x (t) ∈ R 

n , and x (t 0 ) = x 0 , (1.2)
as an invariant attractor A then an experimentalist who does not

now the underlying global model Eq. (1.2) may not even know

hich are the correct variables to measure. Generally, a single-data

hannel can be considered to be a scalar measurement function

 [ x (t)] : R 

n → R . Given a set of measurements { h [ x (t i )] } N 
i =0 

, with

niformly spaced time samples t i , the time-delay embedding is a

ector, 

 (t) = < h [ x (t)] , h [ x (t − τ )] , h [ x (t − 2 τ )] , . . . , h [ x (t − dτ )] >, 

(1.3) 

nd one generally chooses τ to be some multiple of the sam-

ling rate �t = t i +1 − t i . Takens proved [3] that, for topologically

eneric measurement function h , if the attractor A is a smooth m -

imensional manifold, then if one chooses the delay dimension to

e d ≥ 2 m + 1 , then Eq. (1.3) is an embedding, meaning there ex-

sts a one-to-one function G : A → R 

d , and G is a diffeomorphism.

auer, et. al [8] proved an extension to allow for nonsmooth A ,

nd even fractal A . To reconstruct the attractor, both of these re-

ults assume that the data is clean, and the data set is arbitrarily

ong. Neither assumption is physically realizable, but nonetheless,

ime-delay reconstruction has found many applications to nonlin-

ar modeling and to prediction. See [1,2,4,6,9,10] . 

Local linear regression of the observed evolution of k -nearest

eighbors { y j (t) } k 
j=1 

, to their images { y j (t + τ ) } k 
j=1 

, has emerged

s the most popular method to predict “the next y ( t ).” The idea is

hat a Taylor’s series of the (unknown) function f τ , which evolves

flows) initial conditions y ( t ), according to the differential equation,

q. (1.2) , is well approximated by the linear truncation, if the near

eighbors are “near enough.” Error analysis, such as that found in

10] , is based on this local-truncation error, and therefore considers

he Luyapunov exponents. There is naturally a conflict of demands

ince on the one hand, a) small local truncation error demands

hat neighborhoods be small, and therefore k must not be chosen

oo large, using a fixed (linear) model, but on the other hand, b)

tatistical fluctuations demand that k be chosen large enough to

nfer a degree of smoothing. The problem we study here is that

t is well know that those points which are the near neighbors to

ny given sample point may not vary continuously with position in

pace. So the predictions likewise may vary discontinuously. There-

ore we have developed a perspective here to emphasize that reg-

larity is a desirable property. In many ways, this work should be

onsidered as analogous to the standard local forecasting, but sim-

ly an enhanced alternative version. The emphasized regularity of

orecasts therefore improves plausibility of forecasts in that there

ill be fewer jumps between forecasts of nearby initial conditions

ue simply to the artificial reason that the near neighbors set may

iffer. 

. Basis for local polynomial regression 

Assuming that the transformation T has enough regularity to

ustify a Taylor polynomial at each point w , to the degree sought.

or example, a local affine model of T at w, T | w 

is, 

 = T 0 + DT · h, (2.1)

egressed over k -nearest neighbors of w , { y k j } k j=1 
⊂ { y i } N i =0 

, where

T is related to the Jacobian derivative in a neighborhood of w and

 = w − y . This may be thought of as a local truncation of a Tay-

or’s series. We index the k -nearest points to w by k j , ordered k 1 <

 2 < .. < k k monotonically with respect to distance from w , assum-

ng an underlying metric space. For a “good fit,” just as realized by

ny Taylor polynomial, fit is better if h is small. So we would de-

and that { y i } N i =0 
“fills” the space adequately so that for any w we

re likely to select that the k -nearest data points will be “close-

nough” for a good estimate. A sufficient condition for a long orbit
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to { y i } N i =0 
likely “fill” the space, is to assume that T is ergodic. Ex-

panding the precision suggests a quadratic model of T | w 

as, 

y = T 0 + DT · h + 

1 

2 

h 

t · H · h, (2.2)

where H is related to the Hessian matrix of second derivatives, and

higher ordered models follow similarly. However, we will gener-

ally work here with local affine models and assume that there is

enough data density to justify this; note that higher order mod-

els require more parameters to be fitted and therefore more data

for good statistics of the fitting to balance against the concept that

higher ordered models have generally good local truncation error.

Thus it can be a losing proposition to increase the order of the

model to reduce error, considering limited data. 

The d parameters of T 0 and the d 2 parameters of DT of Eq.

(2.1) may be estimated by least squares according, 

 = X · α + ε, (2.3)

by corresponding normal equations [14,15] , X 

t · X · α = X 

t · Y ,

which is the convenient matrix form of linear regression, and this

maintains the same vector form regardless of the degree of the fit-

ted polynomial. For an unbiased model, expectation of the random

variable is E( ε) = 0 . The word “linear” refers to the linearity of co-

efficients which combine multiple linearly independent terms. For

the affine model, one chooses, 

 = 

⎡ 

⎢ ⎣ 

y t 
k 1 +1 

y t 
k 2 +1 

. . . 

y t 
k k +1 

⎤ 

⎥ ⎦ 

, and X = X 1 = 

⎡ 

⎢ ⎣ 

1 y t 
k 1 

1 y t 
k 2 

. . . 

1 y t 
k k 

⎤ 

⎥ ⎦ 

, (2.4)

while for the quadratic model, Eq. (2.2) , 

X = [ X 1 : X 2 ] , (2.5)

and, 

X 2 = 

⎡ 

⎢ ⎣ 

y k 1 y 
t 
k 1 

y k 2 y 
t 
k 1 

. . . y k d y 
t 
k 1 

y k 1 y 
t 
k 2 

y k 2 y 
t 
k 2 

. . . y k d y 
t 
k 2 

. 

. . . 

y k 1 y 
t 
k k 

y k 2 y 
t 
k k 

. . . y k d y 
t 
k k 

⎤ 

⎥ ⎦ 

, (2.6)

is a convenient way to write quadratic terms. Formally, whatever

the order of the local polynomial estimation, in this matrix nota-

tion such as Eq. (2.5) , the normal equations are, 

X 

t · X · a = X 

t · Y , (2.7)

and the fitted parameters are, 

a = ( X 

t · X ) −1 · X 

t · Y , (2.8)

if this inverse exists, and usefully if it is not an ill-conditioned

problem. The more numerically stable solution Eq. (2.3) is by

Penrose-Pseudo Inverse X 

+ of X , as found by the Singular Value

Decomposition, (SVD) [16] , 

a = X 

+ · Y . (2.9)

Note that if Y has just one column (in the case that the phase

space, M ⊂ R 

d is d = 1 -dimensional), then this pseudo-inverse so-

lution, X 

+ · Y solves the Euclidean norm of the least squares so-

lution ‖ · ‖ 2 of Eqs. (2.3) and (2.4) , (ordinary least squares, OLS),

but in the case that it has multiple columns, d > 1, this is the so-

called “multiple right hand side” (MRHS) regression problem and

the optimization is in terms of the Frobenius-norm, ‖ · ‖ F . This is

summarized, 

a = X 

+ · Y = argmin ‖ X · a − Y ‖ ∗, where ∗ : 

= 2 if d = 1 , and ∗ := F if d > 1 . (2.10)

This standard fact is reviewed in the Appendix B , Section 9, as it

is important for extension of these concepts to a Tikhonov regular-

ized version which we will develop in subsequent sections. 
. Global models 

In practice, the methods of the previous section can only be

nterpreted as a global modeling strategy in the following sense.

ince for each point w to be forecast, a model T | w 

can be built

rom the data using the k -near neighbors following the kNN and

odeling prescription Eqs. (2.4) –(2.9) , then each of the matrice of

tted parameters, pointwise, are a function of w , a ( w ). Note that

he step of collecting the k -near neighbors for each chosen w is a

onlinear thresholding function. 

In this section we will rewrite the method of Eqs. (2.4) –(2.9) ,

s a single equation so as to emphasize global aspects, but more

mportantly, as a precursor step to develop the regularity method

n the following section. That is, given a finite set of w values to

e forecast, formally rewriting the multiple instances of Eqs. (2.4) –

2.9) is possible in the form of a single equation. This is more than

 formality, since it will allow us to expand to a single Tikhonov

egularized form. Note that the rewriting of the collection of local

odels as a single global equation will allow us to move toward

dding Tikhonov forms to emphasize regularity. 

We reiterate the assumption that there are L states w where we

ill repeat Eqs. (2.4) –(2.9) , to fit parameters a ( w ). Denote these,

 w j } L j=1 
, and assume that no w j is amongst the fitting data to pre-

ent triviality, w j �∈ { y i } N i =0 
, j = 1 , .., L . Building and collecting a lo-

al model of the transformation T , one for each w j , reminds of

uilding a manifold as an atlas of charts, [17] . 

For each w j we write an equation of the form, Eq. (2.4) , indexed

o emphasize that the k -near neighbors involved have been col-

ected to be near a specific data point w j , 

 (w j ) = 

⎡ 

⎢ ⎢ ⎣ 

y t 
k j 

1 
+1 

y t 
k j 

2 
+1 

. . . 

y t 
k j 

k 
+1 

⎤ 

⎥ ⎥ ⎦ 

= 

[ | 
y t 

k j +1 | 

] 

, and X (w j ) 

= 

⎡ 

⎢ ⎢ ⎣ 

1 y t 
k j 

1 

1 y t 
k j 

2 

. . . 

1 y t 
k j 

k 

⎤ 

⎥ ⎥ ⎦ 

= 

[ | 
1 y t 

k j | 

] 

, (3.1)

e have rewritten in this equation also in a second form for Y ( w j )

nd X ( w j ) in terms of y t 
k j 

denoting running through the index val-

es of the near neighbors of w j , 0 ≤ k 
j 
i 

≤ N for i = 1 , .., k by the

ertical lines | as space holders, that they are a different notation

or the matrices on the left but with less indexing. Finally, with

hese we write, 

orm 1: 

[ | 
y t 

k j +1 | 

] 

= 

[ | 
1 y t 

k j | 

] 

· a j (3.2)

hich states the fitted a j of Y (w j ) = X (w j ) · a j , and superscripts j

hroughout, are just used as indexing rather than exponents. Sum-

arizing sizes, Eq. (3.6) describes that a k × d matrix equals a

 × d + 1 matrix times a d + 1 × d matrix. 

Now for clarity of presentation, consider the simplest scenario,

hat d = 1 . As such, we are fitting a one-dimensional system, from

bserved data, (e.g. such as the logistic map). In this case a =
 a 1 , 1 , a 2 , 1 ] 

t is a 2 × 1 matrix, denoting a line y = a 1 , 1 + a 2 , 1 x fitting

he mapping T of kNN model, one line for each set of { k j 
i 
} k 

i =1 
for

ach w j . We have called Eq. (3.2) to be “Form 1,” since now we will

rite other equivalent forms. By “equivalent form”, we mean that

hen expanded, they denote equations defining exactly the same

et of points (line). That is, generally their solution sets are identi-
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al. We define another equivalent form to Eq. (3.6) as follows, 

Form 2: 

[
1 0 

a j 
1 , 1 

a j 
2 , 1 

]
. ·

[
1 1 .. 1 

y t 
k j 

1 
+1 

y t 
k j 

2 
+1 

.. y t 
k j 

k 
+1 

]

= 

[
1 1 .. 1 

y t 
k j 

1 

y t 
k j 

2 

.. y t 
k j 

k 

]
(3.3) 

t is immediate to see for this simple d = 1 case that this Form 2 is

quivalent to Form 1. We further may rewrite Form 2 to become,

orm 3: A 

j · � j = � j ′ , (3.4) 

here, �j and �j ′ , are the 2 × k matrices of data in Eq. (3.3) ; the
 denotes the T image, so y i +1 := y ′ 

i 
= T (y i ) . The important distinc-

ion between Form 1 and Form 2 is that while they denote state-

ents of equivalent solution sets, with equivalent parameters en-

oded in a 2 × 1 matrix a , or alternatively stated in 2 × 2 matrix

orm of Eq. (3.3) , A 

j , the “dummy” 1’s included in the state, 

= [1 y ] t , so, � j = [ φ
k j 

1 

, φ
k j 

2 

, .., φ
k j 

k 

] , (3.5)

nd likewise for �j ′ , will allow for a better interpretation of the

lobal fit in an operator setting; the resulting global operator actu-

lly represents a transfer operator which we will explore in future

orks. 

Now we proceed to build a global model, and then following

hat, we will regularize. We label with a “G” for global version of

orm 1, across all the data { w j } L j=1 
to be fitted, 

Form 1G: 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

| 
y t 

k 1 +1 | 
−
| 

y t 
k 2 +1 | 
−
: 
−
| 

y t 
k L +1 | 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

kL ×d 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

| 0 0 0 

1 y t 
k 1 

0 0 0 

| 0 0 0 

− − − −
0 | 0 0 

0 1 y t 
k 2 

0 0 

0 | 0 0 

− − − −
: 

− − − −
0 0 0 | 
0 0 0 1 y t 

k L 

0 0 0 | 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

kL ×L (d+1) 

·

⎡ 

⎢ ⎣ 

a 1 

a 2 

: 

a L 

⎤ 

⎥ ⎦ 

L (d+1) ×d 

,

(3.6

here we have included the statement of sizes of the matrices in

he equation. Thus we see that Form 1G is uncoupled between the

ndividual collections k j . So this is simply L statements of uncou-

led versions of Form 1, Eq. (3.6) , one for each j = 1 , .., L, stacked

nd offset. The Tikhonov regularity, to be imposed in the next sec-

ion, will be the concept that will end up coupling the blocks of

he equations. For now, labeling these three matrices, in order, we

olve, 
Y = X · A , with either least squares or Frobenius − norm solution , 

A = X 

+ · Y, (3.7) 

s again equivalent to Eq. (2.9) L -times, by lack of coupling between

ny groups of the k -neighbor pairings. Again as in Eq. (2.10) , and

eviewed in Appendix B 9, Eq. (3.7) yields either the OLS solution

inimizing 2-norm objective if d = 1 , but the Frobenius-norm ob-

ective if d > 1 corresponding to MRHS. 

So what is the advantage of writing a global Form 1G like

his when it reduces to smaller and more computationally efficient

orm 1, L -times? There are two advantages. Form 1G allows us per-

pective to describe global transfer operator through the following

orm 2G, to be explored in future works. The second advantage

hich we will emphasize here is the possibility of regularization

iscussed in the next section. 

Let, 

orm 2G: A · � = �′ globally extends Eq. (3.3) across, 

j = 1,..,L, by, (3.8) 

 L (d+1) ×L (d+1) = diag(A 

1 , A 

2 , .., A 

L ) , �

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

�1 

−
�2 

−
: 
−
�L 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

L (d+1) ×k 

, �′ = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

�1 ′ 
−

�2 ′ 
−
: 
−
�L ′ 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

L (d+1) ×k 

, (3.9) 

ote that A 

j parameter matrices, �j and �j data matrices and

he state variable φ are defined in Eqs. (3.3) - (3.5) . The diag state-

ent used is as usual the L (d + 1) × L (d + 1) matrix with smaller

 + 1 × d + 1 matrices A 

j on the diagonal. Thus �′ = A · � has an

nteresting interpretation as a transfer operator. 

As already mentioned in the introduction, the lack of regular-

ty is clearer upon inspection of Eq. (3.6) . There is nothing explicit

o connect the estimated parameter values to each other besides

he implicit concept that the near neighbors distances should vary-

ng continuously. In [11] we showed that this connection suggests

ontinuity in fitted parameters but not necessarily any greater reg-

larity. One would expect at least continuity in forecasts of T ( w ),

nd more likely higher derivatives are continuous reflecting the

rue regularity of the underlying T , if is assumed that T ∈ C r ( M )

or some r ≥ 0. Stated generally, if we have a large data set, { y i } N i =0 
ampled from an ergodic T , then we would expect that the kNN

ethod will converge to a continuous solution descriptive of T ,

ith respect to increasing N . However, there will tend to be jumps

n practice, since as w varies only slightly, then the specific k -

ear neighbors, { y k j } k j=1 
will not change, and so the local model

ill vary only slightly. On the other hand, two nearby w values

ay have different sets of k neighbors and so we see there can

e jumps of fitted parameters, and correspondingly the model will

ump, as will forecasts. So in the following we discuss how to re-

ard regularity by coupling nearby forecasts within the Tikhonov

egularity formalism. 

. Tikhonov regularization 

The goal of conferring continuity or higher ordered regular-

ty of the resultant predictions can be stated within the context

f Tikhonov regularity theory. Given X ∈ R 

kL ×L (d+1) from Eq. (3.6) ,

hen suppose a regularization matrix, B ∈ R 

L (d+1) ×L (d+1) . For initial

resentation, let d = 1 to describe the standard Tikhonov formu-

ation of an optimization problem. Proofs and background of this

art of convex optimization theory leading to closed formula so-

utions of a Tikhonov regularized problem can be found in varia-

ional calculus terms in [18] , and also in [19–21] , but in this work
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we follow the finite vector space representation in terms of matrix

theory computations as written and proved in [16] , in particular

on pp. 309, Theorem 6.1.1, that we now review. Let, 

min 

A 

‖X · A − Y‖ 

2 
2 + λ‖B · A ‖ 

2 
2 . (4.1)

whose solution can be designed to emphasize the desirable reg-

ularity properties of A , depending on how we define B, and de-

pending on the specific choice of λ. We reiterate that since tem-

porarily we have assumed d = 1 , then in fact A is of size, L (d +
1) × d = 2 L × 1 ; see Eqs. (3.6) and (3.7) . It has been shown, which

we draw from [16] specialized to this setting, that the normal

equations follow as, 

(X 

t · X + λB 

t · B) · A = X 

t · Y, (4.2)

are nonsingular when nul(X ) ∩ nul(B) = { 0 } . Solution of this prob-

lem can be described by inverting the left hand side matrix, but it

is numerically practical by means that Van Loan [16] describes as

Generalized Singular Value Decomposition (GSVD) for such prob-

lems with two matrices. On the other hand, rewrite Eq. (4.1) with,

 = X , x = A , b = Y, and L = B, (4.3)

as, 

min 

x 
‖ C · x − b‖ 

2 
2 + λ‖ L · x ‖ 

2 
2 = min 

x 
‖ 

[
C √ 

λL 

]
· x −

[
b 
0 

]
‖ 

2 
2 , (4.4)

(which we see is equivalent by expanding terms [ C t | √ 

λL t ] ·[
C √ 

λL 

]
· x and [ C t | √ 

λL t ] ·
[

b 

0 

]
). Then we get the second version of

the standard Tikohonov problem which becomes an OLS, to esti-

mate 

min ‖ D · x − e ‖ 

2 
2 , by, x LS = D 

+ · e, with, 

D = 

[
C √ 

λL 

]
, and e = 

[
b 
0 

]
. (4.5)

Therefore, for our general problem of MRHS, d > 1, it becomes

clear how to generalize the Tikohonov problem, but in terms of the

Frobenius norm. Problem Eqs. (3.6) and (3.7) becomes, 

min 

A 

‖X · A − Y‖ 

2 
F + λ‖B · A ‖ 

2 
F . (4.6)

We have just shown that Tikohonov-Frobenius form of the prob-

lem has a general solution by pseudo-inverse of an appropriately

stated matrix, considering the discussion of the relationship be-

tween 2-norm and F -norm solutions in Appendix B 9 depending

on the number of columns of the RHS, which we summarize by

the following: 

The general Tikhonov regularization problem, 

A T R = argmin A ‖X · A − Y‖ 

2 
∗ + λ‖B · A ‖ 

2 
∗ . (4.7)

has a solution as a Penrose pseudo-inverse as follows, 

A T R = 

[
X √ 

λB 

]+ 
·
[
Y 

0 

]
(4.8)

and the minimization is in terms of ∗ = 2 -norm if d = 1 , and ∗ =
F -norm if d > 1. 

Note that, 

[
X √ 

λB 

]
is (k + d + 1) L × L (d + 1) as it is a stacking of

kL × L (d + 1) and L (d + 1) × L (d + 1) matrices, and likewise, 

[
Y 

0 

]
is (k + d + 1) L × d and the zeros matrix must be of appropriate

size, L (d + 1) × L (d + 1) . 
. Defining a Laplacian for regularity 

It remains to discuss how to design the regularity matrix B to

onfer the level of continuity regularity expected in the inferred

ystem T that we are modeling. There are several different com-

on ways to develop L within Tikohonov theory. For example,

hoosing the identity matrix, B = I penalizes “large” x in addition

o the data fidelity which emphasizes the fitting C · x ≈ b , and this

ields what is also called “ridge regression”. On the other hand,

hoosing, 

 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

2 −1 0 0 . . . 0 −1 

−1 2 −1 0 . . . 0 0 

0 −1 2 −1 . . . 0 0 

. . . 

0 0 . . . 0 − 1 2 −1 

−1 0 0 . . . 0 −1 2 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

(5.1)

s a commonly used Laplacian that emphasizes regularity of the

pproximate second derivative, and we will adjust this concept

o meet our needs. This matrix B rewards adjacent indexed val-

es to have small differences between them. The key word here is

adjacent”, and this requires clarification to emphasize that those

oints to be regularized must respect the underlying topology of

he space, as sampled by the data orbit that may not have a spe-

ific structure. This particular B is not likely the correct matrix to

escribe the regularity that is appropriate for sampled data w j , and

o in what follows we describe how to build a comparably defined

aplacian matrix B that respects the actual proximity between data

oints to reflect the underlying topology in the resultant estima-

ion. Albeit, this concept is simple to describe, but the technical

ndexing details are not as simple as perhaps one would expect,

ue to necessity of keeping track of all the near neighbors’ indices

f the unstructured data { y i } N i =0 
. So we have included these de-

ails in the Appendix A 8 as to how to form B reflecting s -nearest

eighbors { k j 
i 
} from the set { w j } L i =1 

for each w j , and then associat-

ng this to a repeated Laplacian regularity matrix, B. 

. Illustrative results 

There are several general schemes of choosing best λ level

f regularization in Eq. (4.7) to balance the effects of over reg-

larization of a large λ against over fitting when λ is too small

hich puts too much emphasis on data fit with not enough at-

ention to regularity. There are many schemes within the prac-

ice of regularity theory, most notably the U -curve method and the

 -curve method, but we feel that in the dynamical systems set-

ing of prediction, a simple scheme as follows can be described,

onsidering Fig. 1 as an example. Here we see the balance be-

ween ‖X · A − Y‖ 2 ∗ + λ‖B · A ‖ 2 ∗ as λ is swept through a logarith-

ic scale. The best least squares fit ‖X · A − Y‖ is expected to oc-

ur when no other competing concern is balanced into the full

unctional, which is at λ = 0 . So clearly we see that the blue curve

s monotonically increasing with λ. But regularity is the com-

eting term in the Tikhonov form, and so ‖B · A ‖ 2 ∗ decreases by

esign as it is included increasingly more importantly as λ in-

reases. Nonetheless when multiplied by λ, the full regularity term

‖B · A ‖ 2 ∗ initially increases with λ, for a resultant sum the green

urve ‖X · A − Y‖ 2 ∗ + λ‖B · A ‖ 2 ∗ , which while it is at a minimum at

mallest λ, one must design how important to consider the second

actor, the regularity is for their problem. 

Our interpretation of this balance of choosing λ is generally

hat quality prediction is most important, but with a small value

f λ, this can greatly improve the regularity costing only a minor

oss of data fidelity (prediction). Thus we interpret that λ = 10 −1 

escribes such a sweet spot. In broader terms, Fig. 1 can be de-

cribed as revealing both the strengths and weaknesses of bring-
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Fig. 1. Tikhonov regularized predictions curves as a function of the regularity parameter λ are varied through a logarithmic scale. Considering the Tikhonov regularity 

expression, Eq. (4.7) , (Blue) Data fidelity ‖X · A − Y‖ 2 ∗ illustrating the quality of fit emphasizes least squares for small λ but sacrifices this part of the full objective function 

as λ increases. (Red dashed) Regularity ‖B · A ‖ 2 ∗ as λ increases becomes more important in the optimization problem and thus decreases, but (Red) λ‖B · A ‖ 2 ∗ is nonetheless 

increasing with λ starting at small λ, resulting in (Green) a total cost of the objective function balancing the two competing terms in, ‖X · A − Y‖ 2 ∗ + λ‖B · A ‖ 2 ∗ . In this 

instance, considering the blue data fidelity to be of primary important (model fit) to be of high quality then inferring a small degree of regularity red dashed curve, suggests 

a good balance of these at roughly λ = 0 . 1 . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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ng a global perspective to prediction, explicitly regularizing, and

s contrasted to traditional local modeling. In this term, consider

hat when λ = 0 then regularity is not emphasized and we have

he special case which is traditional local forecasting as measured

n the global scale by averaging across the sample space, as rep-

esented by the norm bars. Notice that λ = 0 leads to the smallest

orecast error on average, ‖X · A − Y‖ 2 ∗ (also called “data-fidelity”

n the language of Tikhonov regularization), but also low regular-

ty, ‖B · A ‖ 2 ∗ meaning that forecasts can vary more significantly be-

ween nearby points. 

On the other hand, we can over regularize as we see that for

arger λ, say λ = 1 , then regularity is large which may be a de-

irable property in general, but at both the cost of good fore-

asts since we see errors in terms of large data-fidelity (globally

veraged error) ‖X · A − Y‖ 2 ∗ , are bad and perhaps primary. Also,

ven a little too much regularity may not be desirable if it is be-

ond what is natural to the system, but how much is too much

ould be unknown. Therefore we recommend a relatively conser-

ative small λ = 0 . 1 since this tends to improve regularity without

 great global cost of fidelity. While the standard principled “U -

urve” method, [19] may not be appropriate in this setting since

ood forecasts are so important we recommend the more conser-

ative smaller λ values. 

. Conclusions 

Prediction of chaotic and complex time series is clearly a topic

f intrinsic interest and so it is not a surprise that it has been

 long running research thread within the community to extend

ethods to interpret and predict from observed data. While lo-

al methods based on regression of local polynomial models have

een a leading method for decades, especially when the data is
epresented in time delay embedding coordinates. We have dis-

ussed how such predictions are lacking in global perspective and

s such they can lack in global regularity one may expect of the

nderlying physical system. Not only have we presented a method

o cope with global modeling, but since it is based on the well

ounded Tikhonov regularity theory, our approach suggests natu-

ally that suppressing spurious fluctuations should be approached

ithin aspects that incorporate both local and global information

ithin a natural framework. While we expect our method applies

qually well to predicting data from discrete time maps, as well as

ow maps from differential equations, even if data is presented in

ime delay embedding coordinates, we have not included the later

heory here since it is so well covered in many places. This leaves

he focus of this paper with the aspect which is new. The new el-

ment here is how to link an atlas of local models and then to

mpose regularity upon these models within the Tikhonov frame-

ork. As the imposed regularity λ is adjustable then an apriori as-

umption of the degree of regularity can be imposed as a principle

f least alteration to the local predictions while positively improv-

ng the global regularization. 

cknowledgments 

This work was supported by the Office of Naval Research under

rant contracts N0 0 014-11-1-0715, and N0 0 014-15-1-2093. 

ppendix A. Regularity Laplacian for unstructured data 

From Section 4 , we require a regularity matrix, B that agrees

ith the association structure of the data { w j } L i =1 
. All notation is

he same as in that section. We must define our Q , Eq. (5.1) , to

mphasize the actual proximity of the points w j in the underlying
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phase space, reflected in each j th row of Q . We will build a graph

Laplacian that rewards regularity when underlying points w i and

w j are close in the phase space M . Recall that each d + 1 succes-

sive rows of A , from Eqs. (3.7) and (4.1) , 1 ≤ j ≤ L , reflect the ref-

erence points successively { w j } L j=1 
, so that each row corresponds

to a model developed for a w j . Consistent with the notation of Eq.

(3.1) for the k -near neighbors, kNN, let { k j 
i 
} s 

i =1 
be the indices se-

lecting the points s -closest to w j from { w j } L j=1 
(not including w j 

itself) in order of distance, which are { w 

k 
j 
i 

} s 
i =1 

⊂ { w j } L j=1 
. We can

catalogue this adjacency of points by an adjacency matrix the gen-

erates a directed graph. Let G be an L × L matrix that consists of

all zeros, except for certain indices that we define to be ones as

follows, 

G 

j, k j 
i 

= 1 since y 
k j 

i 

is the i th closest point to w j , 

1 ≤ i ≤ s, 1 ≤ j ≤ L, (8.1)

reflecting a connection when two points are close. It follows that

the degree of the j th vertex of this generated graph is the j th row

sum of G , but by construction, these are all s , 

d eg( j ) = 

L ∑ 

i =1 

G j,i = s, for all 1 ≤ j ≤ L. (8.2)

Finally the graph Laplacian is constructed from the adjacency ma-

trix by the standard computation, 

Q = d iag(d eg( j )) − G, (8.3)

that is the degrees of each vertex on the diagonal and negative

ones at each position of G that is an adjacency one. And since, 

d eg( j ) = s, (8.4)

then, 

Q = d iag(d eg( j )) − G = sI − G, (8.5)

where I is the identity matrix. Of course one does not need to use

s = k, where recall that we used k -near neighbors for the regres-

sion steps leading to Eq. (3.1) . Notice for sake of example that if

we choose, s = 2 and in the very special case that all of the data is

linearly ordered on a circle, then Q constructed by Eqs. (8.1) –(8.3)

is similar to that standard graph Laplacian of a linear lattice shown

in Eq. (5.1) . 

The general scenario of unstructured data in a space of several

dimensions, respecting the relative closeness of the sample points

in the underlying phase space yields a graph Laplacian Q with per-

haps not readily apparent structure. To allow for the structure of

each one row in the graph of G , Eq. (8.1) encoded in Laplacian

Q , to emphasize continuity between each of the successive cor-

responding d + 1 rows of A corresponding to the same point in

phase space w j . Since A is L (d + 1) × L (d + 1) , then so B must be

the same size, but we wish B to describe the regularity encoded

by Q just defined in Eq. (8.3) . 

Appendix B. On OLS, and the Frobenius norm. 

Here we briefly review a well known fact, that Eq. (2.10) de-

scribes the relationship between ordinary least squares (OLS) when

the right side data is a vector, where the minimizer is in terms

of the two-norm of the residual. The general problem that arises

in this paper occurs when the right hand side data has multi-

ple columns, (called multiple right hand side, MRHS). The residual

of the analogously formed minimizer is in terms of the Frobenius

norm. Note that we have changed notation in this appendix to re-

flect standard use of least squares to solve problems Ax = b. 
Let A , be m × n , and b i be n × 1 be given data, and m > n as

he overdetermined case of more rows than columns, (stated more

arefully, the column space of A is full) and we wish to solve, 

 · x i ≈ b i , (9.1)

or any one of A fixed data matrix, but several data vectors, b i , i =
 , .., p. Then for each i , one may solve the least squares problem, 

 

LS 
i = argmin ‖ A · x − b i ‖ 

2 
2 . (9.2)

ote that this may be solved by either of several popular meth-

ds, theoretically equivalently but algorithmically differently, with

ometimes important different computational complexity as well

s stability issues each. These include QR decomposition, SVD [16]

o Penrose-pseudo inverse A 

+ , or directly by normal equations,

(A 

t A ) · x = A 

t · b i . In any case, assume we have a suitable mini-

izer for optimization, for x LS 
i 

, for each i = 1 , .., p. Then the follow-

ng is straightforward to describe the “least squares-like” solution

f the corresponding matrix problem, 

 · X ≈ B , (9.3)

alled the MRHS (multiple right hand sided) problem: 

Theorem : If A is m × n , and B = [ b 1 | . . . | b p ] x 
LS 
i 

= argmin ‖ A ·
 i − b i ‖ 2 , for each i = 1 , .., p, and p > 1, then if X 

LS = [ x LS 
1 
| . . . | x LS 

1 
]

s a minimizer in the sense of the Frobenius-norm, rather than the

-norm, meaning, 

 

LS = argmin ‖ A · X − B ‖ F = A 

+ · B . (9.4)

Recall that the Frobenius-norm ‖ C ‖ F of a m × n matrix C is

efined, 

 C ‖ 

2 
F = 

m,n ∑ 

i =1 , j=1 

| C i, j | 2 , (9.5)

nd the 2-norm ‖ v ‖ 2 of a m × 1, vector, is defined, ‖ v ‖ 2 
2 

= 

∑ m 

i =1 v 2 i 
.

So the proof of this fact follows the partitioning of the matrices.

f the residuals squared of each, i = 1 , .., p, 

 r i ‖ 

2 
2 = ‖ A · x i − b i ‖ 

2 
2 . (9.6)

hen, 

 A · X − B ‖ 

2 
F = ‖ A · [ x 1 | . . . | x p ] − [ b 1 | . . . | b p ] ‖ 

2 
F 

= [ A · x 1 − b 1 | . . . | A · x p − b p ‖ 

2 
F = 

= ‖ r 1 | . . . | r p ] ‖ 

2 
F = 

m ∑ 

j=1 

p ∑ 

i =1 

‖ [ r i ] j ‖ 

2 
2 = 

p ∑ 

i =1 

‖ r i ‖ 

2 
2 , (9.7)

here r i denotes the i th residual vector, and [ r i ] j denotes the j th

scalar) indexed value of that vector. 
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