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Abstract

We study the conjugacy between two dynamical systems. We con-
sider the case when one system is perturbed via an additive noise term.
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1 Introduction

A central issue in the applied sciences is that of reduced order modeling. It
is often difficult, if not impossible, to differentiate upon first inspection, a
seemingly good model from perhaps a better one. The questions a modeler
has to keep in mind are manyfold: What are the salient features of the physical
process that should be captured by a model? What dynamical properties of
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the underlying process should be mimicked? What can perhaps be discarded?
The answers in large part depend on the viewpoints, and thus the subsequent
choices made by the modeler. However, there is also a well known formal
means of comparison. In the dynamical systems literature two systems are
considered to be the the same if there exists a conjugacy between them. This
is essentially a homeomorphic change of coordinates that allows us to change
freely between the two systems. However, for most real world applications
this is seldom observed. No pragmatic model captures all the features of the
process it represents. Thus a physical process and a “representative” model for
it, are never quite conjugate. Once you accept that this discrepancy will almost
always occur in most real world modelling applications, it becomes imperative
to investigate the issues therein. This endevour seems to be important not only
from a dynamical systems point of view, but from the more general standpoint
of modeling in science.

The works of Bollt and Skufca, [BS07], [BS08], have investigated some of
these issues in great detail. In these works they develop a systematic methodol-
ogy to compare systems which are not quite cojugate, thus coining the phrase
“mostly conjugacy”. They lay down rigorously the notion of the commuter
function, in such a setting. The commuter now departs from having the stan-
dard properties of a homeomorphism. Bollt and Skufca thus associate to this
object a defect measure associated with how much it fails to be a homeomor-
phism. They prove the convergence of this object and derive a robust algorithm
for its numerical computation. In [BS10] they give a symbolic dynamical in-
terpretation to the commuter. The work of Zheng et al., [ZBS10], rigorously
justifies these computations by proving various regularity results concerning
the commuter functions considered therein. Zheng also makes various error
estimates concerning the numerical approximation of the commuter function
via the algorithm presented in [BS08].

A central theme of the above mentioned works is that they have all focused
on a deterministic setting. In the current manuscript we will study the con-
jugacy between two dynamical systems, when one of these is perturbed via a
stochastic term. Our hope is to lay down a rigorous first step in the direction of
“mostly conjugacy” to stochastically perturbed dynamical systems. The fore-
most goal of this manuscript is to address the question, “How do you compare
noisy systems, in the sense of conjugacy?”. We hope to provide a reasonable
answer to this question, detailing the nuances involved in the process, and
discussing how we overcome them.

The manuscript is organised as follows. We first present a definition of
the random commuter. Next we extend this analysis to cases where there is
external noise. We deal with the cases of uniform noise and normal noise and
present convergence results therein. Furthermore, we also present a numerical
approximation of the random commuter and provide figures for this object.
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This hopefully is and aid to sharpen geometric intuition. We also present an
alternate view of the commuter function, as a random operator, and present
further convergence results, in this light. Lastly we present some concluding
remarks.

2 Preliminaries

Consider the following dynamical systems,

g1(x) : X → X, (1)

g2(y) : Y → Y. (2)

Recall that the dynamical systems are called conjugate if there exists a home-
omorphism

f : X → Y, (3)

such that the following diagram commutes

X
g1→ X

↓f ↓f

Y
g2→ Y

The above in particular implies that the following equation holds pointwise for
all x ∈ X,

f(g1(x)) = g2(f(x)). (4)

Our aim in the current manuscript is to adopt the above method-
ology to the case where one of the dynamical systems is forced by
noise. In particular, we want to characterise the commuter in such a setting.
It is intuitive that in the random setting we would wish to evolve densities,
instead of individual points. This will lead naturally to our definition of a ran-
dom commuter, which is the next order of business. We begin by constructing
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the requisite phase spaces. Assume now that instead of X our phase space is
given by L1(X). Here X = [0, 1]. Formally we will confine our attention to

D =

{
ρ ∈ L1(X) :

∫
X

|ρ(x)|dx = 1, ρ ≥ 0

}
. (5)

D is thus a space consisting of densities on X. Furthermore instead of Y our
phase space will be given by L1(Y ) where Y = [0, 1]. Again we are essentially
considering

D
′
=

{
ρ ∈ L1(Y ) :

∫
Y

|ρ(y)|dy = 1, ρ ≥ 0

}
. (6)

Instead of points x ∈ X moving under the action of the dynamics of g1, and
points y ∈ Y moving under the action of the dynamics of g2, we have densities
ρ(x) ∈ D, and ρ(y) ∈ D

′
that are evolved under the action of Frobenius-Perron

operators. Note however, that L1(X) does not formally include the external
noise. To proceed we must resolve this. Lets pause for a moment, and consider
the following definition from [L91].

Definition 2.1 (Continuous Random Dynamical system) A measur-
able random dynamical system on the measurable space (X, β) over a metric
dynamical system (Ω,F , P, (θ(t))t∈T ) with time T is a mapping

φ : T × Ω × X → X, (t, ω, x) �−→ φ(t, ω, x), (7)

with the following properties

(i) Measurability: φ is β(T) ⊗ F ⊗ β- measurable.
(ii)Cocycle property: The mapping φ : X → X , form a cocycle over θ.

The point we want to emphasize is that under external stochastic forcing (or
modeling error if you will), it becomes useful to visualise a random dynamical
system as a movement on the bundle Ω×X. Here the source of the randomness
is present in Ω, and takes values in L1(Ω), and the dynamics take values in
L1(X). In the light of the above we introduce the skew product L1(X ×Ω) =
L1(X) × L1(Ω) to represent our phase space. This enables us to incorporate
the stochastic forcing into L1(X), by defining L1(X × Ω) as the right phase
space. To reiterate, the noise is considered to be from external sources, be it
pure randomness, modeling error or any combination therein. The transport
of the densities are then handled formally by the stochastic Frobenius-Perron
operators
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Pg1ρ(x) : L1(X × Ω) → L1(X), (8)

Pg2ρ(y) : L1(Y ) → L1(Y ). (9)

With this in mind we can make the following definition.

Definition 2.2 Consider the following dynamical systems

g1(xn) = S1(xn) + ξn(ω), (10)

g2(xn) = S2(xn). (11)

Where ξn(ω) is a stochastic forcing term with some prior distribution. Fur-
thermore assume the Frobenius-Perron operators for the systems are given by

Pg1ρ(x) : L1(X × Ω) → L1(X), (12)

Pg2ρ(y) : L1(Y ) → L1(Y ). (13)

The random commuter f : L1(X) → L1(Y ), between the two dynamical
systems g1 and g2, is a density pointwise, in the sense that the following holds

f(Pg1ρ(x)) = Pg2f(ρ(x)). (14)

This can be viewed as the following diagram commuting

L1(X × Ω)
Pg1→ L1(X)

↓f ↓↓f

L1(Y )
Pg2→ L1(Y )

Remark 2.3 The two arrows on the right are a representation for many to
oneness. Each for a particular realisation of the noise. So in essence, for any
particular realisation of the noise ω, the Frobenius-Perron operator Pg1 acts on
a density ρ(x, .) ∈ L1(X × Ω), to produce a new density Pg1(ρ(x, .)) ∈ L1(X).
This density is carried by the commuter f to a new density f(Pg1(ρ(x, .))) ∈
L1(Y ). Along the other leg the commuter f acts on the density ρ(x, ω) and
carries it to L1(Y ). Here it is picked up by the Frobenius-Perron operator
Pg2, and carried to L1(Y ). The action of the commuter f can be viewed as a
change of coordinates, following the standard theory of change of variables for
densities. Here the jacobian of the transformation is essentially the Radon-
Nikodym derivative, as highlighted in the next subsection.
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2.1 The Case Of Uniformly Distributed Noise

Consider the following two dynamical systems g1 and g2 as defined below.

g1(x, ξx)

= 2(1 − 2ε)x + (ξx + 1)ε, 0 ≤ x < 1/2,

= 2(1 − 2ε)(1 − x) + (ξx + 1)ε, 1/2 ≤ x ≤ 1. (15)

g2(y)

= 2y, 0 ≤ y < 1/2,

= 2(1 − y), 1/2 ≤ y ≤ 1. (16)

We assume that ξx is uniformly distributed in the interval unit interval
[0, 1]. We wish to show the convergence of the Frobenius-Perron operator
under g1. Note the operator under consideration now contains a stochastic
kernel. This can be written out explicitly following [LM91]. Let (X, A, μ) be
a measure space. For any f ∈ D we have

Pg1f(x) =

∫
X

K(x, y)f(y)dy. (17)

Here K(x, y) is a stochastic kernel that satisfies

K(x, y) ≥ 0, (18)

and ∫
X

K(x, y)dx = 1. (19)

For our purposes

K(x, y) = g(x − S(y)) where g(x) = 1[0,1](x) is the density of ξ. (20)

We begin by introducing some definitions and then recalling a theorem
from [LM91].

Definition 2.4 Let (X, A, μ) be a measure space and P : L1(X) → L1(X)
a Markov operator. Then {P n} is said to be asymptotically stable if there
exists a unique f∗ ∈ D such that Pf∗ = f∗ and

lim
n→∞

||P nf − f∗|| = 0 for every f ∈ D. (21)



Stochastic mostly conjugacy 401

Theorem 2.5 (Lasota & Mackey, 1991) Let (X, A, μ) be a finite mea-
sure space and P : L1(X) → L1(X) a Markov operator. Assume there is a
p > 1 and K > 0 such that for every density f ∈ D we have P n ∈ Lp for
sufficiently large n, and

lim sup
n→∞

||P nf ||p ≤ K. (22)

Then P is constrictive.

Definition 2.6 A constrictive operator is asymptotically stable.

Note that P being constrictive implies the convergence of {P n}. We next
state our convergence result via the following Lemma,

Lemma 2.7 consider the following dynamical system perturbed stochasti-
cally

g1(x, ξx)

= 2(1 − 2ε)x + (ξx + 1)ε, 0 ≤ x < 1/2,

= 2(1 − 2ε)(1 − x) + (ξx + 1)ε, 1/2 ≤ x ≤ 1, (23)

where ξn is i.i.d uniformly distributed in [0,1]. The stochastic Frobenius-
Perron operator for this dynamical system converges to the stationary density
of the system. That is

lim
n→∞

||P nf − f∗|| = 0 for every f ∈ D. (24)

Proof 2.8 The form of the Frobenius-Perron operator is easily constructed
via techniques from [LM91]. It is given by the joint density of fn and ξ. That
is

fn+1(x) = Pg1fn(x) =

∫
�

fn(y)g(x− S(y))dy. (25)

Note

S(x)

= 2(1 − 2ε)x + ε, 0 ≤ x < 1/2,

= 2(1 − 2ε)(1 − x) + ε, 1/2 ≤ x ≤ 1. (26)
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Here g(x − S(y)) is the density of the random variable εξ. Since ξ is
uniformly distributed in [0,1], equation 25 reduces to

Pg1fn(x)

=

∫
�

fn(y)ε 1[S−1(x),S−1(x−1)](x − S(y))dy

= ε

∫ S−1(x−1)

S−1(x)

fn(y)dy. (27)

Thus it follows that

lim sup
n→∞

|Pg1fn(x)|22

= lim sup
n→∞

|
∫
�

fn(y)ε 1[S−1(x),S−1(x−1)](x − S(y))dy|22

= |ε
∫ S−1(x−1)

S−1(x)

lim sup
n→∞

fn(y)dy|22. (28)

Note that here and else where in the text we adopt the convention that
the L2 norm is represented as follows

∫
Ω
|f(x)|2dx = |f |22. The limit can be

switched with the integral via Lebesgue dominated convergence theorem. Note,
that markov maps are dense in the space of piecewise linear maps, [BB01].
Thus it follows that there exists an N such that for n ≥ N

|fn(y) − f ∗|2 ≤ ε1. (29)

Where f ∗ is the density of a markov map, thus is given by a piecewise
constant function

lim sup
n→∞

k∑
i=1

Ci1[ai,bi](x). (30)

The following can also be obtained via approximating fn by a step function,
since fn ∈ L1(X) by definition, [ZW77]. In any event we obtain,
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|ε
∫ S−1(x−1)

S−1(x)

lim sup
n→∞

fn(y)dy|22

= |ε
∫ S−1(x−1)

S−1(x)

(lim sup
n→∞

(fn(y) −
k∑

i=1

Ci1[ai,bi](y)) + (

k∑
i=1

Ci1[ai,bi](y))dy|22

≤ ε|
∫ S−1(x−1)

S−1(x)

ε1dy|22 + ε|
∫ S−1(x−1)

S−1(x)

k∑
i=1

Ci1[ai,bi](x)|22

≤ εε1|
∫ S−1(x−1)

S−1(x)

dy|22 + εK|
∫ S−1(x−1)

S−1(x)

dy|22

= ε(ε1 + K)|S−1(x − 1) − S−1(x)|10
≤ ε(ε1 + K)(|S−1(1)| + |S−1(0)|)

≤ ε(ε1 + K) max(1,
1 − ε

2(1 − 2ε)
,− ε

2(1 − 2ε)
)

≤ 2K max(ε,
ε(1 − ε)

2(1 − 2ε)
,− ε2

2(1 − 2ε)
)

≤ K, for ε ≤ 1

4
. (31)

Note that the K does not depend on ε or n, so the bound is uniform in ε
and n. We can now take a lim sup in the above, to conclude that

lim sup
n→∞

|Pg1fn(x)|22 ≤ K. (32)

Thus the Lemma is proved via application of Theorem 2.5, where the Lp

space we have considered is L2.

2.2 Numerical Approximation of the Random Commuter

with Uniformly Distributed Noise

The goal of this short section is to outline our method of numerically approx-
imating the random commuter, when a uniform noise is used. This comple-
ments the theoretical convergence results of the previous section and enables
the reader to visualise the random commuter. One description of the random
commuter, as discussed in section 2, is that of a random valued function. In
this light, the commuter is viewed as a one parameter family of distributions,
such that for each x ∈ X, the commuter fξ(x) is a distribution. As an example,
we consider a logistic map with additive (uniform) noise

g1(x, ξ) = 3.75x(1 − x) + ξx,



404 R. D. Parshad, J. Zheng, E. Bollt and J. D. Skufca

where the noise is independent of the particular value of x (and also, i.i.d under
iteration of the map. Suppose we seek to model this noisy logistic map g2, via a
symmetric tent map of height 0.9. To numerically approximate the commuter
that relates systems g1 and g2, we proceed as follows: Take a uniform grid
U of x coordinates (on the interval [0, 1], and take f0 to be an identify map.
Compute instances of the commuter values on that grid using the iterative
scheme below, as in [BS08],

fk+1(U) = ĝ−1
2 ◦ fk ◦ g1(U),

where the additive noise is i.i.d at each different point on the grid and at
each iteration. We procede naively and simply assume that after discarding
transient iterations (to allow for convergence of the random operator), for any
fixed x ∈ U the values {fk(x)}k (for sufficiently large k) can viewed as coming
from the distribution associated with the random commuter. Collecting these
values over a large number of iterations allows us to treat that ensemble as
approximating the distribution at each of the specified values of x. Figure ??
provides a visualization of the approximation of the complete set of marginal
distributions via a “quadweb”.

3 Random Fixed Point Analysis

We now change direction slightly and give another interpretation of the com-
muter function between two dynamical systems, one of which is randomly
forced. A central theme of the current manuscript has been to understand
the action of the commuter on densities. In this light, it is quite natural to
view this transport of densities, via the commuter, as the action of a ran-
dom operator, also known as an operator valued random variable. Just as in
the deterministic setting, [BS08], we can then ask: does there exists a fixed
point of this operator? An affirmative answer would reinforce our convergence
results derived earlier. A fair bit is known about random operator theory.
The study of random fixed points was first considered by the Prague school
of probabilists in the 1950’s. They have found much use in application since,
including random differential equations in Banach spaces. Note, of particular
interest might be to persons interested in modeling with differential equations,
where the coefficients are random. There is a vast literature on probabilistic
functional analysis, and the use of random operator theory. See [R72], [SL99].
[R72] in particular is a comprehensive text, that details the exhaustive scope
of these probabilistic techniques. We will now recall some preliminaries as to
best inform the coming analysis. We begin via the following definitions

Definition 3.1 Let (X, A, μ) be a measure space. A mapping T : X ×ω →
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Figure 1: We perform some numerical simulations to visualise the random
commuter best explained trough a “quadweb”. This is our name for a graphical
representation that allows us to visualise the action of the random commuter
along both legs of the commutative diagram, in a single figure. See [BS08]
for details. For this numerical experiment in the lower right panel we have a
logistic map with r = 3.75 perturbed by a noise that is uniformly distributed
in the unit interval. We see clearly that for a given value of x we can go upto
the random commuter in the upper right panel, which yields a density that can
then be evolved via the dynamics of the tent map with r = 0.9, ending up with
a density seen in the pink column. We would end up with the same density if
we evolved a density forward via the dynamics of the noisy logistic map, seen
in the green column, and then acted on this via the random commuter.
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X is called a random operator if for each fixed x ∈ X the mapping the map
T (., x) : ω → X is measurable.

Definition 3.2 A measurable map ξ : Ω → X is a random fixed point of a
random operator T : X × ω → X if

T (ω, ξ(ω)) = ξ(ω), for each ω ∈ Ω. (33)

We recall the following theorem in the form best suited for our application.

Theorem 3.3 (Random Fixed Point Theorem) Let T be a continuous
random operator on L1([0, 1] × Ω) to L1[0, 1]. Let λξ be a real-valued random
variable such that λξ < 1 almost surely and

||Tf1 − T f2||1 ≤ λξ||f1 − f2||1 (34)

for every two functions f1, f2 ∈ L1[0, 1]. Then there exists an L1[0, 1]-value
random function fξ, which is the unique fixed point of T , i.e.

Tfξ = fξ. (35)

Our goal is to use the above to prove that the commuter function that we
have considerd earlier, can be viewed as the fixed point of a random operator.
This reinforces our result about the convergence of this object for various
classes of noise, via stochastic Frobenius-Perron operator methods, that we
considered in the previous section. Recall again the commutative diagram in
the random setting

L1(X × Ω)
Pg1→ L1(X)

↓f ↓↓f

L1(Y )
Pg2→ L1(Y )

The above implies that the following holds

f(Pg1(ρ(x))) = Pg2(f(ρ(x))). (36)

Clearly the commuter acts on densities in both legs of the diagram. Thus
it is natural to view it as a random map, acting on densities, so as to bring in
the afforementioned random fixed point theory. We first carefully define the
right random operator in our current setting. We take our cue from earlier
works, [BS08]. Recall in the deterministic setting f satisfies
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f(g1(x)) = g2(f(x)). (37)

Since we know what g1 and g2 are, a functional equation for f can be set up
explicitly. We adopt the same methodology to the random setting. Consider
the following figure illustrating a full tent map and a short map perturbed by
noise

Figure 2: For this numerical experiment the systems we consider are a short
tent map perturbed by a noise that is uniformly distributed in the unit interval,
and a full tent map, that is with r = 1. In the figure seen above we consider a
particular realisation of the noise. This is in contrast to the next figure, where
an ensemble over all realisations is constructed.

We next describe these dynamical systems explicitly

g1(x, ξx)

= 2(1 − 2ε)x + (ξx + 1)ε, 0 ≤ x < 1/2,

= 2(1 − 2ε)(1 − x) + (ξx + 1)ε, 1/2 ≤ x ≤ 1. (38)

g2(y)

= 2y, 0 ≤ y < 1/2,

= 2(1 − y), 1/2 ≤ y ≤ 1. (39)

For any fixed density ξ, the following equation holds

fξ(g1(x, ξx)) = g2(fξ(x)). (40)
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Where fξ : L1(X × Ω) → L1(Y ).
This yields

2fξ(x) = fξ(2(1 − 2ε)x + (ξx + 1)ε, 0 ≤ x < 1/2, (41)

2(1 − fξ(x)) = fξ(2(1 − 2ε)(1 − x) + (ξx + 1)ε, 1/2 < x ≤ 1. (42)

Thus we have a functional equation for fξ(x),

fξ(x) =
1

2
fξ(2(1 − 2ε)x + (ξx + 1)ε, 0 ≤ x < 1/2. (43)

fξ(x) = 1 − 1

2
fξ(2(1 − 2ε)(1 − x) + (ξx + 1)ε, 1/2 < x ≤ 1. (44)

We use the above to define a random operator as follows

Tfξ(x)

=
1

2
fξ(2(1 − 2ε)x + (ξx + 1)ε, 0 ≤ x < 1/2,

= 1 − 1

2
fξ(2(1 − 2ε)(1 − x) + (ξx + 1)ε, 1/2 < x ≤ 1.

(45)

This follows ∀f1, f2 ∈ L1[0, 1], 1 ≤ p < ∞. We can now ask the following
question: Does there exist a fixed point for the above operator? We were
able to answer this in the affirmative in [BS08], via a contraction mapping
argument. Here things are further complicated because of the presence of
noise. Thus we have first introduced the relevant “noisy” operator theoretic
setting, via the random fixed point Theorem. The existence of a random fixed
point will imply convergence of the iterates of the noisy system, something we
fully expect from our analysis via the Frobenius-Perron theory. Thus we state
the following result

Lemma 3.4 Consider the following dynamical system

g1(x, ξx)

= 2(1 − 2ε)x + (ξx + 1)ε, 0 ≤ x < 1/2,

= 2(1 − 2ε)(1 − x) + (ξx + 1)ε, 1/2 ≤ x ≤ 1. (46)
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g2(y)

= 2y, 0 ≤ y < 1/2,

= 2(1 − y), 1/2 ≤ y ≤ 1. (47)

Where ξx is uniformly distributed in the interval [0, 1]. The commuter
function f : L1(X × Ω) → L1(Y ) between the systems above, when viewed
as an appropriate random operator, such as defined in 45, posesses a random
fixed point.

Proof 3.5 We consider the difference of Tf1 and Tf2 piecewise on [0, 1/2]
and [1/2, 1] as defined.

||Tf1 − Tf2||[0,1/2]

=

∫
[0,1/2]

|Tf1(x) − Tf2(x)|dx

=

∫
[0,1/2]

|1
2
f1(2(1 − 2ε)x + (ξx + 1)ε) − 1

2
f2(2(1 − 2ε)x + (ξx + 1)ε)|dx

=

∫ (1−2ε)+(ξx+1)ε

(ξx+1)ε

|1
2
f1(y) − 1

2
f2(y)| 1

2(1− 2ε)
dy

=
1

2
(

1

2(1 − 2ε)
)||f1 − f2||[(ξx+1)ε,(1−2ε)+(ξx+1)ε], (48)

or

||Tf1 − Tf2||[0,1/2] =
1

2
(

1

2(1 − 2ε)
)||f1 − f2||[(ξx+1)ε,(1−2ε)+(ξx+1)ε]. (49)

This follows by setting y = 2(1 − 2ε)x + (ξx + 1)ε, in the above. On the
other hand, when 1/2 < x ≤ 1, we have

||Tf1 − Tf2||[1/2,1]

=

∫
[1/2,1]

|Tf1(x) − Tf2(x)|dx

=
1

2
(

∫ (ξx+1)ε

(1−2ε)+(ξx+1)ε

|1
2
f1(y) − 1

2
f2(y)| 1

−2(1− 2ε)
dy)

=
1

2
(

∫ (1−2ε)+(ξx+1)ε

(ξx+1)ε

|1
2
f1(y) − 1

2
f2(y)| 1

2(1− 2ε)
dy)

=
1

2
(

1

2(1 − 2ε)
)||f1 − f2||[(ξx+1)ε,(1−2ε)+(ξx+1)ε], (50)
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or

||Tf1 − Tf2||[1/2,1] =
1

2
(

1

2(1 − 2ε)
)||f1 − f2||[(ξx+1)ε,(1−2ε)+(ξx+1)ε]. (51)

Again we set y = 2(1 − 2ε)(1 − x) + (ξx + 1)ε in the above equation. We
now add 49 to 51 to obtain

||Tf1 − Tf2||[0,1]

=
1

2
(

1

1 − 2ε
)||f1 − f2||[(ξx+1)ε,(1−2ε)+(ξx+1)ε].

≤ 1

2
(

1

1 − 2ε
)||f1 − f2||[0,1]. (52)

Thus we have

||Tf1 − Tf2||[0,1] ≤ λ||f1 − f2||[0,1], (53)

where

λ =
1

2
(

1

1 − 2ε
). (54)

We can choose ε < 1/4, so ( 1
1−2ε

) < 2. Thus we obtain

λ =
1

2
(

1

1 − 2ε
) < 1. (55)

This completes the proof of the Lemma.

We next present a figure of this object as a visual aid to the prior analysis.
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4 Conclusion

In conclusion we have developed a new and rigorous definition of a random
commuter. We have established its convergence via use of the Frobenius Per-
ron theory, under pertubation via uniformly distributed noise and normally
distributed noise. This result is seen in our numerical simulations also. Our



Stochastic mostly conjugacy 411

Figure 3: We perform some further numerical simulations to visualise the
random commuter pictured above. Our aim here is to compare this object with
our well understood notion of a deterministic commuter. For this numerical
experiment the systems we consider are a short tent map perturbed by a noise
that is uniformly distributed in the unit interval, and a full tent map. This
yields the image seen in the figure above. Notice that for any x in the horizontal
axis, we have a distribution across Y, in the vertical axis. Notice the pointwise
blurring, but also the underlying fractal like function structure.

results concerning the commuter when viewed as a random operator reinforce
these results. However various questions remain open at this point. Most of
our analysis is confined to the case of one dimensional dynamical systems rep-
resented as maps. It would be interesting to consider how our methodologies
apply when the underlying dynamical systems are flows. White noise perturba-
tion in such a setting can also be considered. This would lead us to investigate
the SDE case. The continuous version of the Frobenius-Perron operator might
provide a valuable tool in this case. It is also interesting to try some of the
above mentioned techniques when the commuters are not quite homeomorphic,
which is getting at the true spirit of “mostly conjugacy”. To this end we pro-
vide some details in Appendix B, where some of the associated difficulties can
be circumvented via bringing in appropriately defined delta functions. When
comparing flows, forced say via white noise, it might be possible to formulate
certain large deviation principles. These might provide insight into how “con-
jugate” two flows are via comparison of their rate functions. Large deviations
is one of the most active research areas in probability theory and might provide
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us with certain tools we could use in ways as alluded to earlier. It also seems
worthwhile to calculate explicitly the random commuters for cases where the
deterministic dynamics are far from conjugate (basically the case where one
of the maps is to tall or to short) and compare these to the well understood
deterministic cases. These and related questions are the subject of current
investigation.
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