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Fractal basins as a mechanism 
for the nimble brain
Erik Bollt 1,2*, Jeremie Fish 1,2, Anil Kumar 1,2, Edmilson Roque dos Santos 1,2,3 & 
Paul J. Laurienti 4

An interesting feature of the brain is its ability to respond to disparate sensory signals from the 
environment in unique ways depending on the environmental context or current brain state. In 
dynamical systems, this is an example of multi-stability, the ability to switch between multiple stable 
states corresponding to specific patterns of brain activity/connectivity. In this article, we describe 
chimera states, which are patterns consisting of mixed synchrony and incoherence, in a brain-inspired 
dynamical systems model composed of a network with weak individual interactions and chaotic/
periodic local dynamics. We illustrate the mechanism using synthetic time series interacting on a 
realistic anatomical brain network derived from human diffusion tensor imaging. We introduce the 
so-called vector pattern state (VPS) as an efficient way of identifying chimera states and mapping 
basin structures. Clustering similar VPSs for different initial conditions, we show that coexisting 
attractors of such states reveal intricately “mingled” fractal basin boundaries that are immediately 
reachable. This could explain the nimble brain’s ability to rapidly switch patterns between coexisting 
attractors.

It is known that the complex dynamics of the brain exhibits numerous spatiotemporal patterns associated with 
its many capable responses to a given stimulus, as seen in various imaging techniques. Yet, there has not been 
a good theory to explain how the system is able to switch among these patterns. Rapidly changing patterns of 
active brain regions, each containing different types of interconnected neurons that have continuously changing 
electrochemical properties and environments, only begins to touch on the complexity of a full-scale brain model. 
This challenge is often countered by course-graining the system to reduce the dimensionality and simplify the 
model. For instance, instead of analyzing the brain at the neuronal level, even the observational scale of tens of 
thousands of voxels containing blood oxygenation level dependent (BOLD1) signals from functional magnetic 
resonance images (fMRI) are down sampled to many fewer anatomical or functional brain regions so that func-
tional brain networks of smaller sizes can be analyzed2,3.

Experiments using fMRI and other imaging technologies reveal that the brain exhibits a rich variety of 
activity patterns. While it is generally accepted that certain brain regions are more, or less, active when specific 
tasks are performed or certain sensory systems such as vision, hearing, or touch are stimulated, it is the global 
activity patterns that are particularly of interest to us here. An active brain region also implies active neurons, 
which share information with other neurons and other brain regions. They transmit their signals along axonal 
pathways via electrical events called action potentials and communicate with other neurons through diverse 
electrical and chemical synapses4. Neural transmission, the process of sharing information along constrained 
neuroanatomic pathways, can result in neurons exhibiting synchronous large-scale firing patterns, for instance, 
the collective firing of neurons generating cortical oscillations5. In order to understand how the brain processes 
environmental cues to generate our experiences, thoughts, and/or emotions it is essential that we better under-
stand these ever-changing, i.e. dynamical patterns of synchronous brain activity5.

Brain activity can be described mathematically as a complex networked dynamical system which exhibits 
a key property of multi-stability between numerous states, each associated with different patterns of synchro-
nous activity. The burgeoning field of network neuroscience has used functional brain connectivity6 to identify 
regions of synchronous brain activity, typically assessed using correlations, to show that various patterns of syn-
chrony are associated with distinct cognitive processes7–9 or brain disorders10,11. Epilepsy, for example, might be 
understood as a neurological disease of excess synchrony12. Most of the time the brain exhibits patchy or partial 
synchrony, which is a state in which a subset of nodes (or brain regions) synchronizes while activity in other 
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nodes is incoherent13. This state of partial synchrony is often referred to as a chimera state, including cluster 
synchronization14–16. We use the term chimera state broadly to describe the presence of coexisting synchronous 
and asynchronous (meaning disordered) patterns, and saving ourselves the issue of modifiers to allow for various 
kinds of synchrony in the definition, see details in the SI (Sec. 2). Thus, we consider chimera states as an activity 
pattern where some subset of the system is synchronous and the rest may be incoherent17.

Chimera states have been observed in brain networks at various scales, from small to moderate size neural 
networks composed of spiking neurons17 to brain networks from C. elegans and cats18,19. More recently, research-
ers have extended their investigations to analyze large-scale functional patterns of simulated brain activity using 
various oscillator models interacting on DTI structural brain networks20–22. Spatiotemporal activity patterns over 
different brain regions fluctuate over time during resting state, so describing brain dynamics in terms of chimera 
states holds promise, particularly concerning the multistability and metastability of brain activity patterns23,24. The 
key feature of the litany of potential chimera states is that, in a healthy brain, the different organized and disorgan-
ized activity patterns coexist with the potential for rapid switching between various states in response to stimuli.

Mechanism for the nimble brain. It has been previously observed that the brain is capable of relatively fast task 
switching and this has been suggested, with both experimental and numerical support25–30 to be related to the 
stability of the basins of attraction involved. Yet, the dynamical mechanisms that underpins the ability of the brain 
to perform such switching in a rapid manner remain unknown. In particular, why does the basin of attraction of 
a particular task appear to be quite stable when it is being performed, while simultaneously allowing for ease of 
switching between tasks? In this work, we propose a potential mechanism for the agile switching between brain 
activity patterns/states, a process that supports the nimble brain. Using a perspective of dynamical systems, the 
nimble brain is explained by a complex basin of attraction for each chimera state with multiple states highly 
intermingled into a fractal basin boundary. Fractal basin boundaries generally involve a large uncertainty in the 
final state of a multi-stable system31. That is, which initial conditions will lead to a particular final state depends on 
the detailed intricacies of closely packed and intermingled sets associated with disparate basins of attraction31–35. 
In particular, there is an apparently rich “intermingling” of these boundaries, as the present phenomenon of what 
is called riddled basins36–38, that we present in the results. This offers a potential mechanism for agile switching 
between disparate but complex dynamical patterns, i.e. nimble brain activity, because small changes in current 
state caused by environmental stimuli would be enough to switch between distinct stable brain states.

An accurate model for capturing the dynamics of the whole-brain has been elusive24 and even if such a model 
existed, it would be premature to use such a complex, high-dimensional system to map the basin structures 
investigated here. Hence, we adopt a simplified model of spiking neurons on a structural brain network gener-
ated using DTI data from a prior study39. Much like prior neuroscience research modeling chimera states20–22, 
we located brain-inspired dynamical models, Hindmarsh-Rose (HR) neurons in our case, at each node in the 
DTI network. As recent research has demonstrated that when coupled, HR neurons can exhibit chimera states 
under specific parameter settings18. Others have used models such as Wilson–Cowan oscillators20,22, FitzHugh-
Nagumo neurons21, as well as Kuramoto oscilators22. Regardless of the chosen neural model, this approach allows 
us to minimize computational complexity while still providing a mechanism to emulate the essential features of 
the nimble brain’s behavior. Furthermore, we assess the robustness and general applicability of our findings by 
testing various individual node dynamics, including Kuramoto oscillators and Hénon maps.

We map regions of stability of chimera states to allow us a better understanding of how these disparate pat-
terns co-exist. To make it possible we introduce a technical innovation called the vector pattern state (VPS) 
that characterizes generalized synchronous behaviour from multivariate time series, allowing for phase and 
approximate synchronization. Using the VPS technology we are able to cluster similar states from different initial 
conditions and uncover the underlying riddled basin structure of our brain model. This observation sheds light 
on a biologically important assertion: fine-scale topological structure of the basins of coexisting chimera states  
potentially underlies the ability of our nimble brain to rapidly switch between various spatial synchronization 
patterns.

Results
Neuronal model and brain regions
Our phenomenological approach is to leverage the presence of chimera states in neuronal systems as a simplified, 
yet neurologically relevant, model to illustrate our claims regarding the topological fractal basin boundaries in the 
brain model dynamics. First, we illustrate the concept of how the brain could switch between disparate pattern 
states with a semi-synthetic complex coupled system consisting of the well-accepted HR model of spiking neu-
rons, where the coupling structure is a true structural brain network with 83 cortical regions connected by white 
matter fiber tracts measured using DTI. Figure 1 illustrates the the organization of this network in brain space.

A general model of coupled identical units is given by:

where xi ∈ R
d is the state vector, f : Rd → R

d represents the individual node dynamics, σ ∈ R
+ is the coupling 

strength, A is the adjacency matrix describing the coupling structure, and h : Rd → R
d is the coupling function. 

We consider the individual node dynamics given by HR40,41 oscillators. For this model, xi =
[

xi , yi , zi
]T , and the 

individual node dynamics is

(1)ẋi = f (xi)+ σ

N
∑

j=1

[A]i,jh(xi , xj),
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Above x represents the membrane potential, y is the rate of transfer of sodium and potassium ions through the 
fast channels, and z is the adaptation current which reduces the spiking rate after a spike has occurred, see SI 
(Sec. 5.1) for more details about the parameters. We consider diffusive coupling through all variables

The diffusive coupling mimics electrical interactions between the neurons: a higher difference of ‘+’ and ‘−’ 
ions between pre-synaptic and post-synaptic neurons causes a proportionally higher flow of these ions through 
channels. We also consider a more realistic model of the neuronal dynamics, which includes coupling through 
two terms,

(2)f (xi) =





yi − ax3i + bx2i − zi + I
c − dx2i − yi

r(s(xi − xR)− zi)



 .

(3)h1(xi , xj) =





xj − xi
yj − yi
zj − zi



 .

Figure 1.   Schematic diagram of the Vector Pattern State construction. (Top) The actual DTI network used in 
this work mapped to brain space, generated by BrainNet Viewer 1.7 (www.​nitrc.​org/​proje​cts/​bnv/)48, is shown 
on the left. Nodes are structural brain regions and the edges are anatomical connections via white matter fiber 
tracts. The size of each node is scaled by the degree centrality. From some initial state the dynamics of the 
three individual brain regions are shown as hypothetical time series, reaching a final state. The time shift τ and 
alignment between states of all pairs of nodes is recorded at the final state, yielding the τ and alignment matrix 
L(τ ) . (Bottom) To create a feature vector associated with this final state, we stack and concatenate these matrices 
into a single vector, defining the vector pattern state (VPS). The VPS encodes patterns of synchrony, with or 
without phase shift. All states correspond to different VPSs, and are here distinguished in the 6 node network, 
shown as different colored patterns.

http://www.nitrc.org/projects/bnv/
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The first coupling term in Eq. (4) describes simple diffusive coupling through the y-variables only, while the 
second represents a “chemical coupling” function. This coupling scenario was presented in18 as a more realistic 
consideration of two types of neuronal connections, one set which interacts through electrical signals and the 
other does so chemically. An interesting feature of this model was the coexistence of multiple different chimera 
states, even though the network did not contain any non-trivial automorphism (symmetry) groups. Recently it 
has been shown that such symmetries are a sufficient42,43, but not necessary44,45 condition for a graph to support 
a stable chimera state. This is an important distinction since, in fact, the DTI network that we examine here 
contains no such non-trivial automorphism group. Indeed, as the number of nodes in a network increases, the 
lower the likelihood that the network will contain such symmetries46.

Simplification is the first step. Our model of the brain dynamics incorporates simplifications, where we employ 
a single-neuron model to represent the dynamics of a node. While more complicated approaches such as the 
Wilson–Cowan nonlinear oscillator20,47 or the neural mass model24 could better represent large pools of neurons, 
the intricacies involved, such as higher-dimensional descriptions and noise, might obscure the essence of our 
observations. Addressing these challenges in more elaborate models is a task for future research.

Vector pattern state
At some chosen initial time ( t = 0 ) the network is in a particular initial state, see Fig. 1. Each node undergoes 
some dynamics, shown as a time series, and after a transient time, reaches a final state. Out of all time series 
generated by the network, three are depicted in Fig. 1. Each of the nodes can be classified based on their level 
of activity by assigning each node a color based on intensity, and nodes with approximately the same level of 
activity are given the same color.

A chimera state generally describes a scenario amongst N coupled dynamical nodes16,49 whereby their time 
variables z(t) = (x1(t), x2(t), . . . , xN (t)) (in the notation here, xi(t) ∈ R

3 denotes one of the coupled HR oscil-
lators; in Eqs. (1)–(2), z(t) ∈ R

3N encompasses the set of all the coupled variables) eventually converge to a state 
where some of the variables at nodes synchronize, t > 0 , possibly including a phase shift, while others of the 
variables are incoherent to those, but possibly synchronous amongst themselves. The latter scenario, with the 
remaining variables being synchronous amongst themselves, is also called cluster synchrony42,50.

Traditionally, activity patterns have been identified in terms of the level of synchrony of the overall system24,51. 
However, the system may exhibit synchronous, asynchronous, and partial synchrony, which encompasses chi-
mera states. However, partial synchrony limits a richer characterization of the possible activity patterns. Indeed, 
for a large system such as the DTI network of N = 83 , the chimera states can be plausibly quite complex, with 
exponentially many plausible groupings, and many in fact are feasible. Thus, the characterization of different 
chimera states requires deciding which variables synchronize in the complex networked system of HR oscillators.

To characterize a chimera state of the 83 brain regions, we quantify the level of synchrony between pairs of 
nodes in the network. More precisely, after a large time T0 > 0 to allow transients to settle, the time series xi(t) 
are compared to xj(t − τ) for each i, j pair, as depicted in Fig. 1. Allowing for phase shift synchrony by a possible 
shift, we must decide if

is small for any phase shift τ > 0 , which may be decided by minimizing L(i, j, τ) . Here the limit to infinity means 
large enough integration time, see SI (Sec. 4.1) for practical implementation for finite time series. Since the 
maximum of the cross-correlation has the property that,

it is convenient to estimate when variables xi(t) and xj(t) settle into a synchronous state by maximization of the 
discrete cross-correlation,

in terms of the scalar xi , the first index of each xi.
After all pairs are taken into account, we construct the corresponding τ matrix and the alignment matrix via 

L(τ ) . From these matrices, we create the feature vector, the vectorization and concatenation of the two matrices 
into a single vector, which we call the vector patterns state (VPS)

where the parameter β ≥ 0 scales the importance of contrasting the optimal phase shift τ ∗i,j for comparison of 
the coupled components, and that best matched difference between components L(i, j, τ∗i,j) . Whether complete 
synchrony, cluster synchrony, or chimera, with or without phase shift, all patterns are encoded via the VPS, as 
illustrated in Fig. 1.

(4)h2(xi , xj) =





0
yj − yi

0



− α(xi − Vsyn)





[1+ e−�(xj−θsyn)]−1

0
0



 .

(5)L(i, j, τ) = lim
T→∞

1

T

∫ T0+T

T0

�xi(s)− xj(s − τ)�22ds,

(6)argmax
τ

(xi ⋆ xj)(τ ) = argmin
τ

L(i, j, τ), each i, j = 1, 2, . . . ,N ,

(7)Rxi ,xj (τ ) =
∑

t

xi(t)xj(t − τ),

(8)el = (τ ∗1,2, τ
∗
1,3, . . . , τ

∗
N−1,N ,βL(1, 2, τ

∗
1,2),βL(1, 3, τ

∗
1,3), . . . ,βL(N − 1,N , τ ∗N−1,N )),
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Fractal basin structure supports the nimble brain
Basin of attraction is defined as the set of all the initial conditions in the phase space whose trajectories eventually 
fall into a particular attracting state. In our case, different initial conditions may lead to the same final state (and 
are assigned to the same color when visualized) according to the VPS. It is the pairing of the initial state with the 
final state which we are interested in. This represents the structure of the basin of attraction to various final states.

Recently, there has been significant research into unraveling the basin structure of attractors in high-dimen-
sional systems52–55. Typical questions about basin structure have centered around the size and shape of these 
basins, both quite challenging in our specific case. We are dealing with a system comprising 83 nodes, each 
associated with a three-dimensional dynamical model, with a phase space that is 3× 83 = 249 dimensional. In 
contrast to many current studies that rely on characterizing states based on identical synchronization, our focus 
is on achieving approximate synchrony. We find this approach more versatile and applicable to a broader range 
of neuroscience questions where identical synchrony is unlikely. Hence, mapping the basin of attraction structure 
of the various chimera states based on approximate synchrony becomes a problem of associating many long-
time patterns from distinct initial conditions, and so this requires a way to match similar signals corresponding 
to occurrences of disparate chimera states. The full basin structure is too complex to visualize, hindering any 
chance to uncover its structure, and consequently, the mechanism of the nimble brain. To this end, we use the 
introduced VPS to solve this mapping problem.

We wish to partition a randomly selected “slice” of the phase space into those regions with similar asymptotic 
behavior, by observing a sample of M initial conditions which we index by l, Z = {zl(0)}

M
l=1 . To this end, we wish 

to decide the synchrony pattern of any one zl(0) , by comparing the long time state of component time series 
according to Eq. (5) at optimally matched phase shift, according to Eq. (7). With the VPS, we can now assert 
that two initial conditions zk1(0) and zk2(0) yield asymptotically similar complex synchrony patterns only if their 
VPS are relatively close, i.e. �ek1 − ek2�2 is small.

Now the problem of partitioning the phase space into like asymptotic chimera states reduces to a clustering 
problem of all VPSs relative to the different initial conditions. To this end we apply the k-means method to the set 
of VPS, {el}Ml=1 , to cluster the space into k-regions (colors) and we map the phase space by associating these colors 
to each corresponding initial condition zl(0) . Thus the clustering is a partition function, P : Z → {1, 2, . . . , k} , 
as shown in Fig. 2. We describe these as basin plots since in any like colored region, the orbits of the initial 
conditions map asymptotically to similar patterns. Relevant details concerning the experimental methods are 
included in the figure caption. As noted above, a key component of our method in determining how to group 
the final states into their various attractors is clustering. While numerous clustering methods exist, we chose, 
for reasons of computational complexity, k-means. Thus a general description of the k-means algorithm as a 
clustering method, and the manner in which we choose how fine to partition the space with the selection of a 
specific k are both presented in the SI (Sec. 4.3).

Figure 2.   Fractal riddled basin of the full featured HR oscillator model on the DTI network. (a) An arbitrary 
plane “slicing” through the full high dimensional space was selected on which initial conditions are sampled 
uniformly. Here the x component of the 29th oscillator and the x-component of the 80th oscillator, at t = 0 
define the plane. In this basin, the initial conditions associated with different chimera are each a different color. 
Note that in a region that appears to alternate between just a few states, actually exhibits a rich structure with 
many different interleaved states when zoomed in at higher resolution. (b) The basin boundary set shown in 
(a). The box counting fractal dimension of the basin boundary in this plane, which is computed dB ∼ 1.8 , 
being non-integer indicates a fractal set. We consider full featured HR oscillator model Eqs. (2), (4) with 
a = 1, b = 3, c = 1, d = 5, s = 4, r = 0.005, xR = −1.6, I = 3.25, σ = 0.5,α = 0.03,Vsyn = 2, θsyn = −0.25 
and � = 10 . The partition into basin structure associated with distinct dynamical chimera states follows 
k-means clustering on the VPS structure, Eq. (8), using the cost Eq. (5), inferred with cross-correlation, Eq. (7), 
using k = 8 , the result of a classic elbow method.
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Coupled HR oscillators in a DTI network
Even with these simplified dynamical models of the brain, there is still rich complex-
ity that demonstrates interesting phenomena in the basin structure. In Fig.  2 we show that 
using the coupled HR oscillator model, the basin boundary between the states has a non-inte-
ger box counting dimension, and thus fractal basin boundaries. In the parameter regime 
a = 1, b = 3, c = 1, d = 5, s = 4, r = 0.005, xR = −1.6, I = 3.25, σ = 0.5,α = 0.03,Vsyn = 2, θsyn = −0.25 
and � = 10 , which is known to contain chimeras18, we use the electrical and chemical coupling functions, Eq. 
(4), where the corresponding adjacency matrices are assumed to be the same, unlike in18. Here for the first time, 
we map the manner in which these states are intricately co-mingled. On an arbitrary plane, in this case, which 
we selected randomly as a slice of the full phase space restriction for the sake of visualization, a uniform grid 
of 750× 750 initial conditions is chosen. The various colors label initial conditions associated with differing 
chimera state states. Furthermore, “zoom” restrictions of the domain are also shown to illustrate the fractal-like 
structure of the basins of attraction at a finer scale. We validate this assertion by computation, that the basin 
boundaries projected into the planes shown to have a box counting dimension that is not an integer. The box 
counting dimension of the boundary sets was found to be fractal in Fig. 2b, where the dimension was estimated 
to be d box ∼ 1.8, by the method described in Eq. 11.

The basin structure in Fig. 2 appears to exhibit complexity beyond simple fractal basin boundaries. A riddled 
basin structure appears, which is the scenario that regions exist where points in the domain of one attractor have 
the property such that small neighborhoods of nearby points have a nonzero probability of being in the basin 
of another attractor36–38. In practical terms, this means that there are large regions in phase space where it is 
likely that even small perturbations can send the outcome to regions corresponding to a different state. This has 
significant implications for the possibility of nimble switching between states, since switching between multiple 
states that may be co-mingled in the phase space may require only vanishingly small control inputs.

Fractal basins are ubiquitous
HR oscillators coupled in small networks. To illustrate the generality of our results, we present fractal basins in 
different networks. Figure 3 displays complex patterns that can be found in the basin of a smaller network of 6 

Figure 3.   A simplified HR model with diffusive coupling Eqs. (2)–(3) on a small graph illustrates the 
ubiquity of fractal basin structure of chimera states. (a) A network of 6 nodes that does not contain non-
trivial symmetries. Nonetheless, there are many stable chimera states (at least on the time scale examined), 
and the basin structure shown in 8 colors indicates distinct patterns that can be derived by VPS structure, 
Eq. (8), by the same method as in Fig. 2. (b) Fractal basins for HR oscillators on this network when 
xR = −0.5(1+

√
5), I = 3.27, r = 0.017, σ = 0.0004 , and β = 1 . All other xi , yi , and zi values at t = 0 are 

initialized to be −0.5 . (c) and (d) are zoomed regions indicated by the black rectangles in (b) and (c). (e) 
Centroid locations of two of the clusters in τ − L space, which resembles the approximate form of most of (or 
all) VPSs inside (see SI (Sec. 2.6) for a detailed view of all el vectors inside each cluster).
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oscillators, as shown in Fig. 3a. We use the electrical coupling scheme with h1 given in Eq. (3), and the parameter 
values based on earlier research works, see56,57. We chose to examine a small synthetic network, which does not 
have any non-trivial automorphism group, to demonstrate the ability of a coupled HR model to form a basin 
that has fractal boundaries. In fact, in Fig. 3b, the corresponding estimate is d box ∼ 1.27 , where it shows the 
basin structure grouped into 8 different states using k-means. Figure 3c and d are shown in zoomed (restricted) 
in regions of Fig. 3b. The structure of the basin is quite complex at all scales examined.

We further explore two more examples of local dynamics and network structure to support the generality of 
our claims on the nimble brain. In Fig. 4 we illustrate these examples, and thus the ubiquity of complex basin 
structure between various chimera states.

Identical Kuramoto oscillators. We consider the following equations of motion for the identical oscillators

where σ is the overall coupling strength and α = π/2− γ with γ = 0.025 . The adjacency matrix A represents a 
network that does not have full permutation symmetry. To generate this network we initiate two populations of 
5 nodes that are globally coupled akin to58, and remove uniformly at random one edge from the graph, see details 
in the SI (Sec. 5.3). Figure 4a shows the complex basin structure that is captured using our VPS.

Hénon map. Additionally, we study the network of coupled Hénon maps,

for i ∈ {1, 2, . . . ,N} , with fx(x, y) = 1− px2 + y, fy(x, y) = bx and t ∈ N , as discussed in59. The parameters 
chosen are p = 1.44 , b = 0.164 , σ = 0.8 . The network used is the DTI brain network from Fig. 1. Figure 4b again 
highlights the generality of the complex structures and also the utility of the VPS technology. Further details of 
both of these examples are presented in SI (Sec. 5).

Discussion
The brain has proven to be extremely nimble in its ability to switch between states in response to stimuli, 
thoughts, and/or decisions. As observed by various imaging techniques, this is associated with rapid switching 
between patterns of synchronous, chimera, and incoherent states.

(9)θ̇i = σ

N
∑

j=1

[A]i,j sin(θj − θi − α), i = 1, . . . ,N ,

(10)
�

xi(t + 1)
yi(t + 1)

�

=





fx(xi(t), yi(t))+ σ
N
�

j=1
[A]i,j

�

fx(xj(t), yj(t))− fx(xi(t), yi(t))
�

fy(xi(t), yi(t))





Figure 4.   Riddled basins for different networked systems. (a) The left panel shows a two-dimensional section 
of the state space for a system of coupled phase oscillators on a network showing basins of 12 (clustered) distinct 
states. Right panel Zoomed in from inset of (a) showing basins of 7 (clustered) distinct states. To construct the 
VPS, we use β = 1 in Eq. (8) and a grid with 1248× 1248 and 624× 624 for left and right panels, respectively, 
uniformly sampled initial conditions. (b) Hénon map dynamics on a DTI network with no non-trivial 
symmetry. See further details in the SI.
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Basin structure of network dynamics. Several prior works have studied the basin structure of chimera states 
in networked systems. There have been observations of chimera states with an intermingled basin structure 
in a special case of a strongly self-coupled cluster network specifically designed to emphasize chimera; see an 
explanation of critical switching behavior60. Authors in61 found highly riddled basins in small and highly sym-
metric all-to-all networks of coupled phase oscillators. Fractal basins of chimeras states were found in small 
networks of coupled complex maps62. In54 the authors use a low-dimensional description valid for the infinite 
size system63 to characterize the basin structure of different patterns in a model of two populations of all-to-all 
coupled Kuramoto oscillators58. Likewise and related, in22 analyze the same highly symmetric two population 
network model for chimera was analyzed, but chimera states for a DTI network with coupled Wilson–Cowan 
oscillator were also illustrated. They define chimera states in terms of a highly approximate synchrony, which is 
not a general approach such as our VPS that would allow for analysis of basin structure. Similarly, in19 chimera 
premised on approximate synchrony was described for a cat brain connectome data set64 describing coupled 
HR oscillators as coupled through one variable only, but again, no basin structure was found. In59, authors use 
the chaotic Hénon map coupled by again a highly symmetric network, the circulant (ring) stricture, and thus to 
find fractal basins for chimera premised on identical synchrony.

Dynamical systems theory is useful to explain the brain. Dynamical systems theory has been adopted as an 
approach to gain insights over the brain dynamics across various scales65–72. Instead of an empirical or quantita-
tive investigation, e.g. trying to observe attractor-like states65,73, most investigations have focused on proposing 
theoretical dynamical mechanisms68,70. For example, dynamical systems theory has contributed to the devel-
opment of theories of consciousness, by so-called integrated information theory (IIT)67, or the description of 
complex switching phenomenon in biological systems by the concept of chaotic heteroclinicity69.

Within a dynamical systems perspective, numerous possible mechanisms exist, necessitating research to 
pinpoint the one that aligns most closely with empirical data. In this context, we provide numerical evidence 
of fractal basin boundaries that have non-integer box counting dimension, and riddled basin boundaries.This 
evidence corroborates a theoretical explanation for resting-state brain dynamics, as investigated in68, which shows 
the promise of this dynamical mechanism. We observe these properties in numerical simulations of multiple 
different systems of coupled dynamical oscillators, using an experimentally determined human structural brain 
network as well as small test networks. With this evidence, we have identified a potential mechanism that would 
allow a nimble brain to switch between various distinct states with only small changes in the system parameters.

From a dynamical systems perspective, we argue that coexisting attractors corresponding to the various 
chimera states may seemingly suggest that large perturbations would be required to transition from deep in the 
well of one stable state to another. A brain with such dynamics would be at odds with the idea of a system that 
can nimbly switch between states. From a neuroscience perspective, it may seem that to transition from one 
brain state to a distinctly different brain state, one would have to traverse many unique states on a trajectory 
to the final desired state. We offer an explanation for how to resolve this seeming contradiction in the form of 
fractal basin boundaries. The fractal basin boundary allows for different stable states to be mixed together closely, 
creating the opportunity for small perturbations to lead to entirely different stable states, as patterns of chimera.

Thus, the main results of this work are summarized as follows: 

1.	 Our main proposal is that brain activity switching, that is, the nimble brain, is explained by fractal intermin-
gled (riddled) basins. Complex basins of attraction for each chimera state are intrinsically highly intermin-
gled. Thus, significantly different states are nonetheless near each other, in the dynamical variables of the 
phase space, and so available for nimble control manipulations by internal cognitive processes or external 
environmental events.

2.	 Even though the networks in the system have no symmetries, a generalized interpretation of synchrony 
allows fractal (intermingled) riddled basins, including relatively small model networks.

3.	 A crucial technology that underpins these above two assertions is based on clustering the VPSs corresponding 
to chimera states. Here, the k-means of a metric between VPS is a convenient clustering approach. Imple-
mentation of the computational task in mapping fractal basins is a key technical innovation that we have 
developed as background for this new description of the neuronal dynamics of the brain. Our approach can 
be extended to more complex models of brain dynamics.

Our approach allows the first step to find basin structure of complex high-dimensional systems. Our initial 
description of such fractal basins necessitated a somewhat simplistic, though biologically inspired, brain model. 
Now that we have presented this potential mechanism for nimble brain state shifts, experimental neuroscientific 
studies are needed to empirically validate, or reject, the hypothesis that we have presented. We also envision 
studies that further investigate the structure of these basins. Promising directions include octopus-like basins 
for basin structures for chimera states55, narrowing down other potential mechanisms for the nimble brain.

Methods
Fractal basins: box counting dimension
The assertion of fractal basin boundaries is a matter of considering the approximate boundary set SBL , such 
as the one shown in Fig. 2b, from the basin set in Fig. 2a, shown in cross-section with respect to the variables.

The box counting dimension can be estimated by counting a covering of squares of side length ǫ , and then 
consideration of this count N(ǫ) upon refinement by decreasing ǫ . The box counting dimension is defined74:
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that is equivalent to the Minkowski-Bouligand dimension. While SBL is simply a slice of the full high-dimensional 
boundary set, the non-integer result, d box (SBL) = 1.8 , together with the statistically self-similar structure shown, 
supports the assertion of a fractal set. Likewise, in Fig. 3b, the corresponding estimate is d box ∼ 1.27.

Data availability
The network structure used here was derived from diffusion tensor imaging, and parcellated by the Lausanne 
anatomical atlas into 83 anatomical regions. This structure is publicly available39, see the link https://​rb.​gy/​q3o71, 
from which we selected “Subject 1” as used in75. The visualization of the DTI network is generated by BrainNet 
Viewer 1.7 (www.​nitrc.​org/​proje​cts/​bnv/)48.
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