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We model an elastic beam subject to a contact load which displaces under a chaotic external
forcing, motivated by application of a ship carrying either a crane, or fluids in internal tanks.
This model not only has rich dynamics and relevance in its own right, it gives rise to a Partial
Differential Equation (PDE) whose solutions are chaotic, with an attractor whose points lie
“near” a low-dimensional curve. This form identifies a data-driven dimensionality reduction
which encapsulates a Cartesian product, approximately, of a principal manifold, corresponding to
spatial regularity, against a temporal complex dynamics of the intrinsic variable of the manifold.
The principal manifold element serves to translate the complex information at one site to all
other sites on the beam. Although points of the attractor do not lie on the principal manifold,
they lie sufficiently close that we describe that manifold as a “backbone” running through the
attractor, allowing the manifold to serve as a suitable space to approximate behaviors.

Keywords : Reduced order model; ROMS; principal curve; principal manifold; low dimensionality;
dimension reduction.

1. Motivation

The strength of ships remains one of the most chal-
lenging problems of engineering design. These com-
plex structures are both large and expensive, with
obvious trade-offs of strength for weight, cost and
speed. Of particular difficulty for the design and
analysis of ships and ship-based structures is the
dynamic load environment. Although the romantic
image might be that the ship’s strength is chal-
lenged by icebergs or rocks, the reality is that
most large structural damage to ships results from
the recurrent dynamic interaction with the waves
or the resultant motion of cargo driven dynami-
cally by wave action (to include free surface motion
of fluid inside tanks). Recent examples such as
structural problems on the Navy’s Arleigh Burke-
class destroyers indicate that despite modern design
tools, these engineering challenges have not been
satisfactorily resolved.

A key aspect to the difficulty of this problem
is that a hostile sea environment is not simply
dynamic, but (in some sense) indeterminate, with
wave fields the results of nonlinear interactions in
the environment. Even when seas are somewhat
regular, the resultant action of cargo can result in
chaotic forcing of structures (as, for example, results
from ship-board cranes). It is within this motivating
framework that we consider the motion of a struc-
tural beam driven by complex forcing. Our primary
goal within this work is to show how data-driven
methods can be used to construct reduced order
models of these dynamic settings.

Our primary example of consideration will be
a simple linear beam (represented using a one-
dimensional PDE), but driven by a chaotic forc-
ing function. Consistent with our motivation as
described above, we assume that most ship struc-
tures should be expected to be operating under
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normal conditions. With expected ship lifetimes of
tens of years, it is reasonable to assume that the
structural components should be operated within
the bounds of small perturbations, such that a lin-
ear beam model is appropriate. The challenge of the
problem arises from complex forcing. Our work will
examine techniques to exploit the structure gener-
ated by the underlying chaotic attractor to yield
efficient representations of the driven PDE.

2. Beam Model

To develop our model for the forced beam motion,
we start from the standard Euler–Lagrange beam
equation for an elastic beam, where we assume con-
stant material properties. Let w = w(z, t) represent
the displacement of the beam at location z and time
t, measured with respect to reference (unloaded)
configuration. The governing equation for trans-
verse motion is given by the PDE

EIwzzzz + µwtt + cwt = q(z, t), (1)

with E the elastic modulus, I the moment of inertia,
µ the mass per unit length of the beam, c a damp-
ing coefficient, and q(z, t) giving the time varying
load, measured in units of force per unit length.
We take the problem domain to be z ∈ [0, L], and
t ∈ [0,∞). For specificity, we study the problem of
a simply supported (pinned) beam, yielding bound-
ary conditions

w(0, t) = w(L, t) = 0,

wzz(0, t) = wzz(L, t) = 0.
(2)

Our primary interest was to understand the
application of reduced order methods to problems
of interesting beam motions (with a goal of recover-
ing reduced representations from data). Therefore,
we desired complex beam motions. For beams mod-
eled by the linear PDE of (1), complex motions
require complex behavior to be associated to the
load. As a “toy model” representation of such a
loading, we assume that the load on the system is a
point force F, with the location at which the force
is applied (zq) varying in time in a chaotic motion.
Specifically,

q(z, t) = −Fδ(z − zq), (3)

where δ(·) is the Dirac delta function. (See Fig. 1.)
The position zq is governed by the well known

Fig. 1. Point load on a beam. The elastic beam, with sim-
ply supported ends, is loaded by a single point force whose
position zq is varying in time.

Duffing equation

z̈d + νżd + αzd + βz3
d = γ cos(ωt), (4)

where zd = zd(t) is the state variable and ν, α, β, γ,
and ω are scalar constants. The Duffing equation
describes motion of a damped oscillator in a dou-
ble well potential and is known to yield chaotic
behavior for appropriate choice of parameter val-
ues. Because the Duffing equation gives behavior
symmetric about the origin, we translate the Duff-
ing coordinate by linear shift

zq = zd +
L

2
.

The resultant coupled system is given by

EIwzzzz + µwtt + cwt = −Fδ(z − zq), (5a)

z̈q + νżq + α

(
zq − L

2

)
+ β

(
zq − L

2

)3

= γ cos(ωt). (5b)

We remark that a more typical model of chaotic
forcing on a beam is to apply a load whose ampli-
tude is varying in time. Here, we employ a fixed
load, but with a chaotically varying point of attack.
Our choice is driven by our application concept of a
ship at sea, with point loads moving about the ves-
sel, but we find the model sufficiently interesting,
independent of that application.

2.1. Numerical simulation

To compute data associated for the beam motion,
we use an implicit finite difference method for time-
stepping of (5a) along with an explicit Runge–
Kutta solver to compute solutions to (5b). We desire
to numerically simulate the solution on a uniform
spacial grid of J + 1 points, over the time interval
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Table 1. Simulation parameters
used throughout this article.

L 3.4
EI 200
µ 20
c 10
F 1
ν 0.02π

α −0.01π2

β 0.01π2

γ 0.003π2

ω π/10

[0, T ]. Discretizing time into N intervals, such that
∆t = T/N, and defining ∆z = L/J, we denote the
approximate solution on this grid by

wn
j ≈ w(j∆z, n∆t), (6)

zn
q ≈ zq(n∆t), j = 0, . . . , J, n = 0, . . . , N. (7)

Throughout this note, our numerical simula-
tions focus on the parameter set given in Table 1.
The beam parameters were taken from an example
problem in [Jin & Xing, 2007] and have no special
significance other that being reasonable engineering
values with some external source data that we could
use for verification of our code, with the exception
of damping coefficient c, which was selected ad hoc.
The parameters for the Duffing equation are related
to the classic parameter choice,1 where we have sim-
ply used a time scaling to slow the forcing function
to allow for better representation of the separation
of time scales. However, we performed no search
to find “interesting” parameter sets and we assume
that the observed behaviors are (therefore) reason-
ably generic.

2.2. Description of coupled system
behavior

In this section, we provide an explanation of the
behaviors observed in the solution to (5) based on
standard analysis approaches to such equations. We
emphasize that the analysis is dependent upon a
reasonably complete knowledge of the governing
equations of the system. In Secs. 4–7 we describe

techniques that allow for discovery of such struc-
tures from data, appropriate to typical real-world
problems where system equations are not known.
Our analysis is this section is meant to establish
a framework that justifies the expectation that a
manifold based approach to dimensionality reduc-
tion may be a fruitful approach to systems driven
by complex forcing.

Starting from a realization that (5b) admits
only numerical solutions, we may infer that stan-
dard analytic solutions to (5a) are not tractable.
However, the standard approaches to the beam
equation may still provide useful insight. In that
direction, we first consider the associated homoge-
neous problem

EIwzzzz + µwtt + cwt = 0.

If we assume that damping is small, we can reduce
to the standard beam equation

EIwzzzz + µwtt = 0. (8)

Under our assumed boundary condition of simply
support ends, one easily shows that the eigenfunc-
tions for the system are simply the Fourier modes
given by

φn = sin
(nπz
L

)
,

with an associated Fourier series solution to (8).
The inclusion of damping would not affect the iden-
tified modes, though it would affect the form of the
series solution to the homogeneous problem.

Proceeding under the presumption that we have
computed the homogeneous solution, the standard
step in finding the most general solution would be to
find a particular solution to (5a). However, because
the forcing is time varying (and not known in closed
form), we cannot proceed along that path. We can
ignore that complexity if we consider the related
problem

EIwzzzz + µwtt + cwt = −Fδ(z − z∗), (9)

where z∗ denotes the fixed location of static point
load on the beam. Because the right-hand side is
time invariant, we can seek particular solutions that
are not varying in time, of the form w(z, t) =
Wz∗(z), where this notation is meant to emphasize

1A classic choice of parameters for the Duffing equation is to take ν = 0.2, α = −1, β = 1, γ = 0.3, ω = 1. We wanted to
consider a load that moved more slowly, so we applied a change of time scales, such that time interval 2π under the classic
Duffing representation would equate to 20 units of time for the beam problem.
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Fig. 2. Point load static approximation. (Upper) The position of the point load on the elastic beam. (Lower) Four snapshots
(in time) of the numerical solution to (5) (black line). The blue dot shows the location of the load, while the diamonds give
the approximation using the quasistatic solution (10).

that the solution is a function only of the spatial
variable z, with a one parameter family of solutions
to the family of problems specified to varying the
location of the point load.

Wz∗(z) =




F (L− z∗)z3 − z∗(L− z∗)z(2L − z∗)
6LEI

,

0 ≤ z ≤ z∗

F (L− z∗)z3 − z∗(L− z∗)z(2L − z∗)
6LEI

−F (z − z∗)3

6EI
, z∗ < z ≤ L.

(10)

The usefulness of (10) is that if the reposition-
ing of the load is sufficiently slow (with respect to
beam dynamics) and if the vibrational energy in
the beam is not too large, then solutions to (5a)
can be approximately computed by simply knowing
the location of the load:

w(z, t) ≈Wzq(t)(z). (11)

Figure 2 illustrates the reasonableness of this
assumption by comparing the full numerical solu-
tion to the approximation computed using (11).

We refer to the solution given by (11) as the
quasistatic approximation, where we use the more
general interpretation of this term quasistatic to
refer to forces varying slowly in time, with related
analysis often associated with techniques of fast–
slow system. Our approximation assumption is that
the full solution at any instant in time does not vary

far from the solution obtained by assuming that
the load is not moving, (żq ≈ 0), which is appro-
priate when żq is small relative to the dynamics of
the beam. We note that the quasistatic assumption
ignores momentum of the beam, and we may expect
larger errors to result from changing direction of
motion of the load. Furthermore, we reemphasize
that this approximation requires knowledge of the
load position at any instant. Consequently, (11)
should be viewed as an approximate solution to
(5a), not to the full system (5).

Figure 3 further illustrates that the quasistatic
approximation provides a reasonable representation
of the ensemble of shapshots of the solution, where
we consider all snapshots associated to a particular
position of the load.

0 1.7 L
−3

−2.5

−2

−1.5

−1

−0.5

0
x 10

−3

z

w
(z

)

Fig. 3. Static approximation to ensemble. Taking z∗ =
−1 + L/2 we plot quasistatic solution (10) (black) against
an ensemble of solutions snapshots taken at times where
zq(t) = z∗ (cyan).
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Remark. Our key observation relevant to the above
subsection is that the system appears to be “sim-
ple” in space while complex in time. If the load
is not moving too quickly, then a closed form
spatial description based on fixed load provides
a good approximation to the dynamic problem.
The chaotic behaviors in the dynamic problem are
driven by the temporal complexity of the load move-
ment. In the following sections, we show how this
separability of behaviors can be (1) identified from
data, and (2) exploited for the purpose of reduced
order modeling.

3. Numerical Results, and
Presentation in Delay
Coordinates and Offset
Coordinates

Consider simulations of the beam equations,
Eq. (1). Because solutions are computed only on a
grid, as described in Sec. 2.1, we focus on our solu-
tion computed on a spatial grid of 101 site locations,
denoting solutions at each site by

wj(t) := w(j∆z, t).

See Fig. 4, wherein a time series of a solution w50(t)
near the center of the beam at site j = 50 is illus-
trated. Here we see an apparently classic view of
a chaotic oscillation, and this pattern is repeated
at other sites. See Fig. 5 for a full spatiotemporal
view of a solution wj(t), 0 ≤ j ≤ 100 for times
0 ≤ t ≤ 1000. In this section, we will present solu-
tions wj(t) both in time-delay coordinates and also
in spatial offset coordinates. With these contrast-
ing views, we begin to understand what apparently
is an example of a chaotic attractor corresponding
to temporal chaos, but with a great deal of spatial
regularity.

Fig. 4. A time series of a solution w50(t) of the beam,
Eq. (1), at site j = 50 near the center of the simulated beam.
Note the chaotic appearance of the oscillations at this “typi-
cal” site.

Time-delay embedding coordinates are now a
classic method to understand low dimensionality
present in a high-dimensional system. If the time-
series has been generated by a “chaotic” dynamical
system, data-only based analysis using the meth-
ods of embedding and attractor reconstruction, has
become routine [Takens, 1981; Packard et al., 1980;
Eckmann & Ruelle, 1985; Kantz & Schreiber, 1997;
Alligood et al., 2000]. Suppose that an autonomous
dynamical system,

ẋ = F (x), x(t) ∈ �n, and x(t0) = x0, (12)

has an invariant attractor. A nonautonomous sys-
tem may also be placed into that framework by the
usual method of augmenting the dimension to n+1,
interpreting the time as a phase variable, allowing
for recurrence by considering strobing. In general,
the experimentalist who does not know the underly-
ing global model Eq. (12) does not even know which
are the correct variables to measure. Any single-
channel data collected from the system can be con-
sidered to be from a scalar measurement function
h[x(t)] : �n → �. Given a set of measurements
{h[x(ti)]}N

i=0, taken at uniformly spaced times ti,
the method of time-delay embedding is to form the
vector,

y(t) = 〈h[x(t)], h[x(t − τ)], h[x(t − 2τ)], . . . ,

h[x(t− dτ)]〉, (13)

and one generally chooses τ to be some multi-
ple of the sampling rate ∆t = ti+1 − ti. Takens
[1981] proved that for topologically generic mea-
surement function h, if the attractor A is a smooth
m-dimensional manifold, then if one chooses the
delay dimension to be d ≥ 2m + 1, then Eq. (13)
is an embedding, meaning there exists a one-to-one
function G : A → �d, and G is a diffeomorphism.
Sauer et al. [1991] proved an extension to allow for
nonsmooth A, and even fractal A. Ott and Yorke
[2003] established a Platonic version of Whitney
embedding theorem which provides generic condi-
tions under which a measurement function can pro-
vide an embedding. To reconstruct the attractor,
both these results assume that the data is clean, and
the data set is arbitrarily long. Neither assumption
is physically realizable, but nonetheless, time-delay
reconstruction has found many applications to non-
linear modeling and to prediction. See [Abarbenel
et al., 1993; Farmer & Sidorowich, 1988; Takens,
1981; Packard et al., 1980; Eckmann & Ruelle, 1985;
Kantz & Schreiber, 1997; Alligood et al., 2000]. See
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Fig. 5. A full spatiotemporal presentation wj(t) of a solution of the beam Eq. (1). Shade intensity shows the value of w for
each site j on the beam at each time t. Comparing to Figs. 4, 6 and 8 we begin to infer that this dynamical system embodies
temporal chaos but spatial order.

Fig. 6 as a two-dimensional view of an underlying
chaotic attractor present in the beam system.

As alternative (and/or supplement) to time-
delay embedding, we may also use the information
from multiple sites to construct a coordinate rep-
resentation. In choosing such representations, we
need to understand to what degree solutions w(z, t)
and w(z′, t) at sites z and z′ may correlate. To this
end, first we demonstrate solutions at nearby sites
and then at sites that are not nearby. See Fig. 8.
That w(z, t) and w(z′, t) lie roughly along a diago-
nal when z 
 z′ is simply a reflection of continuity

of solutions w(z, t) with respect to z. More inter-
estingly, even when z and z′ are quite far apart,
as shown in Fig. 8(b), the data lies on an appar-
ently highly constrained set, which “suggests” a
one-dimensional curve running through its center.
Our reduced order modeling goal will be to approx-
imate the system dynamics by restricting dynamics
to that one-dimensional curve that runs through the
data.

It is important here to emphasize that our
intended reduced order model will not satisfy a con-
vergence condition. The one-dimensional ansatz is

Fig. 6. A time-delay plot (w(z, t), w(z, t− τ )) gives a time-delay embedding presentation for the beam Eq. (1), with parameters
as in Fig. 4 suggesting a chaotic attractor, which reminds us of the chaotic attractor of a Duffing oscillator also shown in delay
coordinates [Takens, 1981; Packard et al., 1980; Eckmann & Ruelle, 1985; Kantz & Schreiber, 1997; Alligood et al., 2000].
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(a) (b)

Fig. 7. Correlation dimension estimates for the point cloud of data {w(tn)}. (a) Log–log plot of correlation sum as a function
of ε shows a linear scaling regime for intermediate values of ε. The dashed line illustrates a slope of 1. (b) Estimated dimension
ν as a function of ε. At intermediate values, the estimate lies near ν ≈ 1, indicating a curve, while for small epsilon, the
dimension continues to increase, indicating significant complexity (higher dimension) at small scales.

not a claim that the underlying system lies on a
low-dimensional manifold. Rather, it argues only
that the configurations are “close enough” to a one-
dimensional manifold that the approximation can
provide a useful model. We emphasize that we are
presuming a data-driven modeling approach, and
we use that data to more directly address this issue
of how the existence of a low-dimensional “back-
bone” might be identified.

If we treat the w(t)= [wj(t)] as a vector in J +1
dimensional space (at each instant in time), then we
may also view {w(tn)}N

n=0 as a cloud of points. As
a typical approach, one could use the correlation
dimension [Grassberger & Procaccia, 2007], as esti-
mated using the correlation integral

C(ε) = lim
k→∞

g

k2
, (14)

where ε indicates a threshold distance, k is the num-
ber of considered points, and g is the total number
of pairs of points within a distance ε. For small ε,
the correlation integral should scale as

C(ε) ∼ εν , (15)

with ν the dimension of the underlying process that
generated the data.

In Fig. 7, we show the results of applying this
analysis to our dataset, computing both the corre-
lation sum and then using that data to estimate
dimension. We see that when ε is large, it covers
the whole attractor, and the estimate is a zero-
dimensional object. However, for mediate values of
neighborhood size, the point-cloud appears to be
approximately one-dimensional, with a clear linear
scaling regime in the log–log plot of correlation sum.

(a) (b)

Fig. 8. Spatial delays presentation (wj(t), wj′ (, t)) at same times t, of beam data with parameters as in Fig. 4. (a) j = 45
and j′ = 50, nearby sites. That the (wj(t), wj′(, t)) data lies near the diagonal at these two nearby sites 45 �< 50 agrees
with a notion of continuity of the solutions w(z, t) with respect to spatial displacement. Knowledge of one site solution
allows approximate inference of the solution at the nearby site. (b) All the data at not-so nearby sites, j = 10, j′ = 90, lies
predominantly nearby a low-dimensional manifold, a curve. This strongly suggests that while the data may be temporally
chaotic, it is spatially simple.
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When ε is sufficiently small, the correlation inte-
gral captures the full detail of the attractor, which
remains a high-dimensional object.

4. Approximating the Attractor

To develop our reduced order model, we take as
assumption the existence of an attractor to the cou-
pled system (5). The natural phase space for this
system would be of the form H × H × R

2 × R,
where H is a function space of scalar valued func-
tions over the interval [0, L]. A point in phase space
gives beam displacement and beam velocity (each a
function in H) as well as the position and velocity
of the load, with the final coordinate representing
a time variable, as we require an extended phase
space to represent the nonautonomous system. We
may project this attractor onto the first component,
where we seek to describe only the displacements of
the beam, and denote the resultant set as W ⊂ H.

We presume that W retains a very rich, and
high-dimensional structure. However, our goal is to
provide a low-dimensional set that can “approxi-
mate” the attractor. Specifically, we seek smooth
function

x : [0, L] × [0, 1] 
→ R (z, s) 
→ x(z, s)

such that for any w(·) ∈ W there exist an s ∈ [0, 1]
such that

‖w(·) − x(·, s)‖H ≤ r,

where ‖ · ‖H is a sup norm on the function space
H and r is a small positive number. Implicit in this
description is that x(·, s) ∈ H for any fixed s ∈ [0, 1].
Then our reduced order model of the attractor is
given by

A = {x(·, s) ∈ H | 0 ≤ s ≤ 1}. (16)

Heuristically, we would say that A is an r approx-
imation to W, but we will avoid the formalism of
rigorously defining that statement. Additionally, we
note that there are many such functions x that sat-
isfy this condition, and our procedure simply builds
one such instance. The key observation that results
from (16) is that the reduced order model approx-
imates the dynamics as taking place on a finite
length, one-dimensional curve in a function space.

4.1. Describing the attractor
approximation

Although not emphasized by the notation in (16),
the attractor model is completely determined by

the choice of function x(z, s). Viewing this func-
tion as a surface over the two scalar input variables,
we can describe that surface by defining “traces”
x(z∗, s), 0 ≤ s ≤ 1, where z∗ is simply meant to
indicate some fixed value of z.

Our discrete-based method is to define traces

x(zj , s), j = 1, . . . , J − 1, zj = jδz,

where we develop a trace at each of our spatial grid
points. We denote these “skeleton” traces by

xj(s) := x(zj , s).

We use the method of principal curves to develop
these traces, as described in Sec. 6. Given the col-
lection of skeleton traces, we can describe the full
surface by specifying that at any fixed s = s∗, deter-
mine x(z, s∗) by cubic spline interpolation using
knots

{zj , xj(s∗)}j .

(Our choice of cubic spline is based on the physical
problem, which should yield a continuous second
derivative of beam shape as long as the load is
finite.)

4.2. Using the reduced order
representation

We note that a point in A describes a physical beam
shape that should be “near” a shape allowed by
the full attractor, such that points in A may be
useful approximation to the real phase space. To
define a point w̃(·) ∈ A, it is sufficient to identify
the associated value s∗ such that

w̃(·) = x(·, s∗). (17)

This w̃(·) describes the “shape” of the beam. We
note that “most” of the time, we can identify this
shape by simply tracking the displacement of a sin-
gle location on the beam. Suppose we know that at
some instant, the displacement of the grid location
j is some particular value w∗

j . Then

xj(s) = w∗
j ,

and (typically) the Implicit Function Theorem
(IFT) yields

s∗ = x−1
j (w∗

j),

for appropriately defined inverse function. The full
beam shape is given by (17). Because IFT may not
hold at some particular points, we may occasionally
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need another point, xk(s) = w∗
k to resolve s∗. Addi-

tionally, if we assume “noisy” measurements, then
having information regarding beam displacement at
more than one location could be used to formulate a
maximum likelihood or Bayesian parameter estima-
tion of s∗. We remark that “noise” can be viewed as
the cumulative effect of errors in measurement along
with the reality that A only approximates the full
set of observable configurations, W.

4.3. Contrast with Karhunen–Loève
modes

An extremely popular method of modeling non-
linear dynamical systems is KL-method, [Kari,
1947; Loève, 1955, 1978], which is to develop time-
averaged optimal modes using the so-called POD
modes [Lumley, 1970; Holmes et al., 1996; Sirovich,
1987], for a given observed data set, and then to
perform a Galerkin projection to these modes. We
acknowledge that this tool has been successfully
employed against a vast multitude of problems,
both linear and nonlinear. Our intent in this section
is not to argue superiority of our method or even
to qualitatively or quantitatively compare the two
methods. Rather, we simply seek to clearly describe
the difference between these data representations.

The objective of identifying POD modes is to
allow for solutions u(x, t) representations of the
form

u(x, t) =
∑
n

an(t)ψn(x), (18)

where ψn represent a time-averaged optimal basis.
The an(t) give time varying amplitudes for the
modes, and the solutions are determined by lin-
ear combination (superposition) of these discrete
modes. In contrast to the KL representation of the
data, we develop a representation which could be
described as a continuous one parameter family of
“modes,” where each “mode” describes the solution,
without superposition. Whereas dynamics in the KL
framework is a system of ODEs describing the evo-
lution of the amplitude with time, the dynamics in
our framework would dictate the evolution of the
intrinsic variable (or variables), s(t).

5. Background: Parameterized
Coordinates in a Manifold
Representation

A general topological manifold can be described as
a topological space that on a small enough scale

resembles the Euclidean space of a specific dimen-
sion, called the dimension of the manifold. We will
take a manifold to be a subset of a q-dimensional
Euclidean space such that open sets are homeo-
morphic (“looks like”) in a p-dimensional Euclidean
subspace, p ≤ q [Whitney, 1936]. Additionally we
will take here a common interpretation of the
phrase to mean a differentiable manifold, includ-
ing the notion of an atlas of transition maps.
Respecting this idea, to embed a point x from
q-dimensional Euclidean space, into “intrinsic” vari-
ables y of a p-dimensional manifold, means that we
can represent the manifold in terms of a vectorized
parameterization,

Φ : Y 
→ X, (19)

where

x = Φ(y)

= 〈φ1(y1, y2, . . . , yp), φ2(y1, y2, . . . , yp), . . . ,

φq(y1, y2, . . . , yp)〉. (20)

Reviewing some familiar examples,

• The familiar p = 1 dimensional helix is parame-
terized by,

x = 〈φ1(y), φ2(y), φ3(y)〉
= 〈r cos(y), r sin(y), cy〉, y ∈ R,

and real constants, r, c, (21)

to represent the q = 3 coordinates of ambient
space R

3.
• Similarly, the sphere is represented,

x = 〈φ1(y1, y2), φ2(y1, y2), φ3(y1, y2)〉
= 〈r sin(y1) cos(y2), r sin(y1) sin(y2), r cos(y1)〉,

y ∈ [0, 2π) × [0, π) ⊂ R
2,

and real constant, r, (22)

and y1, y2 ∈ R, is a p = 2 dimensional parame-
terization of each point on the manifold in q = 3
dimensional ambient space.

These intrinsic y-variables can be interpreted
as directions to any point on the manifold relative
to a base point on the manifold. Approximating
high-dimensional X by lower-dimensional Y is what
we mean by “data-reduction”. We identify “reduced
order modeling” to be the reduction of dynamics to
intrinsic variables, which generally provides a sim-
plification of the system.
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6. Principal Curves and Principal
Manifolds

We will adapt a tool from statistics called principal
curves, and its generalization, principal manifolds
to describe the behavior of a dynamical system
evolving in high dimensions by a smooth mani-
fold of much lower dimensionality, as suggested in
Sec. 5. While principal curves have found many
data processing applications from speech recogni-
tion [Kegl & Krzyzak, 2002], medicine [Reinhard &
Niranjan, 1999], and physics [Friedsam & Oren,
1989], we will develop this area for use in a sce-
nario where the dynamics evolve on a stable sub-
manifold. Considering data points sampled from the
invariant measure of a dynamical system as an orbit
evolves, whose ω-limit set may not be smooth, we
may nonetheless expect the data to reside stably
near a smooth manifold. This sampled data set from
an invariant measure may admit a statistical sum-
mary by a principal manifold.

Hastie & Stuetzle [1989] have defined a princi-
pal curve as a smooth one-dimensional curve that
passes through the “middle” of a p-dimensional
data set, {xi}N

i=1 ⊂ �q. From [Hastie & Stuetzle,
1989], in terms of a probability distribution of a ran-
dom variable X ∈ �q, with density h and finite sec-
ond moment, from which data x is sampled, assume
without loss of generality that E(X) = 0. A C∞-
smooth nonself intersecting curve is sought,

Φ(y) = 〈φ1(y), φ2(y), . . . , φq(y)〉, (23)

in Φ(y) ⊂ Rq over a closed subset y ⊂ �1. A
curve that “runs through the middle” of the data is
described as “self-consistent” to define a principal
curve [Hastie & Stuetzle, 1989] if for distribution h
there is a Φ such that,

Φ(λ) = E(X |λΦ(X) = λ), (24)

for a.e. λ. The “projection index” λΦ(x) for a data
point x may be defined,

λΦ(x) = sup
λ

{
λ : ‖x− Φ(λ)‖ = inf

µ
‖x− Φ(µ)‖}.

(25)

As depicted in Fig. 9, the idea of self-consistency
is that each point of the curve should be the mean
projection of the observations x′ onto Φ around the
point.

There are several different variations on this
original definition [Hastie & Stuetzle, 1989] as
reviewed in [Biau & Fischer, 2012], including

Fig. 9. Projection index to a principal curve. Figure inspired
by [Biau & Fischer, 2012], the projection index λΦ(x) as the
term appears in self-consistency definition Eqs. (24)–(25).
Given a data point xi, then the index i also indexes the
parameterization yi which stands for tΦ(xi).

constrained principal curves [Kegl et al., 2000],
bounded length [Biau & Fischer, 2012], or bounded
turn [Sandilya & Kulkarni, 2002], and a semipara-
metric variation [Tibshirani, 1992], and principal
oriented points [Delicado, 2001], to name a few
directions of development to cope with various prior
expectations of the data set and biases.

7. Estimating a Principal Curve
for a Beam Data Set

The main idea we wish to emphasize here when
modeling high-dimensional data from dynamical
systems is a smooth manifold through the data set.
As such, we will adapt a standard cubic smooth-
ing spline to the parametric setting which allows
us to explicitly control the degree of smoothness
trade-off with the degree we wish the curve to agree
with the data. Cubic smoothing splines were simi-
larly used in [Hastie & Stuetzle, 1989], and [Bollt,
2007]. Consider a list of scalar valued ordered pairs,
(si,Wi), i = 1, . . . , N, which we seek to model by
the relationship Wi = x(si). Then a cubic smooth-
ing spline is a minimizer of the functional,

E(x) = p

n∑
i=1

|Wi − x(si)|2

+ (1 − p)
∫
λ(s)|D2x(s)|ds, (26)

where smoothing parameter 0 ≤ p ≤ 1 allows us to
choose an appropriate balance between minimizing
model error at the data and minimizing the “rough-
ness” of the model. There is a detailed literature
[Boor, 1994] on the numerical analysis of this prob-
lem, but here we avoid such discussions and sim-
ply employ the robust solver algorithm built into
the Matlab spline toolbox, called “csaps” [Matlab,
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2010]. We extend the scalar nature of cubic smooth-
ing spline by simply determining a set of splines,
{xj}, where xj approximates the behavior at beam
grid point j to model (approximate) Φj , the jth
component function of Φ, from Eqs. (19) and (23).

The first step in developing a spline model is to
develop a useful ordering of the data, as it is nec-
essary to sort the data so that it best allows for a
smooth curve to model the data. For the discussion
here, we will take the beam displacements wj(t) at
computed sites j and times tn to be simply wjn.
Given the unstructured data set, {(tn, wjn)}N

n=0, for
a fixed j, the plotted data will not suggest a smooth
curve x(s) because the abscissa of those data is
temporal, while the manifold is a spacial structure.
Points that are “nearby” in space (which should
be used to estimate the local manifold behavior)
need not be “nearby” in time. Therefore, a precur-
sor step to apply a component-wise smoothing is
to reindex the data to emphasize spatial continuity
rather than temporal continuity. This is achieved
simply by sorting such that following each wj,n,
the next data in the list is wj,n′ which is closest in
space.

This idea of “spatially close” warrants addi-
tional discussion. At time tn, the displacement at
each of the spatial grid points can be viewed as vec-
tor W:,n, a point in R

J+1. Finding nearest neighbors
in a high-dimensional space can prove numerically
challenging, both from an accuracy and time com-
plexity standpoint. As such, we note that as we are
making a priori assumption that the data lies near
a one-dimensional curve, then a three-dimensional
embedding should be sufficient to describe that
curve. For computational ease (and because we
expect it to be sufficient), we choose to deter-
mine spatial closeness by projecting the data onto
X := R

3, where our projection simply selects the
j = 10, j = 50, and j = 90 components, where the
choice of these particular sites is somewhat arbi-
trary. We note that points that are close in the full
space will be close in X, and the resultant ordering
should be appropriate for reasonable solutions from
the smoothing spline.

We summarize this sorting procedure with the
following algorithmic description:

(1) Create data matrix W of size J + 1 × N + 1,
where each row associates to a grid location
on the beam, and each column associates to a
particular time. Denote columns of this matrix
as W:,n.

(2) Identify n such that W:,n is in an extreme end
point in the space X. Denote this data column
as W ′

:,0 stored as a column in array W ′, while
deleting that column of data from array W. Let
counter c = 1.

(3) Perform an ε-range search to W ′
:,c−1. That is,

find those columns W subset of the remaining
data set W which are within ε of W ′

:,c−1 (as
measured in projected space X). Remove this
datum W from the current remaining W .

(4) Choose W ′
:,c ∈ W as the extremum,

W ′
:,c = arg min

w∈W
‖w −W ′

:,c−1‖.

(5) Increment the counter c 
→ c+ 1.
(6) Repeat Step 3 until the list W is exhausted and

W ′ is a data set of the same size as the original.
(7) Compute xj(s) as a cubic smoothing spline fit-

ted to data set {( i
N ,W

′
j,i)}c−1

i=0 .

Note that generally W ′ will be a subset of the orig-
inal set of points W , as c − 1 ≤ N . The choice of
ε in the range search is appropriately chosen as the
cross-over scale, related to the correlation dimen-
sion, where the otherwise high-dimensional set takes
on the characteristics of a low-dimensional set, in
this case, one-dimensional.

Figure 10 illustrates the necessity of this algo-
rithm, and the outcome of the above spatial sorting
algorithm. We see the difference between a chaotic
time series as seen when the data is sorted in
time, and an “almost” smooth curve when sorted
in space, ready for smoothing by a principal curve
algorithm to produce x(s), as is our goal here. In
Fig. 11 we illustrate a few of the fitted curves x10(s),
x50(s), and x90(s) through sorted data, {W ′

10,i},
{W ′

50,i}, {W ′
90,i}, along with a projection of curves

and data into a three-dimensional projection that
emphasizes that curve x(s) runs through the “cen-
ter” of the data cloud.

7.1. Validation of technique on
beam data

The goal of the methods described above is
to develop a one-dimensional manifold that can
approximate data on the attractor, where that
approximation is data driven. Based on the assumed
ansatz of a 1D curve, our approach is to lean on
embedding theory and assume that tracking of only
three beam locations should be sufficient to spec-
ify the parameter value s. We used this idea in
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(a) (b)

Fig. 10. (a) The data {wj,n}N
n=0 at site j = 10, initially sorted as paced with time, and as a chaotic time series. (b) Sorted

data {W ′
j,i} emphasize a “smoother” spatial curve as a pecursor step to a principal curve smoothing as illustrated in Fig. 11.

two ways:

• In constructing the smoothing splines, it is nec-
essary for us to “reorder” the data before spline,
where that reordering is meant to sequence the
data based on nearness along the manifold as
opposed to nearness in time. We use just three
(arbitrarily chosen) locations (j = 10, 50, 90) to
determine that ordering, significantly reducing
the computational complexity.

• Once the spline structure is learned, to estimate
the beam configuration, we need to know the
value of intrinsic variable s. We determine s by
knowing the location of the beam only at those
three locations, and use that s to predict the
beam displacement at all other sites.

Validation of these ideas is examined numeri-
cally, with the key results captured in Fig. 12. In
Fig. 12(a), we show that the ordering determined
at the three sites is sufficient to allow for smooth
representation of the data at the other sites. The
red curves represent the xj(s) drawn through the
sorted data {W ′

j,i}. Figure 12(b) illustrates how we
may determine s(t) by monitoring the position at
only those three sites. We use s(t) and the full set
parameterization x(s) to predict the position at all
of the sites. In Fig. 12(c), we consider whether the
monitoring of three sites is sufficient to estimate the
data at all other sites, showing both the relative and
absolute error at each site, averaged over the entire
data set.

(a) (b)

Fig. 11. (a) Parameterized curves xj(s) (red) through sorted {W ′
j,i}N

i=0, at sites j = 10, 50, 90. (b) The modeled curves, xj(s)
form a parameterized curve x(s) (red) shown here in a three-dimensional representation, acting as a principal curve running
through the middle of the data (blue dots).
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(a) (b) (c)

Fig. 12. Validation data. (a) The ordering determined using only sites j = 10, 50, 90 provides a reasonable reordering of the
data at all other sites (blue) such that each can now be reasonably approximated by parameterized curves xj(s) (red). (b)
Using measurements wj(t) at three locations allows for an unambiguous inversion of x(s) to find s(t). (c) Time average of
absolute and relative error, observed over the entire data set, as a function of site (j).

As additional comments on validation, we note
that the “error” described in Fig. 12 compares the
data to the associated point on the 1D manifold that
serves as a reduced order model of the attractor. As
such, even if our numerical method gave an exact
parameterization of the 1D curve, we still expect
error, because the real attractor is high dimensional
and the points in configuration space do not lie on a
1D curve. In other words, it is an error associated to
reduced order modeling. Also, the method focuses
on the solution representation based on knowledge
of only a few locations (either measured from data
or predicted from model). Modeling the dynamics
(to predict parameter s(t)) is not the focus of this
paper, but could be explored via time series analy-
sis methods or (when data drive) by state observer
methods.

8. Conclusions

In this work, we developed a new model of a chaotic
beam inspired by a Naval application of bearing a
load that may move upon the beam in an irregular
way, such as a ship-board crane moving with pitch
and roll of the ship or fluids moving within large
tanks under free surface effect. We show that this
dynamical system is relevant and rich in its own
right. We also show that this model gives rise to an
excellent paradigm for studying model reduction in
a spatiotemporal system where one may hope to
capture spatial regularity (approximating configu-
rations as lying on a manifold) while retaining tem-
poral complexity via the dynamics in the intrinsic
variables of that manifold. As such, we demonstrate

that a model of the manifold x(s) can be developed
as a stable principal curve which makes for practi-
cal translation of solutions from trusted solutions at
position z on the beam to other positions z′ under-
stood as parameterization values s.

We describe this system as temporally chaotic
but spatially regular. In some sense, this behav-
ior is an expected outcome for a mechanical struc-
ture for which a great deal of regularity results
from the continuity of physical parameters plus
dissipation. Furthermore, while x(s) developed for
this model was that of a one-dimensional Lya-
punov stable principal manifold running through
the middle of the attractor, one dimensionality is,
in some sense, due to the fact that the driving
force on the beam is that of a single point con-
tact. It could be expected that a higher-dimensional
manifold would result from a more complex driv-
ing force. For example, a next level of complexity
could be achieved by assuming two point masses
moving on the beam, such as due to two cranes,
or two tanks on board each containing moving flu-
ids. Such a scenario would be expected to result
in a two-dimensional principal manifold x(s) which
should be similarly Lyapunov stable to the corre-
sponding higher-dimensional attractor, with a com-
parable spatially simple but temporally complex
representation. Finally, we plan to pursue ana-
lytic confirmation of the stability of the attrac-
tor decomposition, and regularity analysis together
with our dissipation explanation to confirm the rea-
son behind the decomposition. We wish to close
in pointing out a particularly useful aspect of the
decomposition is that it yields a low-dimensional
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model of the spatial structure together with a
method that allows that the motion at one site can
be a useful description and predictive representa-
tion of the system. The predictive model (for one
site) may take the form of prior observations, a cur-
rent mechanical experiment, or a low-dimensional
ODE which has been parameter tuned as a state
observer. This general framework will lead us in
the near future to a parametric study of the sys-
tem, where changing system parameters leads to
a parameterized family of manifolds to model the
attractor.
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