
How Entropic Regression Beats the Outliers Problem

in Nonlinear System Identification: Supplementary Information

Abd AlRahman R. AlMomani1,5, Jie Sun1,2,3,4, and Erik Bollt1,2,4,5

1Clarkson Center for Complex Systems Science (C3S2), Potsdam, NY, USA
2Department of Mathematics, Clarkson University, Potsdam, NY, USA

3Department of Computer Science, Clarkson University, Potsdam, NY, USA
4Department of Physics, Clarkson University, Potsdam, NY, USA

5Department of Electrical and Computer Engineering, Clarkson University, Potsdam, NY,
USA

Contents

1 Governing Dynamics, Over-sparsity, and Sensitivity for Expansion Order 2

2 Information Theory 5
2.1 Entropy . 5
2.2 Mutual Information . 5
2.3 Transfer Entropy and Causation Entropy . 7

3 Entropic Regression 8

4 Additional Numerical Results 10
4.1 Double Well Potential . 10
4.2 Lorenz system. 13
4.3 Network coupled logistic maps. 16
4.4 Kuramoto-Sivashinsky equations. 17

5 ER codes in Matlab and User Guide 18

1

1 Governing Dynamics, Over-sparsity, and Sensitivity for Expan-
sion Order

In the main text we discussed the effect of polynomial expansion order choses to construct the basis matrix
Φ, and in this section we provide numerical excrements to show the effect of polynomial expansion order.

Recall from our main text Eq.(26), in Compressive Sensing (CS) framework we solves the constrained
optimization problem: {

arg mina ‖a‖1,
subject to ‖Φa− f‖ ≤ ε,

(1)

where the parameter ε ≥ 0 is used to relax the otherwise strict constraint Φa = f , to allow for the presence
of noise in data.

Fig. 1 shows the reconstructed model by CS for the first equation of Lorenz system regarding ẋ. We
observe sensitivity on expansion order and how CS over-sparse the solution at with the 7th order expansion.
This results was with using 300 measurements, and to extend the investigation we repeat the experiment for
the 7th expansion order with doubled number of measurements, and Fig. 2 shows that CS still over-sparse
the solution. This shows the relative sensitivity of CS with respect to the expansion order of basis functions.

Figure 1: CS reconstructed model for the first equation of Lorenz system regarding ẋ. The Solution shown
in log10-scale in the y-axis for the parameters magnitude. From left to right, we see the recovered solution
using the 3rd, 5th and 7th expansion order respectively. We used 300 noise free measurement, (ε1 = ε2 = 0).
We see that with the 3rd order polynomial expansion, CS recovered the solution with high accuracy, and it
the same case with 5th order polynomial expansion although the accuracy is slightly reduced, but we can
still see the accurate sparse structure clearly. With the 7th order polynomial expansion which produce 120
basis, we see a complete failure of CS where it over sparse the solution to have ‖acs‖1 = 0.005.

2

Figure 2: CS Recovered solution for the first term ẋ of Lorenz system using 600 noise free measurement,
(ε1 = ε2 = 0). We see that even when we doubled the measurements, the CS is still over-sparse, although
we have a good fitting curve, but the recovered system is wrong. In the other hand, the CS performs poor
in recovering such dynamic with the presence of noise even with considering a low expansion order. Click
here for a simulation of CS results of the same current example with considering the 3rd order polynomial
expansion and the presence of noise.

In order to construct a second example that clearly shows the oversparse mechanism in CS, consider the
three-dimensional linear system: 6 3 2

2 1 1
1 2 1

a =

 6
2
4

 . (2)

It is easy to find that the solution for the above system is a =
(

0 2 0
)T

. Now, suppose that the third
“measurement” is missing, and we have the under-determined system(

6 3 2
2 1 1

)
a =

(
6
2

)
(3)

then we have infinitely many solutions lies on the line of intersection of the two planes:{
6x+ 3y + 2z = 6

2x+ y + z = 2

Figure 3 shows this simple example, where the solution for a lies on the intersection of the two planes shown,
and we see the true solution, the LS solution and CS solution on the solution line. We see how the least
square solution is far from the true solution with a high margin of error, but we also see that it only invest
in x and y direction where the line of intersections of the two plans lies, then, LS ignore the z direction and

3

https://www.youtube.com/watch?v=CzsBS8wx6b8
https://www.youtube.com/watch?v=CzsBS8wx6b8

Figure 3: Oversparsity: The line of intersection of the two planes (triangles) shows the solution plane. We
see that compressed sensing solution is oversparsed.

try to invest in all feasible directions to reach the best residual.

CS have different mechanism, since within all feasible solutions, it tends to select the one with minimum
‖a‖1, even if there is another solution with the same number of sparse that have a residual ‖Aa− b‖2 = 0,

and it is the case in our example where ‖A
(

0 2 0
)T − b‖2 = 0, while the CS solution has the residual

‖AaCS − b‖2 = 2.5 × 10−5. In other words, for the system Aa = b, if there exist two solutions such that
‖a1‖1 < ‖a2‖1 and ‖Aa2 − b‖2 < ‖Aa1 − b‖2 ≤ ε, where ε is the tolerance for CS optimization, then CS
will select a1 as a solution, even it has higher residual, and regardless of the structure of the sparse or the
information flow between the basis functions and the observations. Numerically, assume the system in Eq. 3
to be: (

(6 + 1e−10) 3 2
2 (1 + 1e−16) 1

)
a =

(
6
2

)
(4)

and consider a reasonable tolerance for CS solver to be ε = 1e−9, then CS will always pick [1 0 0] as a solution
even it have higher residual. In our ER package, we provide Matlab script (csdemo.m) to demonstrate the
above example.

For many applications..., it is accepted to have such solution since it lies on the solution line and such
residual difference will have negligible effect on the final result, But in discovering the governing equations
of dynamical systems, such solution can often lead to a completely wrong structure of the system.

4

2 Information Theory

The basic idea of information theory can simplified by considering the everyday learning process in our minds.
The more information we have about specific topic, the less “new” information we may find in the following
days, and less probability to find information resources that can influence you with the new information
that updates yours. In other words and in terms of events occurrence, if the event A has high probability
to happens in our daily life, then there will be no (or less) surprise to see the event A occurs. In the other
hand, seeing the event B happens which is rare event with low occurrence probability will be “surprise” for
us.

We can see the “surprise” term as an indicator of the uncertainty, back to our learning process example,
the less the one be surprised about informations he receive the more “certain” he is about the topic he is
learning. More surprise indicate higher uncertainty. That leads us to the first subsection about the very
basic measure in the information theory which is the Entropy.

2.1 Entropy

Entropy is firstly known as an extensive property of a thermodynamic system. The entropy of a thermo-
dynamic system is a function of the number of possible microscopic states consistent with the macroscopic
quantities that characterize the system. Assuming equal probability of the microscopic states, the entropy
is given by:

S = kB ln(W) (5)

where W is the number of microscopic states and kB is Boltzmann constant named after Ludwig Eduard
Boltzmann where the Eq. 5 curved on his gravestone. Boltzmann saw entropy as a measure of statistical
disorder in the system.

An analog to thermodynamic entropy is information entropy introduced by Claude Shannon in 1948
as “measures of information, choice, and uncertainty”. To describe Shannon’s entropy, consider a discrete
random variable X whose probability mass function is denoted by p(x) = Prob(X = x). One can calculate
its entropy as [3, 18],

H(X) = −K
∑
x

p(x) log p(x), (6)

where K is positive constant, and H(X) is a measure of the uncertainty or unpredictability of X. Note
that if we assume uniform probability distribution for the states of X, then we have p(x) = 1

N , where N is
the number of states, and then Eq. 6 can be written as H(X) = K log(N) similar to Boltzmann’s entropy
under the same assumption of equal probability of the states. The constant K, as Shannon sates, is merely
amounts to a choice of a unit of measurement, and we consider K = 1 for the rest of this document for
simplicity. Fig. 4 shows the entropy function for a random event with different probability.

Shannon’s work provided extended and generalized view and understanding for the entropy, and one of
the extended perspectives of Shannon’s entropy is dealing with the continuous random variables, and it takes
the form:

H(X) =

∫ ∞
−∞

fX(x) log(fX(x))dx, (7)

where fX(x) is the probability density function. The entropy shown in Eq. (7) is referred to the differential
entropy.

2.2 Mutual Information

The entropy defined in Eq. (6) naturally extends to the case of multiple random variables. For example,
the joint entropy H(X,Y), and conditional entropy H(X|Y) of two random variables X and Y is given,
respectively, by [3, 18],

H(X,Y) = −
∑
x,y

p(x, y) log p(x, y) (8)

5

Figure 4: Entropy of the event A. Here we assume the states to be the occurrence and non-occurrence of
the event A, and P (A) represent the probability of the occurrence state. This figure show the uncertainty
about the event A occurrence. In x-axis we have the probability P (A) = p that the event A occurs, then by
Eq. 6 and considering the log to base 2, H(A) = −p log(p)− (1− p) log(1− p) is the measure of uncertainty
of the event A, where (1 − p) is the probability that the event A will not occur. Starting from P (A) = 1,
meaning that the event A is always occurs or it is the only event we have, then H(A) = 0, meaning that
there is no uncertainty and we are sure of the event A occurrence. As the probability decrease, the entropy
(uncertainty) increase to reach its maximum at P (A) = 0.5. Continuing decreasing P (A) will reduce the
entropy again, since we become more certain that the event A will not occur, until we become completely
certain that A will not occur with H(A) = 0 at P (A) = 0.

H(X|Y) = −
∑
y

p(y)H(Y |X = x)

= −
∑
x,y

p(x, y) log p(x|y), (9)

where p(x, y) is the joint probability distribution, and H(X|Y) (read as entropy of X given Y) is the
measure of the uncertainty in X if Y is known. Some of the main properties of the entropy, joint entropy,
and conditional entropy can be summarize as follows:

• The entropy of a discrete variable X is positive (H(X) ≥ 0), while the differential entropy does not
satisfy this property.

• For two independent random variables X and Y , H(X,Y) = H(X) +H(Y).

• The chain rule: H(X,Y) = H(X) +H(Y |X).

• One important property is that for a random variable X, the conditional entropy of X given any other
variable Y will reduce the entropy of X, meaning that H(X) ≥ H(X|Y). The equality holds when
X and Y are independent with H(X,Y) = 0. This property tells that the information comes from
Y reduces the uncertainty about X, and when Y = X, that means we have given all the information
about X, and then we become completely certain about X, and that gives H(X|X) = 0.

The joint and conditional entropies can lead to a measures that detect the statistical dependence or
independence between random variables. Such measure is called the mutual information between X and Y ,

6

and it is given by [3, 18],

I(X;Y) = H(X)−H(X|Y)

= H(Y)−H(Y |X)

= H(X) +H(Y)−H(X,Y), (10)

where the mutual information I(X;Y) (reads as mutual information between X and Y) is a measure of the
mutual dependence between the two variables. In terms of joint probability distribution, mutual information
can be written as,

I(X;Y) =
∑
y∈Y

∑
x∈X

p(x, y) log

(
p(x, y)

p(x)p(y)

)
, (11)

and in its continuous form,

I(X;Y) =

∫
Y

∫
X

fX,Y (x, y) log

(
fX,Y (x, y)

fX(x)fY (y)

)
, (12)

where fX,Y (x, y) is the joint probability density function for the two continuous random variables X and Y .
In case of independence of the two random variables, we have

p(x, y) = p(x)p(y), (13)

and then we have

log

(
p(x, y)

p(x)p(y)

)
= log(1) = 0 =⇒ I(X;Y) = 0. (14)

The same principle holds for the continuous variables in Eq. (12), while I(X;Y) satisfy the inequality
I(X;Y) 6 min[H(X), H(Y)] only in the discrete variables case.

2.3 Transfer Entropy and Causation Entropy

For two stochastic processes Xt and Yt, the reduction of uncertainty about Xt+1 due to the information of
the past τY states of Y , represented by

Y (τY) = (Yt, Yt−1, ..., Yt−τY +1),

in addition to the information of the past τX states of X , represented by

X(τX) = (Xt, Xt−1, ..., Xt−τX+1),

this reduction of uncertainty about Xt+1 is measured by “Transfer Entropy” which given by [3, 21],

TY→X = H(Xt+1|XtτX)−H(Xt+1|XtτX , Y τYt). (15)

The traditional approach of inferring causality between two stochastic processes is to perform the Granger
causality test [5]. The main limitation of this test is that it can only provide information about linear
dependence between two processes, and therefore fails to capture intrinsic nonlinearities that are common in
real-world systems. To overcome this difficulty, Schreiber developed the concept of transfer entropy between
two processes [17]. Transfer entropy measures the uncertainty reduction in inferring the future state of a
process by learning the (current and past) states of another process.

In our work [21, 20], we showed by several examples that causal relationship inferred by transfer entropy
are often misleading when the underlying system contains indirect connections, a dominance of neighboring
dynamics, or anticipatory couplings. For example, referring to the main text and the equation f = Φa, we
see that the approaches that consider the transfer entropy in order to find the weak terms in Φ that has
no influence on Ẋ to construct the sparse matrix a, these approaches neglect a simple and clear idea that

7

the terms of Φ has an indirect influence on f through the other terms of Φ. To account for these effects,
we developed a measure called Causation Entropy (CSE) [21, 20], and show that its appropriate application
reveals true coupling structures of the underlying dynamics.

Consider a stochastic network of N processes (nodes) denoted by:

Xt = {X(1)
t , X

(2)
t , . . . , X

(N)
t } (16)

where X
(i)
t ∈ Rd is a random variable representing the state of process (or node) i at time t, and i ∈ V =

{1, 2, . . . , N}, and let I, J , and K be a subsets of V, then we can define the causation entropy as the following:

Definition 1 [20]: The causation entropy from the set of processes J to the set of processes I conditioning
on the set of processes K is defined as

CJ→I|K = H(X
(I)
t+1|X

(K)
t)−H(X

(I)
t+1|X

(K)
t , X

(J)
t). (17)

The Causation entropy is a natural generalization of transfer entropy from measuring pairwise causal
relationships to network relationships of many variables. In particular, we can list the main properties for
the causation entropy, noting that if J = {j} and I = {i}, we simplify the notation as Cj→i|K :

• If j ∈ K, then the causation entropy Cj→i|K = 0, as j does not carry extra information (compared to
that of K).

• If K = {i}, then the causation entropy recovers the transfer entropy Cj→i|i = Tj→i which is given by

Tj→i = H(X
(i)
t+1|X

(i)
t)−H(X

(i)
t+1|X

(i)
t , X

(j)
t)..

In [20], we introduced the principle of optimal Causation Entropy (oCSE) in a network of N processes
to find the minimum subset that maximizes the causation entropy. This minimal subset can be seen as the
dominant subset of a network of N processes, and they rule the underlying dynamic of the network. and in
the same principle, we are looking for the dominant terms of the basis function Φ on the system dynamic f .
See (main text Fig.1) for visualization of the reformulation of Lorenz system in a network of processes.

3 Entropic Regression

In our main text we discussed the Entropic Regression method and provided its Algorithm (main text
Algorithm 1). In this section we discuss the tolerance estimation and its effect on the performance of ER.

In our previous work [20] we introduced a standard shuffle test, with a “confidence” parameter α ∈ [0, 1]
for tolerance estimation. The shuffle test requires randomly shuffling of one of the time series ns times, to
build a test statistic. In particular, for the i-th random shuffle, a random permutation π(i) : [T] → [T]

is generated to shuffle one of the time series, say, (yt), which produces a new time series (ỹ
(i)
t) where

ỹ
(i)
t = yπ(i)(t); (xt) is kept the same. Then, we estimate the mutual information I(X; Ỹ (i)) using the

(partially) permuted time series (xt, ỹ
(i)
t), for each i = 1, . . . , ns. For given α, we then compute a threshold

value Iα(X;Y) as the α-percentile from the values of I(X; Ỹ (i). If I(X;Y) > Iα(X;Y), we determine X
and Y as dependent; otherwise independent.

We showed in [20], the robustness of shuffling test for optimal causation entropy calculations specially in
complex dynamics, although it is computationally expensive. For more efficient computations complexity, we
considered two different approach for tolerance estimation with the confidence parameter α; the Dynamic,
and the Static approaches.

In the Dynamic tolerance estimation, we start the forward step procedure (See main text Algorithm 1)
with initial tolerance tol = 0, and we update the tolerance value at the end of the forward step procedure
by the shuffle test shown in Algorithm 1 below, given the confidence parameter α, and the current position
with the maximum mutual information φ, and the conditioning set of strong basis selected so far ΦK .

8

The Static approach is more simple and it set to be our default approach since it shows high efficiency
in the standard problems such as SID of Lorenz system, while the dynamic approach is more robust for SID
of the large complex networks. In the static approach we estimate the tolerance before starting the forward
step procedure, and perform no updates during the forward step shown in our main text. That is why we
called the approaches dynamic and static.

In Static approach, we consider a selected small set of basis functions as a base of estimation, and we
will refer to it as the initial conditioning set (ICS) in the following discussion. The ICS is not necessarily
to be completely accurate, it just helps to understand the information flow withing the system, and in most
cases, any non-relevant basis function included in the ICS will be eliminated during the backward step of
ER. In our implementation we considered the linear terms (the x, y, z terms in Lorenz system example) to be
our ICS since they are the core of information for all other basis, then, we follow the estimation procedure
shown in Algorithm 2, noting that ΦK is our ICS, and the function πi represent no shuffling with i = 0.

Algorithm 1 Shuffle Test

1: procedure Shuffle Test(f , φ,ΦK, α,ns)
2: i = 1, I = ∅
3: while i ≤ ns do
4: I ← Cφ→f

πi |ΦK(Φ+
Kf),

5: i := i+ 1,

6: return I
7: I ← I s.t. Ij ≤ Ij+1, j = 1, . . . , ns − 1
8: tol = Ik, where k = dαnse.
9: return tol

The static method of estimating the tolerance, and after initializing the ICS, suggests to accept any basis
function that have a small fraction (1 − α) of the maximum possible information from all other basis, and
adding the accepted basis function to the conditioning set. This approach does not require high shuffling
number, the suggested reasonable value for ns in the dynamic approach is ns = 1000, while, based in our
numerical observations for different systems, ns ≤ 100 was quite enough in the static approach.

Algorithm 2 Static Tolerance

1: procedure Shuffle Test(f ,Φ,ΦK, α,ns)
2: i = 0, I = ∅
3: while i ≤ ns do for all basis Φj ∈ Φ,j /∈ K
4: I ← CΦj→f

πi |ΦK(Φ+
Kf),

5: i := i+ 1,

6: return I
7: tol = (1− α) max(I).

8: return tol

Our method considers the system in SID process as a black-box, without assuming the availability for any
prior information about the system, and our numerical results shows robustness of the method under this
assumption. Practically, prior informations about the systems are available, and that can highly improve the
computations efficiency by reasonably setting the expansion order and at least one ICS. If such reasonable
settings are not available, ER performs at the same level of accuracy under our black-box assumption, but
with more expensive computations.

9

4 Additional Numerical Results

To demonstrate the utility of ER for nonlinear system identification under noisy observations, we compare
its performance against existing methods including the standard least squares (LS), orthogonal least squares
(OLS), Lasso, and compressed sensing (CS). The details of the existing approaches are described in the
Methods Section. The examples we consider represent different types of systems and scenarios, including
both ODEs and PDEs, differential and difference equations, and network-coupled dynamics. In addition, we
consider different noise models and especially the presence of outliers in order to evaluate the robustness of
the respective methods.

For each example system, we sample the state of each variable at a uniform rate of ∆t to obtain a
multivariate time series {zk(ti)}k=1,...,N ;i=1,...,`; then we add noise to each data point and obtain the observed
time series denoted by {ẑk(ti)}, where

ẑk(ti) = zk(ti) + ηki, (18)

with ηki represents noise.

4.1 Double Well Potential

In analogy to the example in our main text, we consider the equation

f(x) = x4 − x2. (19)

and we sample 61 equally spaced measurements for x ∈ [−1.2, 1.2], and we construct Φ using the 10th order
polynomial expansion with K = 11 is the number of candidate functions. Then, we consider a single fixed
value corrected measurement to be f(0.5) = 0.5.

In this example, we see that the true solution will have a residual δ equal to outliers deviation from its
true position,

δ =
√

(f(0.5)− 0.5)2 = 0.6875 (20)

Fig. 5 shows the result for LS. The LS with its BLUE property (Best Linear Unbiased Estimator), succeed
to minimize the residual to have better fitting residual than the true solution, but it is clear that the residual
value does not reflect reliable solution. Practically, when the true solution gives a fitting residual δ, then
any other solution deviate in its residual from δ will have a reduction in the solution accuracy, no matter the
direction of deviation from δ. In Fig. 6 we see the result of OLS. We see that the results with best residual of
OLS is almost identical to LS result. Here it worth to say a detailed review for the 1000 OLS solutions under
different threshold showed us a small interval that gives solutions closer in structure to the true solution
more than the minimum residual solution shown, which if treated with suitable trade-off strategy can give
a better solution.

Fig. 7 shows the result for CS, where it failed to find any feasible solution for all values of ε < δ. Such
outliers makes it hard to find a parameter vector a that can fit the data including the outliers point, and
even with considering high resolution for ε span, so, CS as discussed before tends to select the solution
with minimum ‖a‖1 within the best feasible residuals. CS solution simulation for different outliers values
is provided on our YouTube channel here. Fig. 8 shows the result for LASSO, and it shows the sparse
solution with wrong structure of LASSO. We considered the bounds of λ to be λ ∈

[
‖ΦΦ†f − f‖, ‖f‖

]
,

where λ = ‖ΦΦ†f − f‖ is the penalty on the solution with all entries are non-sparse and λ = ‖f‖ is the
penalty on the solution with all entries are sparse.

Fig. 9 shows the accurate structure found by ER. Even with slight difference in the parameters magnitude,
we see how ER recovers the true basis functions. The residual of ER was 0.865, which is higher more than
most other methods, but the ER focuses on the information flow between the basis and dynamic and not
the residual of solution magnitudes.

10

https://www.youtube.com/watch?v=2FyfD9U0f6s&t=0s&index=3&list=PLKV2TLjSrnnoCQpbMYgD5neD1E-TGGfvE

Figure 5: The LS solution for the data given by Eq. 19. This result shows how the LS invest in all available
parameters to reach the best possible fitting. In fact, the residual of the least square solution was lower than
the residual of the true solution, 0.64 = ‖ΦΦ†f − f‖ < ‖Φatrue − f‖ = 0.6875, and in sparse regression
literature, this initiate the need for developing trade off algorithms that considers different measures such as
‖a‖1 and ‖a‖0.

Figure 6: The OLS solution with 1000 log-spaced span for the threshold value ε ∈ [10−6, 102]. We see that
the OLS failed to find solution better than the LS and they are almost identical.

11

Figure 7: The CS solution, with 1000 log-spaced span for ε ∈ [10−6, 102]. The solution with minimum
residual is shown to the right. As expected, the CVX solver failed to find any feasible solution for all values
of ε < 0.69, and that was the reason to consider 102 as the upper bound of epsilon although it represent a
high value for tolerance.

Figure 8: The LASSO solution, with 1000 equally-spaced span for λ ∈
[
‖ΦΦ†f − f‖, ‖f‖

]
. The solution

with minimum residual is shown to the right and it found at λ = 0.818.

12

Figure 9: The ER solution. We see that ER recovered the true solution, No trade-off, No-tuning parameter
and large span with expensive computations.

4.2 Lorenz system.

Our second detailed example data set was generated by noisy observations from a chaotic Lorenz system.
The dynamics of the system is represented by a three-dimensional ODE which is a prototype system as
a minimal model for thermal convection, obtained by a low-ordered modal truncation of the Saltzman
PDE [16], and for many parameter combinations exhibits chaotic behavior [14]. In our standard notation,
we have z = [z1, z2, z3]> and

ż1 = F1(z) = σ(z2 − z1),

ż2 = F2(z) = z1(ρ− z3)− z2,

ż3 = F3(z) = z1z2 − βz3.

We consider a standard polynomial basis:. [φ0, φ1, . . . , φ56] = [1, z1, z2, z3, z
2
1 , z1z2, z1z3, z

2
2 , . . . , z

5
3], which

contains 56 terms.
In our main text we discussed the example and experiment details for Lorenz system, and we compared

in Figs. 2-4 the robust results of ER compared to other methods. Here we extend the results showed in
(Main text Fig. 3) to present the results of CS and ER for Lorenz system at different values of p.

Fig. 10 shows the results of CS for different values of p. We see that with p = 0, representing no outliers,
and small noise ε1 = 10−5, CS recovers the system with high accuracy and the solution can reproduce the
dynamic accurately. With only one outliers point out of 1000 measurements used, CS failed to recovering
the true structure of the parameters and dynamic produced by the recovered solution diverges after few
iterations, and we have similar results with p = 0.2 and p = 0.4.

Fig. 11 shows the results of ER for different values of p. We see that with p = 0, representing no outliers,
and small noise ε1 = 10−5, ER recovers the system with high accuracy similar to CS at the same level of
noise, while ER continued to perform in the same hight accuracy with the presence of the one outliers point
at the same position and magnitude as in CS experiment. With p = 0.2 and p = 0.4, we see that ER
solution continued to reproduce the dynamic, and it normally split from the true dynamic according to the
sensitivity to initial conditions. Of course we start from the same initial condition, but the sensitivity here
comes from the small difference in parameters magnitude. In (Main text Fig. 4) we showed that ER solution
was able to accurately produce the bifurcation diagram of Lorenz system with differences does not exceeds
the micro-scale from the true parameters.

13

Figure 10: In analogy to (main text Fig.3), CS results for different values of p.

14

Figure 11: In analogy to (main text Fig.3), ER results for different values of p.

15

4.3 Network coupled logistic maps.

Our third example is a network of coupled logistic maps which is typical of either coupled map lattices [9],
but also cellular automata [10] and more generally the scenario of high dimensional and complex systems
that have become the thrust of recent analysis including in the synchronization literature [15, 1, 8]. In this
example, we assume that not only the governing dynamics are unknown, but so is the structure of the network
that moderates the coupling between individual chaotic elements; both of these must be (simultaneously)
identified from observed dynamic data alone. In Fig. 12, we compare results of several system identification
methods, including the proposed ER approach. We now offer here a rough description of why this dramatic
difference in performance, in the setting particular here of noisy data subject to outliers; a more detailed
mathematical analysis will be the subject of our future work.

Consider that each of these other methods we reviewed involves minimizing a functional J(a) of the
data a, and that when a is subject to noise, that the functionals are each continuous with respect to their
argument. We assume that the underlying system is,

f(x) = ax(1− x), (21)

describing the individual elements as Logistic maps, but, the coupled network of N such oscillators is of the
form,

F (xi) = f(xi) +

N∑
j=1

AijWij (f(xj)− f(xi)) (22)

where i, j = 1, ..., N , A is the adjacency matrix of the coupled network, Wij is the coupling strength between
the nodes i and j, and f(xi) is the image of the point xi under the logistic map given in Eq.21.

Figure 12: (Left) The relative error in recovered parameters with noise ε = 10−3, second order expansion.
(Right) The run time to find the parameters. We perform the experiment to find the parameters for one
single dimension (one column of the parameters matrix out of the 100 ones) chosen randomly, and results
are averaged over only 10 runs. The estimated time required for CS to complete all dimensions and average
over 100 runs will be around 20,000 hours (2.3 years).

To present a specific example, let N = 100, we construct the adjacency matrix A to have simple coupling
such that:

1 < Dii ≤ 4 (23)

where D is the degree matrix of A, and the coupling adjacency matrix A constructed randomly such that
the above inequality holds. Then if we consider only the second order expansion we will have 5151 terms
in our expansion matrix. LS and OLS will requires then the availability of at least 5152 measurements.

16

So, we focuses in this example on solving underdetermined system with considering 1000 measurements are
available. So, we consider using LASSO, CS and ER in this problem. Fig. 12 shows the relative error and
computations complexity for this example. As the computations complexity show, it was hard to perform
the excrement to find all the parameters for all oscillators dynamic. So, we perform the experiment to find
the parameters for one single dimension chosen randomly, and results are averaged over 10 runs. Time
complexity shows that the time required from CS to complete all dimensions and average over 100 runs
will be around 20,000 hour (2.3 years), while the time was around 30 hours for ER to complete the 100
dimensions over 100 runs. Fig. 13 shows the sparse structure for the ER solution, and we clearly see the
high accuracy of the regression process where we have zero false negative rate and a false positive rate less
than 10−3.

0 20 40 60 80 100

Sparse Representation

Figure 13: In analogy to (main text Fig. 4), this figure shows the sparse solution of ER. We see that we
have few false positive, the false positive 28 out of 515,100 (0.5 million) parameters. And there is zero false
negative.

4.4 Kuramoto-Sivashinsky equations.

To further demonstrate the power of ER, we consider a nonlinear PDE, namely the Kuramoto-Sivashinsky
(KS) equation [11, 12, 19, 7, 13], which arises as a description of flame front flutter of gas burning in a
cylindrically symmetric burner. It has become a popular example of a PDE that exhibits chaotic behavior,

17

in particular spatiotemporal chaos [2, 6]. We will consider Kuramoto-Sivashinsky system

ut = −νuxxxx − uxx + 2uux, (t, x) ∈ [0,∞)× (0, L) (24)

in periodic domain, u(t, x) = u(t, x + L), and we restrict our solution to the subspace of odd solutions
u(t,−x) = −u(t, x). The viscosity parameter ν controls the suppression of solutions with fast spatial
variations, and we have chaotic solution when ν = 0.029910, [2].

Since a PDE corresponds to an infinite dimensional dynamical system, in practice we focus on an ap-
proximate finite-dimensional model of the system, for example, by Galerkin-projection onto basis functions
as infinitely many ODE’s in the corresponding Banach space.

In our main text we discussed the example and experiment details for KSE system, and we showed in
Figs. 5-6 the results of ER. Here we extend the results to present the comparison between different solvers
results.

Fig. 14 shows the results for the different solvers for KSE example, KSE showed high sloppiness in the
parameters where the Sloppy Parameters can be a challenging problem for different parameters estimation
methods [4, 22]. In CVX optimization, which is the case with CS and LASSO, as of most of other optimization
methods, the search mechanism for the optimal solution depends on finding the good search directions in
the search space based on the response of the objective function to the change of parameters, which become
challenging and very expensive task with the presence of sloppy parameters.

From (Main text Eq. 15), we see that the KSE parameters can grow to a very high values (of order
105) with number of modes Nm > 20, while in the same time we have parameter with values less than 1
at the low index modes. Then, the OLS (which depends mainly on the response of fitting residual) showed
high tendency to oversparse the sloppy parameters, and according to there high magnitude, oversparsing the
higher magnitude parameters results with relative error in the solution very close to 1. The LS does not
care to the parameters magnitude, it only aims to reduce the residual and it invest in all possible directions
for this purpose, and here we see the other side of the sloppiness effect, where we see in Fig. 14 that the LS
solution “relative” error grows to a very high values according to investing large energy in sloppy locations
on the parameters matrix.

With low number measurements, ER had fuzzy information detection process and was not able to detect
the structure accurately, and once we have enough measurements to accurately detect the information flow,
ER was able to recover the parameters matrix accurately.

5 ER codes in Matlab and User Guide

A full Matlab code for the entropic regression solver and other core functions such as mutual information
estimator, conditional mutual information estimator, and data generator are available at GitHub in addition
to many other tools functions. The code provided with full documentations and explanations where we
worked to make it simple to follow up and use.

In this section we introduce a simple guide to show the simple process of using the entropic regression
algorithm, and to show a sample real time results for the entropic regression for the basic well known
systems; Lorenz system, Rossler system, and Vander Pol system. Note that the results shown generated
through Matlab publishing tool, meaning that it is a real time run with the same settings and options for
all the results. To download the code and related documentations see: GitHub.

18

https://github.com/almomaa/EntropicRegression
https://github.com/almomaa/EntropicRegression

Figure 14: The relative error in estimated parameters with Nm = 25 and ε1 = 0.001. LASSO, CS and OLS,
all of them always over sparse, they only give very few non-zero parameters, which result with their relative
error to be almost 1 with very small differences as shown in the zoom region.

19

Entropic Regression Fitting

Given Φ and f, (erfit.m) solve the problem:

for x. We provide the matlabe code for entropic regression fitting which can be found
at GitHub and FileExchange in addition to a sample data generator (dataGen.m). The default settings for the
(erfit) function is prepared to deal with the regression as a black-box without assuming any prior information
about the system. For some applications, prior information may be available, and for such cases, we provide
the user with different options (see erfit help documentation) that can highly reduce the computations
complexity.

In this document, we introduce different examples to get the user familiar with using the erfit. Please, refer
to dataGen.m for more information about data generation options.

As a summary for (dataGen.m) function, consider the example call:

[Phi,f] = dataGen('Lorenz','SampleSize',500);

which will generate 500 sample points of the Lorenz system. Now, we have the dynamic of Lorenz
system and stored in the columns of the variable (f), and the fifth order polynomial expansion is
the columns of matrix Phi. As mentioned above, and assuming No prior information about the system are
available, we simply call the erfit function by:

x = erfit(Phi,f);

An extra information are available for the data generation and the entropic regresiion process through the
optional output (Info) where:

[Phi,f,Info] = dataGen('Lorenz','SampleSize',500);

Info will provide extra information such as the step size used in integration, the initial condition, the noise, ...,
etc. The syntax

[x,erInfo] = erfit(Phi,f);

will provide the structure erInfo which has detailed information about the regression process.

Standard Results with Noisy Measurements

In this section we will introduce some results for a well known chaotic systems.

rng('default'); %for repeatability

1

Logistic Map and Basis Construction

The logistic map is a polynomial mapping (recurrence relation), often cited as an archetypal example of how
complex, chaotic behavior can arise from very simple non-linear dynamical equations. And it can be given by:

where is a number between zero and one that represents the ratio of existing population to the maximum

possible population, and , with the parameter is commonly used and known to produce
chaotic behavior. In this example, we will construct the basis expansion and problem construction in details
without calling the DataGen function.

func = @(x) 4*x.*(1-x); %logistic map function
x = rand; %Initial condition of logistic map

%Now, we carry on 500 iteration of logistic map
for i=1:500, x = cat(1,x , func(x(end))); end

It can be seen that, the measuremnt gives the observation , then our observations vector is:

f = x(2:end); x(end) = [];

we ignor the last measurement since it is not assigned to observation. Adding gaussian
noise can be done by:

f = f + 0.02*randn(size(f));
f(randperm(length(f),5)) = 2*randn(5,1);

figure('Units','centimeters','Position',[25 25 12 10]);
plot(x,'ob'); hold on
plot(x,'-g');
title('Sampled Data')
xlim([1 50]);%show only 50 iterations for clear view

2

figure('Units','centimeters','Position',[25 25 12 10]);
plot(x,f,'ob'); grid on;
xlabel('x','Interpreter','latex','FontSize',18)
ylabel('\mathbf{f}','Interpreter','latex','FontSize',18,'Rotation',0)
title('Noisey Observations with outliers points')

The basis matrix with order polynomial expansion can be constructed as:

Phi = [ones(size(x)), x, x.^2, x.^3, x.^4, x.^5];
Sol = [0 , 4, -4 , 0 , 0 , 0]';

where (Sol) stores the true solution of the system. Now, we call the erfit (ER solver) with its default setting to
find the system parameters:

[x,Inff] = erfit(Phi,f);
disp(table(x, Sol,...
 'VariableNames',{'ER_Solution','True_Solution'}));

 ER_Solution True_Solution
 ___________ _____________

 0 0
 3.9372 4
 -3.9405 -4
 0 0
 0 0
 0 0

Lorenz System

The well known Lorenz system given by:

3

a commonly used values of the parameters are and . First, we generate 500 noisy
measurements.

 rng('default');
 [Phi,f, Info] = dataGen('Lorenz','SampleSize',500,...
 'NoiseLevel',0.1);

please refer to our main text for and noise and corruption standard deviation.

%show the sampled measurements
figure('Units','centimeters','Position',[25 25 10 10]);
scatter3(Info.X(:,1),Info.X(:,2),Info.X(:,3),8,'b')
view([22.5 6.8])

Then, solving the system with entropic regression gives the result:

x = erfit(Phi,f);
disp(table(x(1:10,:), Info.P(1:10,:),...
 'VariableNames',{'ER_Solution','True_Solution'}));

 ER_Solution True_Solution
 _______________________________ _________________________

 0 0 0 0 0 0
 -9.9991 28 0 -10 28 0
 9.9987 -1.001 0 10 -1 0
 0 0 -2.6656 0 0 -2.6667
 0 0 0 0 0 0
 0 0 1.0002 0 0 1

4

 0 -0.99999 0 0 -1 0
 0 0 0 0 0 0
 0 0 0 0 0 0
 0 0 0 0 0 0

 figure('Units','centimeters','Position',[0 0 10 15]);
 spy(x); pbaspect([1 2 1]);
 title('Sparse Representation of the Solution')

Corrupted Measurements

Now, we add assume that some of our measurements are corrupted. Please refere to our main text for the
discussion of corrupted measurements.

 rng('default');
 [Phi,f, Info] = dataGen('Lorenz','SampleSize',1000,...
 'CorruptionStd', 5,...
 'CorruptedProb', 0.5);

where CorruptionStd is the standard deviation of the corruption and CorruptedProb is the probability that the
measurement is corrupted. The above syntax produces 1000 measurements with 50% of them corrupted
with high noise. The ER results for such highly corrupted measurements are:

x = erfit(Phi,f);
disp(table(x(1:10,:), Info.P(1:10,:),...

5

 'VariableNames',{'ER_Solution','True_Solution'}));

 ER_Solution True_Solution
 _______________________________ _________________________

 0 0 -0.40753 0 0 0
 -9.9726 28.147 0 -10 28 0
 9.9569 -1.0356 0 10 -1 0
 0 0 -2.6449 0 0 -2.6667
 0 0 0 0 0 0
 0 0 0.99916 0 0 1
 0 -1.0033 0 0 -1 0
 0 0 0 0 0 0
 0 0 0 0 0 0
 0 0 0 0 0 0

 figure('Units','centimeters','Position',[0 0 10 15]);
 spy(x); pbaspect([1 2 1]);
 title('Sparse Representation of the Solution')

We see that the ER solution has 1 false negative location out of 168 total parameters, and it was the
constant term in the third dimention parameters.

Systems have different sensitivity to the corruption magnitude and corruption probability, which should be
considered in preparing the data for the regression process in real-world problems.

6

Entropic Regression

Entropic regression parameters estimator.

Syntax

x = erfit(Phi, f);
x = erfit(Phi, f, options);
[x,Info] = erfit(Phi, f, options);
[sol,Info, Mask] = erfit(Phi, f, options);

Description

• x = erfit(Phi, f) : Given sampled data for basis functions Phi and sampled

observations, , erfit finds the sparse solution that containes the true governing
parametrs of the dynamic f.

• x = erfit(Phi, f, options) : erfit accept options structure 'options' that controls the computations created
by eroptset function.

• [x,Info] = erfit(Phi, f, options) : erfit provides output structure Info that have information about
regression process.

• [x,Info, Mask] = erfit(Phi, f, options) : erfit provides a logical matrix Mask where if ,

and otherwise.

Examples

Please refer to our main text for the construction of the Phi and f matrices. The following is a simplified data
construction and function call for erfit.

[Phi, f] = dataGen('Lorenz');
options = eroptset('sbsMethod','dynamic', 'alpha', 0.95);
x = erfit(Phi, f, options);

Version

This function is a part of Entropic Regression Software Package (erfit), version 1.0. To
report bugs, comments and suggestions, we appreciate your feedback: Abd AlRahman R.
AlMomani, almomaa@clarkson.edu.

Function Body

function [sol,Info, Mask] = erfit(Phi, f, options)

if nargin < 3 %If no options provided, load defaults
 options = eroptset('pDim',size(f,2));
end

%extract system matrcies dimensions
[stat.M,stat.D] = size(Phi); stat.dim = size(f,2);

1

%Solution placeholder
sol = zeros(stat.D,stat.dim);

fwstat = stat; %Initialize forward stat information.

for i=1:stat.dim
 stat.dimIX = i;
 %Strong Basis Selection (Forward Step).
 strongIX = sbs(Phi, f(:,i), stat, options);

 % Update information
 Info(i).fwstat = fwstat;
 Info(i).strIX = strongIX;

 %Weak Basis Removal (Backward Step)
 optimalIX = wbr(Phi(:,strongIX),f(:,i),Info(i).fwstat, options);
 optimalIX = strongIX(optimalIX);

 % Update information
 Info(i).bwstat = bwstat;
 Info(i).optIX = optimalIX;

 %If not detected through entropic regression,
 %Include the constant term for influence test.
 if ~ismember(1,optimalIX), optimalIX = cat(2,1,optimalIX); end

 %Given the optimal basis, find least squares solution
 sol(optimalIX,i) = nls(Phi(:,optimalIX), f(:,i));

 % Update information
 Info(i).mask = logical(sol(:,i));

end
% Find the solution logical mask required
if nargout == 3, Mask = cat(2,Info.mask); end

2

References

[1] C. Anteneodo, A. M. Batista, and R. L. Viana. Synchronization threshold in coupled logistic map
lattices. Physica D: Nonlinear Phenomena, 2006.

[2] F. Christiansen, P. Cvitanovi??, and V. Putkaradze. Spatiotemporal chaos in terms of unstable recurrent
patterns. Nonlinearity, 1997.

[3] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. 2005.

[4] Bryan C. Daniels, Yan Jiun Chen, James P. Sethna, Ryan N. Gutenkunst, and Christopher R. Myers.
Sloppiness, robustness, and evolvability in systems biology, 2008.

[5] C W J Granger. Investigating Causal Relations by Econometric Models and Cross-spectral Methods.
Econometrica, 37(3):424–438, 1969.

[6] P. C. Hohenberg and Boris I. Shraiman. Chaotic behavior of an extended system. Physica D: Nonlinear
Phenomena, 1989.

[7] James M. Hyman and Basil Nicolaenko. The Kuramoto-Sivashinsky equation: A bridge between PDE’S
and dynamical systems. Physica D: Nonlinear Phenomena, 1986.

[8] Sarika Jalan and R. E. Amritkar. Synchronized clusters in coupled map networks. Proceedings of the
Indian National Science Academy Part A - Physical Sciences, 2005.

[9] Kunihiko Kaneko. Overview of coupled map lattices. Chaos (Woodbury, N.Y.), 1992.

[10] F. Kaspar and H. G. Schuster. Easily calculable measure for the complexity of spatiotemporal patterns.
Physical Review A, 1987.

[11] Y. Kuramoto and T. Tsuzuki. Persistent Propagation of Concentration Waves in Dissipative Media Far
from Thermal Equilibrium. Progress of Theoretical Physics, 1976.

[12] Yoshiki Kuramoto. Diffusion-Induced Chaos in Reaction Systems. Progress of Theoretical Physics
Supplement, 1978.

[13] Yueheng Lan and Predrag Cvitanović. Unstable recurrent patterns in Kuramoto-Sivashinsky dynamics.
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2008.

[14] Edward N. Lorenz. Deterministic Nonperiodic Flow. Journal of the Atmospheric Sciences, 1963.

[15] C. Masoller, Hugo L.D.de S. Cavalcante, and J. R.Rios Leite. Delayed coupling of logistic maps. Physical
Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 2001.

[16] Barry Saltzman. Finite Amplitude Free Convection as an Initial Value ProblemI. Journal of the
Atmospheric Sciences, 1962.

[17] T Schreiber. Measuring information transfer. Physical review letters, 85(2):461–4, 2000.

[18] Claude E Shannon. A mathematical theory of communication. The Bell System Technical Journal,
27(July 1928):379–423, 1948.

[19] G. I. Sivashinsky. Nonlinear analysis of hydrodynamic instability in laminar flames-I. Derivation of basic
equations. Acta Astronautica, 1977.

[20] J. Sun, D. Taylor, and E. Bollt. Causal network inference by optimal causation entropy. SIAM Journal
on Applied Dynamical Systems, 14(1):73–106, 2015.

28

[21] Jie Sun and Erik M. Bollt. Causation entropy identifies indirect influences, dominance of neighbors and
anticipatory couplings. Physica D: Nonlinear Phenomena, 267:49–57, 2014.

[22] Andrew White, Malachi Tolman, Howard D. Thames, Hubert Rodney Withers, Kathy A. Mason, and
Mark K. Transtrum. The Limitations of Model-Based Experimental Design and Parameter Estimation
in Sloppy Systems. PLoS Computational Biology, 2016.

Acknowledgements

This work was funded in part by the Simons Foundation Grant No. 318812. We would also like to thank, the
Army Research Office (N68164-EG) and the Office of Naval Research (N00014-15-1-2093), and also DARPA.

29

	Governing Dynamics, Over-sparsity, and Sensitivity for Expansion Order
	Information Theory
	Entropy
	Mutual Information
	Transfer Entropy and Causation Entropy

	Entropic Regression
	Additional Numerical Results
	Double Well Potential
	Lorenz system.
	Network coupled logistic maps.
	Kuramoto-Sivashinsky equations.

	ER codes in Matlab and User Guide

