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Abstract

Flow fields are determined from image sequences obtained in an experiment in which benthic

macrofauna, Arenicola marina, causes water flow and the images depict the distribution of a

tracer that is carried with the flow. The experimental setup is such that flow is largely two-

dimensional, with a localized region where the Arenicola resides, from which flow originates.

Here, we propose a novel parametric framework that quantifies such flow that is dominant

along the image plane. We adopt a Bayesian framework so that we can impart certain physical

constraints on parameters into the estimation process via prior distribution. The primary aim

is to approximate the mean of the posterior distribution to present the parameter estimate

via Markov Chain Monte Carlo (MCMC). We demonstrate that the results obtained from the

proposed method provide more realistic flows (in terms of divergence magnitude) than those

computed from classical approaches such as the multi-resolution Horn-Schunk method. This

highlights the usefulness of our approach if motion is largely constrained to the image plane

with localized fluid sources.

1 Introduction

Determining motion from image sequences is a common inverse problem encountered in many

natural sciences and engineering fields. Classical approaches such as the Horn-Schunk method [21]

globally impose incompressibility to the entire image, since they are designed primarily for rigid-

motion estimation in image processing or video analysis, and promote flow that varies smoothly
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in space. A comprehensive survey of these methods is given in [3, 17]. Variational methods and

algorithms for fluid motions were developed for the geophysical fluid motion estimation [1, 10, 12,

20, 39]. However, these methods are hardly a hand-in-glove fit for all general applications but

rather designed with different emphases, e.g., vorticity estimates or temporal smoothness.

Optical flow approaches have also been used in oceanography, most commonly in the determination

of surface flow from satellite imagery or derived products such as sea surface temperature [11, 27].

Here, we present an approach that is aimed at the quantification of fluid flow in marine sediments.

Advective flow of porewater in marine sediments can be caused by a number of mechanisms [40],

including (1) deeply sourced buoyancy causing the upward flow observed at hydrothermal vents

or cold seeps (e.g. [4, 6]), (2) flow over topographic features, such as sand ripples [41] or (3) the

activity of benthic macrofauna [50]. Termed bioirrigation, biologically induced flow can be a major

influence on solute exchange between sediment and overlying water [30], organic matter cycling or

sediment cracking [49]. Its impact on sediment biogeochemistry is evident from observations with

planar optodes, revealing the profound, spatially and temporally dynamic imprint of the activity

of macrofauna [34].

Benthic macrofauna are abundant in many marine sediments, with a typical mixing depth of about

10 cm [7, 44], and operate at scales that are amendable for ex situ laboratory studies. Bioirriga-

tion is most commonly estimated from tracer concentration profiles, from which it is quantified

as the process required to reconcile the observations with simulated concentration profiles after

accounting for the contribution of diffusion, or known sources and sinks [16, 31]. More recently,

fluid flow induced by bioirrigation has been estimated from images using (classical) correlation and

gradient methods [14, 22]. Kaza [22] employed the classical Horn-Schunk [21] and Lucas-Kanade

methods [24], which promote a globally or locally smoothly varying flow and do not provide a

systematic way to measure reliability of a recovered velocity field.

In this study, we expand on that work and introduce a novel approach to quantify porewater flow

induced by the activity of burrowing organisms in marine sediments. Our approach is tailored to the

problem at hand in that it does not impose incompressibility to the entire image but applies a novel

parametric approach and includes uncertainty quantification. We use a Bayesian approach similar

to [42, 43], where the velocity field is probabilistically estimated by combining a model prediction

simulated by a given fluid model with an actual observation (i.e. image sequences) [9, 28, 45]. It

avoids the difficult task of deriving the Euler-Lagrange equations to achieve the desired result. The

Bayesian framework also provides an uncertainty quantification of the estimated flow field that can
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give an insight into the error statistics of the optical flow algorithm.

2 Data description and image preparation

A thin (ant-farm style) aquarium (0.22 m height× 0.445 m width× 0.022 m depth) was set up to

study the effect of macrofauna on porewater flow. The aquarium was filled with approximately

0.16 m of near-shore muddy sand type sediment overlain by seawater. After letting the sediment

settle for 1 week, a lugworm, Arenicola marina, an abundant macrofauna in the coastal ocean of

Europe and North America, was placed in this aquarium. Lugworms are a few centimetres long,

and are subsurface deposit-feeders who pump water through their burrows into the sediment (e.g.

[35]), acting as ecosystem engineers [47]. Lugworm inject fluid into the sediment by inducing a

peristaltic tail-to-head moving pumping wave[36]. This is done at the feeding pocket, located at

the dead end of their J-shaped burrows. When the lugworms are pumping, water is moved through

this structure and then injected into the sediment at the dead-end. In previous work, similar

organisms (Abarenicola marina, a larger relative to Abarenicola pacifica with similar behavior, see

e.g. [53]), have been modeled with radius of the feeding pocket of 2.5mm [33]. Given this small

size, we describe this as a point source of water originating from outside the modeled domain

consistent with observations and brought to the injection location via a burrow that is behind the

experimentally observational plane. For the short time interval (on the order of minutes) covered

by the images analyzed in this study, the burrow structure and injection location is considered

constant. Qualitatively, flow velocities decrease with distance form the injection site and depend

on the spatial variations in sediment permeability. As lugworms pump intermittently [54], the

resulting flow velocities are temporally variable.

The lugworm was allowed to acclimate for 7 days. During this time water supply was maintained

and air was bubbled in the overlaying water. The aquarium was maintained in the dark.

The flow induced by the lugworm’s activity was visualised by adding fluorescein, a dissolved fluo-

rescent tracer, through a thin pipette to a location in the sediment close to where the burrowing

animal resided. Its redistribution in the sediment - caused by pumping of the arenicolid worm -

was captured as a series of high-resolution images of the fluorescent flow tracer. The aquaria was

illuminated with blue led lights at an approximate wavelength of 450 nm, and a yellow barrier

’photographic gel’ filter was used to reduce the blue light captured in the images. A 1 g per liter of

fluorescein was added to a 32 ppt reagent grade NaCl solution to match the density of the resident

pore water (fluid). RGB (red, green, blue) images were captured with a Fujifilm FinePix S5Pro
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model at resolution 2848 × 4256 pixels every 10 s. These images are subsequently referred to as

real RGB images, and three out of the 41 images analyzed are displayed in Figure 1.

The use of a thin aquarium ensures that animal activity leads to a flow visible on the aquarium

surface and the assumption of a two-dimensional optical flow. Thus, the incompressible 2D flow is

expected to be largely divergence free, except near the location where the fluid is injected, which

may not be parallel to the image plane.

Figure 1: Real RGB images depicting spatial tracer distribution in a 0.22 m× 0.445 m× 0.022 m
aquarium where bioirrigation is simulated at the relative times t0 = 0 s, t1 = 190 s and t2 = 390 s .

The real RGB images are converted to 8 bit grey scale using the linear combination [51]

F(x, y, t) = 0.2989R(x, y, t) + 0.5870G(x, y, t) + 0.1140B(x, y, t), (2.1)

where R(x, y, t), G(x, y, t) and B(x, y, t) denote red, green and blue colour channel intensities. The

coefficients in (2.1) using the Luma rec 601 conversion implemented in the MATLAB rgb2gray

command. Arrays arising from (2.1) are subsequently referred to as real grey scale images, and a

subset of them are depicted in Figure 2. Importantly, the tracer concentration C is proportional to

F.
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Figure 2: False color gray scale images, whose intensities are obtained using the linear combination
in (2.1) with red, green and blue color channels depicted in Figure 1, and cropping boundaries
overlaid on top in red.

As we aimed at the quantification of flow in the subsurface, our analyses are carried out on the area

delineated in red in Figure 2 only, thus removing the overlying water (top 0.16 m) and a small area

4



near the bottom and sides of the aquarium, where the external lighting led to visible variations in

brightness that might negatively impact optical flow computations. This image cropping reduces

resolution to 1600 × 3680 m, resulting in > 11 million velocity components at the pixel level. To

lower computational burden, the real grey scale images were down-sampled by a factor of eight

using bilinear interpolation to a resolution of 200× 460.

3 Mathematical Modeling

Consider the Fokker-Planck equation in (3.1), where C(x, y, t) denotes tracer concentration, u(x, y, t)

is the velocity vector, and ∇ =

[
∂
∂x

∂
∂y

]T
is the gradient operator [32, 33].

(ϕC)t = ∇ · (ϕDe∇C− ϕuC). (3.1)

Let ϕ(x, y, t) denote sediment porosity, the ratio of void to total volume, on the order of 0.7 in sandy

sediments inhabited by Arenicola marina. Here, it is assumed to be a spatio-temporally constant

(for simplicity), so that

Ct = ∇ · (De∇C− uC). (3.2)

The scalar De ∈ R in (3.2) denotes the effective diffusion of the sediment, and is given by

De =
D

1− 2 lnϕ
, (3.3)

where D ∈ R is themolecular diffusion coefficient in aqueous solution. For fluorescein, D = 4.25× 10−2 m2 s−1

so that De = 2.48× 10−10 m2 s−1 [13]. Consider the Péclet number given by

Pe =
ℓ∥u∥2
De

, (3.4)

where ℓ > 0 is a length scale and ∥ · ∥2 denotes a Euclidean norm. Advection is the more prominent

solute transport mechanism when Pe ≫ 1. Now ℓ is O(10−2) m, in line with the dimensions of the

aquarium from which the real RGB images arise. Also, previous research suggests that the flow

speed ∥u∥2 of water induced by bioirrigating Arenicola marina is approximately O(10−6) m s−1−

O(10−5) m s−1 [22, 48]. This, alongside the earlier definitions of porosity and diffusion coefficient,

indicates that Pe ≫ 1. This motivates the assumption that diffusion is negligible, particularly in
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the region of interest in the vicinity of the burrow, so that (3.2) can be rewritten as

−Ct = ∇ · (uC). (3.5)

We will assume incompressibility and the condition ∇ · u = 0, whose validity for the current context

was discussed in previous research [22, 48]. It then follows that

−Ct = C∇ · u+ u · ∇C.

= u · ∇C.

(3.6)

The connection between (4.1) and (3.6) are made by assuming that tracer concentration is propor-

tional to grey scale intensity (i.e. C ∝ F)[22].

4 Horn-Schunck Method

For a velocity field to be estimated, a mathematical expression relating it to grey scale intensity

is required. Consider a pair of images, whose grey scale intensities are defined by F0(x, y, t0) and

F1(x, y, t1) for t0 < t1. An optical flow u(x, y, t) = [u(x, y, t) v(x, y, t)]T is an apparent motion field

mapping one image to the next. Conventional optical flow problem relies on the (pixel) brightness

constancy approximation. This is expressed mathematically in (4.1), where the subscripts x, y and

t denote derivatives with respect to the x-axis, y-axis and time [21].

Ft + uFx + vFy = 0. (4.1)

In the current context, this approximation can be justified by requiring the null-divergence of the

velocity in (3.5) at every image pixel. This is, however, ill-posed since two velocity components have

to be determined from one equation. To address this issue, a classical Horn-Schunk method was

developed based on a variational principle [21]. In particular, the Horn-Schunck method further

constrains the optical flow to be spatially smooth, which can be expressed mathematically as

∥∇u∥22 + ∥∇v∥22 < ∞. (4.2)
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Locating the optical flow that minimises (4.1) subject to (4.2), with respect to the spatial region

Ω that the images depict, can be expressed mathematically as

u = argmin
u

∫
Ω
(u · ∇F+ Ft)

2 + λ2(∥∇u∥22 + ∥∇v∥22)︸ ︷︷ ︸
I

dΩ (4.3)

where λ ∈ R is a smoothing parameter. Following [21], the Euler- Lagrange equations for (4.3) are

given by the following coupled system of PDEs, where ∆ is the Laplacian operator,

Fx(Fxu+ Fyv + Ft)= λ2∆u,

Fy(Fxu+ Fyv + Ft)= λ2∆v.

(4.4)

At the image pixel level, the system in (4.4) can be numerically solved in which the Laplacian is

approximated by

∆u ≈ u− u, u =
1

12


1 2 1

2 0 2

1 2 1

 ∗ u. (4.5)

The ∗ in (4.5) means a 2D convolution on the image pixel. In other words, u is a local weighted

average. After substituting the Laplacian approximation in (4.5) into (4.4), we can apply the Jacobi

iteration to obtain the following iterative scheme, where the subscript i denotes iteration indices,

ui+1 = ui −
Fx(Fxui + Fyvi + Ft)

λ2 + F2x + F2y
.

vi+1 = vi −
Fy(Fxui + Fyvi + Ft)

λ2 + F2x + F2y
.

(4.6)

The differential nature of the Horn-Schunk method can make it difficult to estimate a large dis-

placement and not robust to noise. In practice, a multi-resolution frame work (e.g. see [5, 37]) is

commonly used to mitigate these issues. This approach is based on an incremental estimate that

refines a previous estimate using finer resolution image at the next higher resolution level, which

is commonly referred to as “pyramid” level. At the top of the pyramid level, the estimation is

carried out at the original resolution. At the lower levels, the image is repeatedly down-sampled

for a pre-specified factor. The details of the multi-resolution Horn-Schunk method is discussed in

Appendix A. The number of pyramid levels is chosen as L = 3 here to obtain the results below.

Ideally, magnitudes of additional terms added to a current correction increment in (A.3) should

depend on how faithfully the associated optical flow mimics the unknown true solution. So if a
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current correction increment produces an optical flow that almost exactly mimics the true solution,

then magnitudes of additional terms in (A.3) at subsequent iterations should be approximately

zero. The magnitudes of the quotients in (A.3) can be controlled by the value of λ.

The smoothing parameter should not be so “small” that these quotients are considered “big” in

regions where contrast is low. Otherwise, optical flow speeds could then temporally increase to a

point where they are viewed as being unrealistically “large”. However, the smoothing parameter

should not be too “large”. This could induce an unrealistic high level of spatial smoothing. By trial

and error, the value of λ = 50 is chosen because it appears to be one of the “smaller” smoothing

parameter values where flow speeds do not become unrealistically “large” over time. This is ex-

amined by plotting a frequency distribution of flow speeds at each relative time point in Figure 3.
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Figure 3: Each column shows the frequency distribution of optical flow speeds obtained by the
multi-resolution Horn-Schunck method for λ = 50 and M = 1.

The number of iterations of (A.3) at each pyramid level, denoted by M, also needs to be defined.

The results here are shown for M = 1 as per the following justification. It appears that when

using M > 1, at later relative time points, the only region where flow points downwards is between

the likely location of the organism and the bottom edge of the down-sampled and cropped real

grey scale images. This suggests that there is outflow and no inflow at the top boundary of these

images, which roughly coincides with the sediment-water interface according to Figure 2. However,

given that the sides and bottom of the aquarium are impermeable, net flow across the sediment-

water interface should be zero. We expect some outflow in the regions near the aquarium walls

were cropped due to uneven lighting (Section 2). However, the qualitative assessment of tracer
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distribution in the overlying water (Figure 2), indicates that this flow is limited. Thus, M is chosen

to enforce a little inflow at later time points.
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Figure 4: The first column depicts optical flows, denoted by white arrows, arising from the multi-
resolution Horn-Schunck method when λ = 50 and M = 1 at the relative times t0 = 0 s (first row),
t1 = 190 s (second row) and t2 = 390 s (third row). They are overlaid on top of the down-sampled
and cropped real grey scale images associated with those relative times. The second column depicts
the associated divergences. Note that all parts of this figure have been further down-sampled by a
factor of four, for ease of presentation.

Figure 4 reveals undesirably “large” divergence magnitudes where they ought to be comparatively

“small”, i.e., away from the location where the worm activity induces flow (see spreading arrows

near the center of the top left panel). Furthermore, largest velocities are computed away from this

point, with no clear source of fluid flow being discernible. Thus, additional ways of imposing that

divergence magnitudes immediately tend to zero upon departure from the point of injection are

investigated. This is developed in the next section.
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5 Derivation of parametric framework

Arenicola marina inject water into the sediment at the dead end of often J-shaped burrows. Sim-

ulations of bioirrigation by the lugworm have shown that flow fields are largely unaffected by the

burrow structure itself [32]. Hence, we consider flow in the sediment being driven by a fluid source

located at a small injection pocket. Away from injection pocket, flow is considered two-dimensional,

parallel to the imaging surface, due to closely spaced front and back wall of the thin aquarium.

Therefore, the condition ∇ · u = 0 in incorporated within the Bayesian framework through the

prior distribution with the exception to this at the point (a, b), where the organism injects fluid. In

particular, we will write an ansatz for the velocity potential Φ(x, y, t) of a two-dimensional incom-

pressible point source with strength c > 0 centred on the point (a, b) ∈ R2, subject to boundary

conditions as discussed in Appendix A. The injection point induces fluid expansion with strength

c, suggesting that ∇ · u = c. All above requirements suggest the condition

∇ · u = cδ(x− a, y − b). (5.1)

We can write (5.1) in terms of a velocity potential by using u = ∇Φ.

∆Φ = cδ(x− a, y − b). (5.2)

To deal with the delta function on the right-hand side of (5.2), we follow the method demonstrated

in [2] to approximate the solution of (5.2) with that of

∆Φ = νΦ, (5.3)

where ν ∈ R is an eigenvalue. The ansatz of velocity potential of a two-dimensional incompressible

point source with strength c centred on the location (a, b) is given by

Φ(x, y) =
c

2π
ln
√

((x− a)2 + (y − b)2). (5.4)
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We use the separation of variables to solve (5.4), see Appendix B for the outline of the derivation,

Φ(x, y)= −
∞∑
j=0

∞∑
k=0

4c

LxLy

[(
kπ
Lx

)2
+
(
(1+2j)π

2Ly

)2
] cos

(
kπ

Lx
a

)
cos

(
(1+ 2j)π

2Ly
b

)

× cos

(
kπ

Lx
x

)
cos

(
(1+ 2j)π

2Ly
y

)
,

(5.5)

where [0, Lx]× [0, Ly] is the area under computation, see Figure 12. The infinite sums in (5.5) is

approximated with the finite sums with the first Mx terms for the inner sum and My for the outer

sum. In what follows, we choose Mx = My = 200. Utilising the ansatz in (5.5) means that once the

parameters {a, b, c} are estimated, flow at each grid cell can be obtained using the relation u = ∇Φ.

6 MCMC for flow field estimation

The relation u = ∇Φ can be used to rewrite (4.1) in terms of velocity potentials [1, 21, 25].

−Ft = FxΦx + FyΦy. (6.1)

Substituting the finite approximation of (5.5) into (6.1) yields

−Ft≈
My∑
j=0

Mx∑
k=0

4c

LxLyν jk
cos

(
kπ

Lx
a

)
cos

(
(1+ 2j)π

2Ly
b

)[
− Fxkπ

Lx
sin

(
kπ

Lx
x

)
cos

(
(1+ 2j)π

2Ly
y

)

− Fy(1+ 2j)π

2Ly
cos

(
kπ

Lx
x

)
sin

(
(1+ 2j)π

2Ly
y

)]
.

(6.2)

This acts as an observation system relating the parameters {a, b, c} contained within the state vector

to observed negated temporal grey scale intensity derivatives. Let z := −Ft and x := [a, b, c]T and

abbreviate (6.2) by

z = H(x). (6.3)

We will investigate the uncertainty of the parameters for the three observations of z := −Ft ap-

proximated from the (grey-scale) image pairs at the relative time point (t = 0, t = 10), (t = 10, t =

20), . . . , (t = 40, t = 50) s. These will be denoted by z(0), z(10), . . . , z(40), respectively. We will as-

similate the observation one at a time to sequentially sampling p(x|z(0)), p(x|z(0), z(10)),. . . ,p(x|z(0), . . . , z(40)).
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6.1 Setting likelihood function and prior distribution

To adopt a Bayesian framework, we need to assume a conditional distribution of z given x and the

prior distribution of x. For simplicity, we assume the likelihood function of the observation z at

each time point to have the kernel (i.e. the non-normalized part of the distribution)

p(z|x) ∝ exp

(
−1

2
(z−H(x))T R−1 (z−H(x))

)
, (6.4)

where R = σ2
2I and I is the identity matrix of an appropriate size. An empirical value of σ2

2 = 1× 10−3 s−2

is adopted here following a numerical experiment on synthetic data with similar features to our

current real-world data [29]. We use the same likelihood function for z at all time points. The

state vector now contains source strengths, and x- and y-coordinates, which have different physical

properties. For the source x-coordinates, the horizontal distance from the source to the right-hand

boundary ã ∈ R is to be estimated instead of a, where ã = Lx − a. We treat these parameters as

being probabilistically independent, i.e.,

p(x) = p(ã)p(b)p(c). (6.5)

The assumption of independence is justified because the organism’s location in the sediment should

not affect the flow it induces, nor does the burrowing depth impact the lateral positioning.

We now describe the choice of the prior distribution at the first time point and will subsequently

discuss how the prior for later time points are constructed. The marginal prior distribution for the

source strength is assumed to be a Gamma distribution to ensure the positivity. The prior assump-

tion E[c] = 2× 10−5 m2 s−1 is made because flow speeds residing approximately within the interval

O(10−6) m s−1− O(10−5) m s−1, which appear to be induced by bioirrigating Arenicola marina in

previous research [22, 48]. The marginal prior variance is taken to be Var[c] = 2.5× 10−11 m4 s−2.

It should be “large” enough that it can be reduced when observations are assimilated, whilst not

being so “large” that the information quantified by the marginal prior mean is overpowered by

observations. The marginal prior means are derived from the x-and y-coordinates of the pixel in

the first down-sampled and cropped real grey scale image with the greatest intensity, because in-

tuitively this seems to be a realistic location of fluid injection. Let δx = L−1
x and δy = L−1

y . The

marginal prior distributions at the first relative time point for the parameters b is assumed to be

a Gaussian distribution with mean E[b] = 0.07 m and variance Var[b] = 5δy2

2 m2. Finally, consider

the parameter ã. A negative value of ã is unrealistic. As such, a Gamma marginal prior distribution
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is employed for ã. So we assume a Gamma distribution with mean E[ã] = 0.2058 m and variance

9δx2 m2.

Note that the prior mean is set to be “small”, with a view to quantifying the fact that the source

lies very close to the right-hand boundary. Their related standard deviations of p(ã) and p(b)

are “small” compared with the width and height of the aquarium to ensure that the source x-and

y-coordinates recovered from the Metropolis-Hastings sampler remain “close” to the regions with

the greatest intensity. With above prior assumption, the Metropolis-Hastings sampler can be used

to sample the posterior distribution

p(x|z(0)) ∝ p(z(0)|x)p(ã)p(b)p(c). (6.6)

The posterior distribution of the parameter vector x given z(0) could then be used as the prior

density for the next observation z(10). However, we only have a sample of the posterior distri-

bution, not the analytical form. To deal with this issue, we assume the independent prior for x

when assimilating z(0) and then construct the prior distribution as above by using the posterior

(marginal) mean and variance for each parameter a, b, c given z(0) instead. The process is then

repeated for the rest of the observations.

6.2 Metropolis Hasting

We use the Metropolis-Hastings (MH) sampler [19] to sample (6.6). The MH algorithm involves

accepting or rejecting a proposed sample with the acceptance probability

γ = min

{
1,

p(x∗|z)
p(xi|z)

p(xi|x∗)

p(x∗|xi)

}
, (6.7)

where x∗ is a (new) proposed sample and p(x∗|xi) is a proposal distribution of x∗ given the current

sample xi. We assume the proposal distribution of the following form

p(x∗|xi)= p(ã∗, b∗, c∗|ãi, bi, ci)

= p(ã∗|ãi)p(b∗|bi)p(c∗|ci).
(6.8)

The marginal proposal distribution p(ã∗|ãi) is chosen to be the Gamma distribution with mean ãi

and variance is obtained by pre-multiplying marginal prior variance of ã by a factor of 0.36 here.

The marginal proposal distribution p(c̃∗ |̃ci) is also defined by the Gamma distribution with mean c̃i

and variance is obtained as above. A Gaussian marginal proposal distribution is defined for source
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y-coordinates to enforce that injection can realistically take place either above or below the current

chain location. In particular, p(b∗|bi) is a Gaussian distribution with mean bi and variance is the

marginal prior variance of b multiplied by 0.36. The ad-hoc choice of the above pre-multiplying

factor is chosen from a trial and error to strike a balance between the acceptance and convergence

rates; when the proposal variance is too “small”, only “small” steps can be taken across the state

space and convergence is slow. However, we make no attempt to optimally tune this factor here.

6.3 Convergence Diagnosis

In what follows we will run multiple Markov chains, starting in different regions of the state space,

and consider both inter-chain mixing and intra-chain mixing for convergence diagnosis. Suppose

that there are C ∈ N Markov chains. Each chain ends up of length Nspin + N, where the first Nspin

particles constitute an initial transient called a spin-up period. The latter N particles constitute the

ensemble that the Metropolis-Hastings sampler generates. The variance of the j-th Markov chain

(for j ∈ {1, . . . , C}) is given by

s2j =
1

Ñ− 1

Ñ∑
i=1

(cij − cj)
2 (6.9)

after the Ñ-th particle is obtained. The terms cij and cj denote the i-th member of the j-th Markov

chain (for i ∈ {1, . . . , Ñ}), and the mean of the j-th Markov chain (respectively). Note that s2j is

written in terms of source strengths but it can be computed for source x-and y-coordinates as well.

The expression in (6.9) is used to define the within-chains variance, which is given by [18]

W =
1

C

C∑
j=1

s2j . (6.10)

The between-chains variance, denoted by B, is defined by [18, 23]

B
Ñ

=
1

C − 1

C∑
j=1

(cj − c)2 . (6.11)

The term c in (6.11) denotes the overall mean across all C Markov chains of source strengths. As

suggested in [18, 23], the following ratio

R̂ =

√
Var[̂c|z]

W
(6.12)
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could be used to judge when a set of Markov chains converges, where

Var[̂c|z] =
(
1− 1

Ñ

)
W +

B
Ñ
. (6.13)

Typically, it is suggested that the MCMC should be run until R̂ < 1.1 [23].

6.4 Results: MCMC

To avoid cluttering the presentation of the result, results are shown only at the relative times

t0 = 0 s, t1 = 20 s and t2 = 40 s. This experiment runs 6 Markov chains and the initial positions

of these chains are independently drawn from the prior distribution explained in Section 6.1. We

decide on using 6 chains after the fact that we obtained an acceptable value of R̂ in this experiment.

The spin-up period consists of the first 500 particles and the overall length of each chain, including

the spin-up period, is 2000.
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Figure 5: Evolving Markov chain means for source strengths (first column), x-coordinates (second
column) and y-coordinates (third column). The relative times t0 = 0 s, t1 = 20 s and t2 = 40 s
constitute the first, second and third rows (respectively). The dashed lines denote the end of the
spin-up period, which constitutes the first 500 particles.

Figure 5 depicts evolving Markov chain means for source strengths, x-coordinates and y-coordinates.

For each panel, chain means appear to converge to similar regions of the state space. Figure 6 de-
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picts Markov chain distributions of source strengths, as well as its x-and y-coordinates, at the

final iteration (excluding the spin-up period) for the relative times points t0 = 0 s, t1 = 20 s and

t2 = 40 s. Their shapes, for each parameter-time combination, appear to be roughly the same de-

spite some noise. However, this is not always an evidence of “good” intra-chain mixing because the

marginal prior standard deviations defined earlier for b and ã appear to be “small” compared with

the width and height of the aquarium under consideration. For a particular parameter-time com-

bination, one could argue that Markov chain distributions mimic each other due to their starting

positions being too close together instead of because they all remain invariant when more particles

are obtained.
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Figure 6: Markov chain distributions at the final iteration for source strengths (first column),
x-coordinates (second column) and y-coordinates (third column). The relative times t0 = 0 s,
t1 = 20 s and t2 = 40 s constitute the first, second and third rows (respectively). Note that the
particles constituting the spin-up period are ignored.

The within-and between-chains variances are now examined. The evolving R̂ ratios are presented in

Figure 7 at the relative times t0 = 0 s, t1 = 20 s and t2 = 40 s. These appear to satisfy the condition

R̂ < 1.1 as suggested in [23] upon reaching the final iteration. This, alongside Figures 5 and 6, rea-

sonably suggest that Markov chains have mixed and converged to their relevant marginal posterior

distributions.

There appear to be a number of situations in Figures 8 and 9 where within-and between-chains

variances stabilise after the end of the spin-up period. There seem to be some exceptions to this as

16



0 500 1000 1500 2000

Sample index

0

1

2

3

4

5

6
R-hat ratio for source strength

0 500 1000 1500 2000

Sample index

0

1

2

3

4

5

6
R-hat ratio for inlet y-coordiante

0 500 1000 1500 2000

Sample index

0

1

2

3

4

5

6
R-hat ratio for inlet x-coordiante

t=0

t=20

t=40

1600 1800 2000
1

1.02

1600 1800 2000
1

1.005

1.01

1.015

1.02

1600 1800 2000
1

1.01

1.02

1.03

Figure 7: Evolving R̂ ratios for source strengths (first column), x-coordinates (second column), and
y-coordinates (third column) at the relative times t0 = 0 s, t1 = 20 s and t2 = 40 s. The vertical
dashed line denotes the end of the spin-up period. The horizontal dashed lines denote the threshold
R̂ < 1.1 suggested in [23].

0 500 1000 1500 2000

Sample index

0

5

10

15

20

25

W
it
h

in
-c

h
a

in
 v

a
ri
a

n
c
e

 (
m

m
4
/s

2
)

Within-chain variance evolution for 

injection strength                  

500 1000 1500 2000

Sample index

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

W
it
h

in
-c

h
a

in
 v

a
ri
a

n
c
e

 (
m

m
4
/s

2
)

10
-4

Within-chain variance evolution 

for inlet x-coordinate          

500 1000 1500 2000

Sample index

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

W
it
h

in
-c

h
a

in
 v

a
ri
a

n
c
e

 (
m

m
4
/s

2
)

10
-5

Within-chain variance evolution 

for inlet y-coordinate          

Figure 8: Evolving within-chains variances in the log-log scale for source strengths (first column),
x-coordinates (second column), and y-coordinates (third column) at the relative times t0 = 0 s,
t1 = 20 s, and t2 = 40 s. The dashed line denotes the end of the spin-up period.
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Figure 9: Evolving between-chains variances in the log-log scale for source strengths (first column),
x-coordinates (second column), and y-coordinates (third column) at the relative times t0 = 0 s,
t1 = 20 s, and t2 = 40 s. The dashed line denotes the end of the spin-up period.

well. For example, the between-chains variances of source strengths at the relative time t2 = 40 s

rapidly increase at later iterations. One possible explanation for this behaviour in the bottom left-

hand panel of Figure 9 is that the posterior variance reduction at earlier times could potentially

produce “small” marginal prior variances. Starting positions of Markov chains could end up being
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so “close” together that their evolving means begin to diverge slightly after the spin-up period has

elapsed.

To examine temporal dynamics of optical flows, the flow speed at every grid cell is computed. The

frequency distributions of flow speeds at each relative time point in Figure 10 are then constructed

and compared with those computed by the multi-resolution Horn-Schunk. These flow speeds are

consistent with previous research [22, 48].

The results from the HS and our MCMC approach differ substantially, with a temporally more

variable and slower flow being computed using HS (Figure 10). Active bioirrigation by Arenicola

marina typically occurs over periods of 15 min or longer (e.g. [46, 52]). This suggests that the

estimates of our MCMC approach are superior to those obtained using HS, where pumping is

estimated to vary substantially over a period of less than a minute. Yet porewater pressure time

series measurements reveal variations at high frequencies during periods of pumping, and have

revealed strong variations associated with burrowing and backward pumping [48]. Thus, while less

common and hence less likely to be captured in our image data, variations in flow magnitudes on

timescales shorter than minutes as indicated by the HS approach cannot be ruled out.

Contrary to what is expected based on our understanding of the biology of Arenicola marina which

injects fluid at its dead-end burrow, the HS approach shows fastest flow located further and further

away from the location of the burrowing organism over time (Figure 11), largely tracking the

gradients in the tracer concentration field. In these distal gradient regions, flow is well constrained

by the observational data. The source of flow is the pumping by Arenicola marina, situated near

the injection site. Such an injection site is reflected in the location of the divergence in the MCMC

approach, but not in the widely distributed divergence in the HS approach. Finally, with a localized

injection site, flow velocities should decrease away from the source as the fluid is spreading out. The

MCMC approach correctly simulates these properties, whereas the HS method does not. Thus, our

work highlights the importance of the data analysis method when inferring the flow field. In this

example, the comparison with biological knowledge clearly indicates the advantage of our MCMC

approach over traditional methods.

7 Summary and outlook

This work develops a parametric model to estimate the flow velocity in the context of bioirrigation.

A localized divergence-free flow velocity is desired in the vicinity of the injection point, which
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Relative Time (s) ĉ (m2 s−1) â (m) b̂ (m) sc (m2 s−1) sa (m) sb (m)

0 1.6574× 10−5 0.2233 0.0731 4.3387× 10−6 0.0075 0.0038

10 1.2861× 10−5 0.2210 0.0729 3.3386× 10−6 0.0062 0.0034

20 1.0293× 10−5 0.2209 0.0728 2.3719× 10−6 0.0049 0.0025

30 9.2769× 10−6 0.2217 0.0732 1.9131× 10−6 0.0044 0.0022

40 8.8754× 10−6 0.2225 0.0739 1.6880× 10−6 0.0037 0.0019

Table 1: Markov chain means and standard deviations with respect to both particles and chains
(excluding the spin-up period) for source strengths, and its x-and y-coordinates. These are obtained
using the Metropolis-Hastings sampler and the first five pairs of consecutive down-sampled and
cropped real grey scale images.
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Figure 10: (Left) The frequency distributions of optical flow speeds at the first 5 image pairs
computed using the multi-resolution Horn-Schunk, see again Figure 3. (Right) The frequency
distributions of optical flow speeds computed using the finite approximation of the ansatz in (5.5),
the relation u = ∇Φ and the parameter estimates in Table 1.

is difficult to achieve with the conventional flow velocity framework method such as the Horn-

Schunk method. We demonstrated that the issue of undesired divergence of the flow velocity can

be significantly mitigated by using the proposed model in combination with MCMC. The efficacy of

the MCMC method in this work indicates the superiority compared to other methods when applied

to general problems associated with localized sources of flow/pressure field generation.

Despite the improved result in this initial work, several challenges remain open to overcome. In

particular, the model (3.5) can be inaccurate the region further away from the burrow in which

the effect of diffusion is considerable and has to be taken into account in the model. This must be

addressed if flow velocity estimation has to be extended to the entire area of the image presented in

this work. Taking into account diffusion, or considering reactive tracers that inform our understand-

ing of the biogeochemical turnover and efflux of, for example, greenhouse gases such as CO2, N2O

or CH4 from the subsurface would add more parameters, rendering MCMC infeasible in practice.

This should motivate a more advanced (approximate) inference to deal with this inverse problem,

e.g., iterative Ensemble Kalman filter (IEnKF) for solving inverse problems [8, 15, 38]. Another

direction to further improve the estimate by setting up a model to allow a temporal-smoothing
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Figure 11: Comparison of the optical flow and divergence between using the finite approximation
of the ansatz in (5.5) and Horn-Schunk method in Section 4. The plot shows only the cropped area
where Arenicola marina is active. The white arrows in the first and second columns denote optical
flows. From top to bottom row, the results are shown at the relative times t0 = 0 s, t1 = 20 s and
t2 = 40 s, respectively. They are overlaid on top of the down-sampled and cropped real grey scale
images associated with those relative times. The third and fourth columns depict the associated
divergences. Note that the first and second columns share the same colour scale and likewise for
the third and fourth columns.

parameter into the framework instead of using the posterior distribution as a prior distribution in

a subsequent image pair. This will in effect avoid “cutting the feedback” issue discussed in [26].
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Appendix A Multi-Resolution Horn-Schunk

To illustrate this method, reconsider the grey scale images F0 and F1. For each image, a pyramid

with L levels is constructed. At the topmost level (called level 1), F10 and F11 are the “original” grey

scale images. Resolution is then reduced by a factor of two with each lower level. Suppose that the

prior guess of the optical flow at the bottom pyramid level (i.e. L-th level) is zero. This is updated

first using (4.6). A more refined optical flow at the (L − 1)- th level uL−1 is given by

uL−1 = ũL + δuL−1, (A.1)

where δuL−1(x, y, t) is a correction increment and ũL(x, y, t) is obtained by up-sampling uL. A

correction increment is obtained by considering the following optimisation problem.

δuL−1 = argmin
δuL−1

∫
Ω
(δuL−1 · ∇F+ Ft)

2︸ ︷︷ ︸
data term

+λ2(∥∇(ũL + δuL−1)∥22 + ∥∇(ṽL + δvL−1)∥22)︸ ︷︷ ︸
regularisation term

dΩ. (A.2)

Although (A.2) resembles (4.3), there are some differences that require further explanation. Firstly,

the data term in (A.2) only involves δuL−1 because ũL ought to already temporally conserve grey

scale intensity [21]. Secondly, spatially smooth functions are not closed under addition (depending

on their mean). As such, the regularisation term in (A.2) involves both ũL and δuL−1. Finally, the

intensity derivatives in (4.3) are derived from the grey scale images F0 and F1 while in (A.2), they

are derived from FL−1
0 and FL−1

1 (x− ũLδt, y − ṽLδt, t1), which can be thought of a warped image

of FL−1
1 towards FL−1

0 under the action of ũL.

Following a derivation analogous to that of (4.6) yields the following iterative Jacobi update scheme:

δuL−1
i+1 = δu

L−1

i −
Fx

(
Fxδu

L−1

i + Fyδv
L−1

i + Ft + Fy∆ṽL
)

λ2 + F2x + F2y
+

λ2 + F2y
λ2 + F2x + F2y

∆ũL.

δvL−1
i+1 = δv

L−1

i −
Fy

(
Fxδu

L−1

i + Fyδv
L−1

i + Ft + Fx∆ũL
)

λ2 + F2x + F2y
+

λ2 + F2x
λ2 + F2x + F2y

∆ṽL.

We can apply (A.3) to approximate the solution of (A.2). An equivalent form of (A.3), which one
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finds easier to work with, is given by the following.

δuL−1
i+1 = δu

L−1

i +∆ũL −
Fx

(
Fxδu

L−1

i + Fyδv
L−1

i + Ft + Fy∆ṽL
)

λ2 + F2x + F2y
− F2x

λ2 + F2x + F2y
∆ũL.

δvL−1
i+1 = δv

L−1

i +∆ṽL −
Fy

(
Fxδu

L−1

i + Fyδv
L−1

i + Ft + Fx∆ũL
)

λ2 + F2x + F2y
−

F2y
λ2 + F2x + F2y

∆ṽL.

Once ũL and δuL−1 have been recovered, one can then obtain uL−1 using (A.1) and up-sample it

to level L − 2. Then another correction increment can be obtained. This process continues until

the topmost level is reached, and flow resolution is the same as that of the “original” images.

Consider another grey scale image F2(x, y, t2), which is then used in conjunction with F1 to con-

struct another optical flow. Now suppose that temporal dynamics of optical flows arising from the

greyscale images {F0,F1,F2} is unknown, i.e. one cannot write down a model governing their evolu-

tion. Then when considering F1 and F2, and intuitive prior guess of the optical flow at the bottom

pyramid level would be the most recent estimate which has been down- sampled accordingly. This

flow field, or its Laplacian, could be non- zero. If (4.6) was applied at the bottom pyramid level,

then this could falsely suggest that the Laplacian of the “incoming” flow (i.e. the prior guess) is

zero. As such, at subsequent times, the Horn- Schunck method is not employed at the bottom

pyramid level here. The latter of the image pair in question is warped towards the former under

the action of the prior guess and (A.3) is applied instead.

Appendix B Derivation of (5.5)

Solving (5.3) using separation of variables begins with writing the velocity potential being sought

in the form

Φ(x, y) = X(x)Y(y). (B.1)

The pressure boundary conditions are depicted in Figure 12.

Based on these boundary conditions, the standard separation of variable gives the solution of the

form:

Φ(x, y) =
∞∑
j=0

∞∑
k=0

θjk cos

(
kπ

Lx
x

)
cos

(
(1+ 2j)π

2Ly
y

)
. (B.2)

To obtain θjk, we substitute (B.2) to (5.2), revealing
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Figure 12: A schematic depicting the boundary conditions in terms of a velocity potential. Dy-
namics pertaining to the point of injection are neglected.

cδ(x− a, y − b) =
∞∑
j=0

∞∑
k=0

θjk

[
−
(
kπ

Lx

)2

−
(
(1+ 2j)π

2Ly

)2
]
cos

(
kπ

Lx
x

)
cos

(
(1+ 2j)π

2Ly
y

)
. (B.3)

The above equation can be solved to obtain θjk:

θjk=
4c

LxLyν jk
cos

(
kπ

Lx
a

)
cos

(
(1+ 2j)π

2Ly
b

)
= − 4c

LxLy

[(
kπ
Lx

)2
+
(
(1+2j)π

2Ly

)2
] cos

(
kπ

Lx
a

)
cos

(
(1+ 2j)π

2Ly
b

)
,

(B.4)

This expression for θjk is substituted back into (B.2), revealing (5.5).
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