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Abstract. We analyze discrete-time dynamical systems subjected to an additive noise and their deterministic
limit. In this work, we will introduce a notion by which a discrete-time stochastic system has
something like a Markov partition for deterministic systems. For a chosen class of noise profiles,
the Frobenius–Perron (FP) operator associated to the noisy system is exactly represented by a
stochastic transition matrix of a finite size K. This feature allows us to introduce for these stochastic
systems a basis Markov partition, defined herein, irrespectively of whether the deterministic system
possesses a Markov partition or not. We show that in the deterministic limit, corresponding to
K → ∞, the sequence of invariant measures of the noisy systems tends, in the weak sense, to the
invariant measure of the deterministic system. Thus, by introducing a small additive noise one may
approximate transition matrices and invariant measures of deterministic dynamical systems.
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1. Introduction. Markov partitions for deterministic dynamical systems serve a central
role for determining their symbolic dynamics [3, 4, 5] whose grammar is described by a finite
sized transition matrix that generates a so-called sofic shift [6, 14]. The conditions for such a
projection were defined by Bowen for Anosov hyperbolic systems [3, 4] and stated succinctly
for interval maps as a partition whose elements are each a homeomorphism onto a finite union
of its elements [3, 5]. We remark here that a defining property in both cases is that the set of
characteristic functions defined over the elements of the Markov partition project the transfer
operator exactly onto an operator of finite type; that is, a matrix results, whereas an infinite
matrix would be expected for a non-Markov system. We argue here that this should be the
defining property of any generalization of Markov partitions, that is, a set of basis functions
which project the Frobenius–Perron (FP) operator exactly onto a finite-rank matrix with no
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residual. We present results here explicitly for random dynamical systems of the interval [0, 1]
and generalizations to the L-torus [0, 1]L.

In physical literature on dynamical systems one often distinguishes a “natural” invariant
measure of a hyperbolic system, which is stable with respect to an external noise [2, 7]. In
mathematics this measure is known as the Sinai–Ruelle–Bowen (SRB) measure, and under
certain assumptions one may rigorously prove its uniqueness [10]. Although the overall idea
that adding the noise improves the convergence to the SRB measure is well known in the
physics community, this work attempts to provide a more solid mathematical framework for
this statement. In particular, for a certain class of the noise profiles, we are in position to
characterize this convergence quantitatively.

First we recall the FP operator for a deterministic transformation. Associated with a
discrete dynamical system acting on initial conditions, x ∈ M (say, a manifold M ⊂ �n),

τ : M → M,

x �→ τ(x),(1)

is another dynamical system over L1(M), the space of densities of ensembles of initial condi-
tions

Pτ : L1(M) → L1(M),

ρ(x) �→ [Pτρ](x).(2)

This FP operator (Pτ ) is defined through a continuity equation [16],

(3)

∫
τ−1(B)

ρ(x)dx =

∫
B

[Pτρ](x)dx,

where B is a measurable subset of M , while PDF ρ(x) belongs to L1(M). Equation (3) may
be formally rewritten using the Dirac delta function:

(4) [Pτρ](x) =

∫
M

δ(x− τ(y))ρ(y)dy.

This heuristic form is particularly suitable for further investigation of dynamical systems with
additive noise; see (6).

Now consider the stochastically perturbed dynamical system

τν : M → M,

x �→ τ(x) + ξ,(5)

where ξ is a random variable with PDF ν, which is applied once per each iteration. We assume
that the realizations ξn of ξ added to subsequent iterations form an identical independently
distributed (i.i.d.) sequence. The random part ξ is assumed to be independent of state x which
we tacitly assume to be relatively small, so that the deterministic part τ has primary influence.
The “stochastic FP operator” has a form similar to that of the deterministic case [16],

(6) [Pτνρ](x) =

∫
M

ν(x− τ(y))ρ(y)dy,
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where the deterministic kernel, the delta function in (2), now becomes a stochastic kernel
describing the PDF of the noise perturbation. We will denote the stochastic FP operator as PP
below. In the case that the random map (5) arises from the usual continuous Langevin process,
the infinitesimal generator of the FP operator for normal ν corresponds to a general solution
of a Fokker–Planck equation [16]. The FP operator formalism is particularly convenient in
that it allows for an arbitrary noise distribution ν to be incorporated in a direct and simple
way. Within the formalism, we can also study multiplicative noise (x → ητ(x), modeling
parametric noise). The kernel-type integral transfer operator is K(x, y) = ν(x/τ(y))/τ(y) for
x ∈ �+, which can then also be finitely approximated as described in the next section and
usefully reordered to a canonical block reduced form. In more generality, the theory of random
dynamical systems [1] clearly classifies those random systems which give rise to explicit transfer
operators with corresponding infinitesimal generators, and there are well-defined connections
between the theories of random dynamical systems and of stochastic differential equations.

The main aim of this work is to investigate a class of stochastically perturbed dynamical
systems for which the FP operator is represented by a finite stochastic transition matrix of size
N . Such dynamical systems will be called basis Markov in analogy to deterministic dynamical
systems possessing a Markov partition [15, 25], for which the associated FP operator is finite.
The deterministic limit of the stochastic system corresponds to the divergence of the matrix
size. In this limit, N → ∞, the sequence of invariant measures of the stochastic systems acting
in the N -dimensional Hilbert space converges, in the weak sense, to the invariant measure of
the corresponding deterministic system.

The paper is organized as follows. The Ulam–Galerkin method of approximating the
infinite dimensional FP operator and the concept of the Markov partition for a deterministic
system are reviewed in sections 2 and 3, respectively. In section 4 we introduce the notion of
basis Markov stochastic systems, while in section 5 we analyze a particular example of random
systems perturbed by an additive noise with cosine profile. In section 6 we construct a fairly
general example of the transition densities satisfying our assumptions (20). The key result on
convergence of the invariant measures for stochastic and deterministic systems is proved in
section 7. A discussion of isospectral matrices used to describe the FP operator is relegated
to the appendix.

2. Ulam–Galerkin’s method: Approximating the infinite dimensional operator. A Gal-
erkin method may be used to approximate the FP operator by a Markov operator of finite
rank. Formally, projection of the infinite dimensional linear space L1(M) results from dis-
cretely indexed basis functions {φi(x)}∞i=1 ⊂ L1(M) onto a finite dimensional linear subspace
generated by a subset of the basis functions,

(7) ΔN = Span({φi(x)}Ni=1).

This projection,

(8) p : L1(M) → ΔN ,

is realized optimally by the Galerkin method in terms of the inner product, which we choose
to be integration:

(9) (f, g) ≡
∫
M

f(x)g(x)dx ∀f, g ∈ L2(M).
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Specifically, the infinite dimensional “matrix” is approximated by the N ×N matrix,

(10) Ai,j = ([Pτφi], φj) =

∫
M

[Pτφi](x)φj(x)dx, 1 ≤ i, j ≤ N.

One approximates ρ(x) through a finite linear combination of basis functions:

(11) ρ(x) �
N∑
i=1

diφi(x).

The historically famous Ulam method [17, 27] for deterministic dynamical systems is equiv-
alent to the interpretation for finding the fraction of the box Bi which maps by τ to Bj ;
the Ulam matrix is equivalent to the Galerkin matrix by using (10) and choosing the basis
functions to be the family of characteristic functions

(12) φi(x) = 1Bi(x) =

{
1 if x ∈ Bi,
0 else.

Specifically, we choose the ordered set of basis functions to be in terms of a nested refinement
of boxes {Bi} covering M . Though Galerkin’s and Ulam’s methods are formally equivalent in
the deterministic case, we are of the opinion that the Galerkin description is a more natural
description in the stochastic setting.

3. Markov partitions of deterministic systems, and exact projection. In this section,
we discuss that a Markov partition is special for the FP operator of a deterministic dynamical
system in that characteristic functions supported over those partition elements lead to an
exact projection of the FP operator onto an operator of finite rank, a matrix.

For a one-dimensional transformation of the interval, the definition of a Markov parti-
tion [24] (see also [15, 25]) can be found in more recent references [3, 10, 18].

Definition. A map of the interval τ : [a, b] → [a, b] is Markov if there is a finite partition
{Ij}Nj=1 such that

1. ∪N
j=1 Ij = [a, b] (covering property),

2. int(Ij) ∩ int(Ik) = ∅ if j �= k (no overlap property),

3. τ(Ij) = ∪q(j)
i=1 Ik(j)

i
for some k

(j)
i ∈ {1, 2, . . . , N}, i = 1, 2, . . . , q(j) (a grid interval maps

completely across a union of intervals without “dangling ends” property).
It is not hard to show that the set of characteristic functions forms a finite basis set of

functions

(13) {φj(x)} = {1Ij (x)}Nj=1,

such that Galerkin projection (10) is exactly onto an operator of finite rank or a matrix Ai,j .
That is, (10) simplifies to

Ai,j = ([Pτφi], φj) =

∫
M

[Pτφi](x)φj(x)dx,

=

∫
M

∫
M

δ(x− τ(y))φi(y)φj(x)dydx

=

∫
Ij

∫
Ii

δ(x− τ(y))dydx, 1 ≤ i, j ≤ N.(14)
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If the map τ is in addition piecewise linear on its Markov partition, then Pτ [φi(x)] is a linear
combination of φj(x).

Similarly, there is a well-defined notion of an Anosov diffeomorphism with a Markov
partition [3, 4, 9, 23], and so for such systems, it can be shown that characteristic functions
supported over the corresponding Markov partition create a basis set such that (10) results
in an operator of finite rank.

We take these observations as motivation for the following definition, which is meant to
generalize the notion of a Markov partition to stochastic systems.

Definition. Let {M,B, μ} be a measure space and a transformation τ : M → M be measur-
able. Then the transformation τ is “basis Markov” if there exists a finite set of basis functions
{φi(x)}Ni=1 : M → [0, 1] ∈ L1(M) such that the FP operator is operationally closed within ΔN ,
where ΔN = Span({φi(x)}Ni=1). That is, for any density ρ ∈ ΔN , its image [Pτρ](x) belongs
to ΔN .

Remark 1. If a transformation τ is basis Markov, then, if we perform Galerkin’s method,
Ai,j = (Pτ [φi], φj)N×N , with that basis set, it allows that, for any initial density which can be
written as a linear combination of these basis functions,

(15) ρ0(x) =

N∑
i=1

ciφi(x),

or stated simply,

(16) ρ0(x) ∈ ΔN .

The action of the FP operator on such initial densities, ρ1(x) = Pτ [ρ0(x)], has the matrix
presentation,

(17) c′ = A · c, where ρ1(x) =

N∑
i=1

c′iφi(x),

and is well known as a linear operator from an N -dimensional vector space into itself. This
emphasizes that the FP operator projects exactly to an operator of finite rank—a matrix.

Note that for a general finite set of functions, if we take a general linear combination of
those functions and then apply the FP operator, we do not expect that the resulting density
can be written as a (finite) linear combination of basis functions.

The following is a direct consequence of our definition of basis Markov in relationship to the
usual definition of a Markov map, stating the sense in which basis Markov is a generalization.

Remark 2. Equation (14) implies that any piecewise linear Markov map, together with
the characteristic functions supported over the partition elements, is basis Markov.

4. Basis Markov stochastic systems: A general case due to separable noise. We analyze
a dynamical system τ defined on an interval M = [0, 1] with both ends identified and subjected
to a specific form of the additive noise,

(18) x′ = τ(x) + ξ.
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To specify the special case of the stochastic dynamical system written in (5), the stochastic
perturbation will be characterized by the transition density P(x, y) of a transition from point
x to y induced by noise. Describing the dynamics in terms of a probability density ρ(x) its
one-step evolution is governed by the stochastic FP operator,

(19) ρ′(x) = [PPρ](x) =

∫
M

P
(
τ(y), x

)
ρ(y)dy.

We will denote this stochastic FP operator by the symbol PP , referring to (6) in all that
follows. The operator PP acts on every probability density defined on M , and, in general, it
cannot be represented by a finite matrix. However, in what follows we shall analyze a certain
class of noise profiles for which such a representation is possible.

Definition. The stochastic system of equations (19) is called basis Markov if there exists a
finite set of basis functions {φi(x)}Ni=1 : M → [0, 1] ∈ L1(M) such that the FP operator PP is
operationally closed within ΔN , where ΔN = Span({φi(x)}Ni=1).

We assume that the transition probability, P(x, y) ≥ 0, satisfies the following properties
[21, 22]:

(a) P(x, y) ≡ P(x− y) = P(ξ),

(b) P(x, y) ≡ P(x mod 1, y mod 1),

(c) P(x, y) =
N∑

m,n=0

Amn un(x) vm(y)(20)

for x, y ∈ R and some finite N . Property (a) ensures that the distribution of the random
variable ξ does not depend on the position x, while the periodicity condition is provided
in (b). A noise profile fulfilling property (c) is called separable (decomposable), and it allows
us to represent the dynamics of an arbitrary system with such a noise in a finite dimensional
Hilbert space. Here A = (Amn)m,n=0,...,N is a yet undetermined real matrix of expansion
coefficients. Note that A characterizes the noise and does not depend on the deterministic
dynamics τ . We assume that the functions un, n = 0, . . . , N , and vm, m = 0, . . . , N , are
continuous in M = [0, 1) and linearly independent, and we can express f ≡ 1 as their linear
combinations. Both sets of functions span bases in an N+1 Hilbert space. Their orthogonality
is not required.

This term separable noise is concocted in analogy to separable states in quantum mechanics
and separable probability distributions, since such a property was called N +1-separability by
Tucci [26]. Making use of this crucial feature of the noise profile we may expand the kernel of
the FP operator (19):

ρ′(y) = [PPρ](y) =

∫ 1

0

N∑
m,n=0

Amnun(τ(x))vm(y)ρ(x)dx(21)

=

N∑
m,n=0

Amn

[∫ 1

0
un(τ(x))ρ(x)dx

]
vm(y)(22)

=

N∑
n=0

[∫ 1

0
un(τ(x))ρ(x)dx

]
ṽn(y)
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for y ∈ M , where

(23) ṽn =

N∑
m=0

Amnvm.

Thus, any initial density is projected by the FP operator PP into the vector space spanned
by the functions ṽm, m = 0, . . . , N .

Assuming that a given density ρ(x) belongs to this space, we can expand it in this basis,

(24) ρ(x) =

N∑
m=0

qm ṽm(x).

Expanding ρ′ in an analogous way, we will describe it by the vector 	q ′ = {q′0, . . . , q′N}.
Let B denote a matrix of integrals,

(25) Bnm =

∫ 1

0
un(τ(x))vm(x)dx,

where n,m = 0, . . . , N . Observe that B depends directly on the system τ and on the noise
via the basis functions u and v. Making use of this matrix, the one-step dynamics (23) may
be rewritten in a matrix form

(26) q′n =

N∑
m=0

Dnm qm, where D = BA

and A is implied by (20). In this way we have arrived at a representation of the FP operator
PP by a matrix D of size (N + 1) × (N + 1), the elements of which read

(27) Dnm =

∫ 1

0
un(τ(x))ṽm(x)dx, n,m = 0, . . . , N.

With (26), we now see that random dynamical systems with noise satisfying condition (20)
allow a finite dimensional subspace which is preserved.

Although the probability is conserved under the action of PP , the matrix D need not be
stochastic. This is due to the fact that the functions {ṽm(x)} forming the expansion basis
in (24) were not normalized. We shall then compute their norms,

(28) sm =

∫ 1

0
ṽm(y)dy =

N∑
n=0

Amnbn,

where

(29) bn =

∫ 1

0
vn(y)dy.

Let K ≤ N+1 denote the number of nonzero components of the vector 	s, and let k = 1, . . . ,K
runs over all indexes n ∈ 0, . . . , N + 1, for which sk �= 0. Then the rescaled vectors,

(30) Vk(y) := ṽk(y)/sk,
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are normalized:

(31)

∫ 1

0
Vk(y)dy = 1.

The normalization condition
∫ 1
0 ρ(x)dx = 1 implies

(32)

∫ 1

0

N∑
m=0

qlṽm(x)dx =

N∑
m=0

qmsm =

K∑
k=1

qksk = 1.

The same is true for the transformed density,

(33)
∑
k

q′ksk = 1.

Hence this scalar product is preserved during the time evolution. Making use of the rescaled
coefficients

(34) ck := qksk,

the dynamics (26) reads

(35) c′k = q′ksk =
∑
j

Dkj qjsk =
∑
j

Dkj
sk
sj

qjsj =:
∑
j

Tkj cj .

By construction the coefficients ck sum to unity. Since some of them can in general be negative,
the transition matrix

(36) Tkj ≡ Dkj
sk
sj

=
∑
ii′

Dkj
Akisi
Aji′si′

need not be stochastic. In the above equation, all indices run from 1 to K and the coefficients
sk are nonzero by construction.

It is interesting to distinguish a special class of noises for which all functions corresponding
to nonzero values of the components sk are nonnegative: ṽk(x) ≥ 0 for x ∈ [0, 1] and k =
1, . . . ,K. This implies that for any probability density ρ its expansion coefficients qk in (24)
are not negative. Furthermore, the normalization constants of ṽk are nonnegative, sk > 0,
k = 1, . . .K, and so are the coefficients ck and c′k given in (34), (35). Hence vectors c and c′

form normalized K-point probability distributions, and so in this case the transition matrix
T of size K is stochastic. The dimensionality K ≤ N + 1 is determined by the parameter N
and the choice of the basis functions {vl(x)} entering (20).

5. A special case: Cosine noise. We will now discuss a particularly simple case of the
separable noise described above and introduced in [21]. Let

(37) PN (ξ) = CN cosN (πξ),
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Figure 1. The cosine noise of (37) closely resembles a normal noise profile, but with finite support. Several
values of N are shown, with decreasing standard deviation with increasing N .

where N is even (N = 0, 2, . . .), and with the normalization constant

(38) CN =
√
π

Γ[N/2 + 1]

Γ[(N + 1)/2]
.

See Figure 1, in which we can see the decreasing standard deviation with respect to increasing
N . This type of noise reminds us of a normal distribution, but of compact support.

The parameter N controls the strength of the noise measured by its variance

(39) σ2 =
1

2π2
Ψ′

(
N

2
+ 1

)
=

1

12
− 1

2π2

N/1∑
m=1

1

m2
,

where Ψ′ stands for the derivative of the digamma function.
For the expansion (20) we use basis functions

um(x) = cosm(πx) sinN−m(πx),

vn(y) = cosn(πy) sinN−n(πy),(40)

where x ∈ M and m,n = 0, . . . , N . Expanding the cosine as a sum to the Nth power in (37),
we find that the (N + 1) × (N + 1) matrix A defined by (20) is diagonal:

(41) Amn = amδmn, with am = CN

(
N

m

)
.

Integrating trigonometric functions, we find the coefficients

(42) bm =

∫ 1

0
cosm(πx) sinN−m(πx)dx =

2

πN

Γ[(m + 1)/2] Γ[(N −m + 1)/2]

Γ(N/2)
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Figure 2. The transition kernel PN (f(x), y) for the logistic map τ(x) = 4x(1 − x), with N = 20 and with
cosine noise due to N = 20; compare to Figure 1. Note the periodicity of x of period 1.

and

(43) sm = ambm,

which are nonzero only for even values of m. Hence the size K ×K of the transition matrix
reads

(44) K = N/2 + 1,

and the expression (36) takes the form

(45) Tkj = Dmn
ambm
anbn

, where k, j = 1, . . . ,K, m = 2(k − 1), n = 2(j − 1).

For the noise (37) discussed here all functions ṽm for even m, which contribute to the
matrix T , are nonnegative; hence, as discussed in the previous section, the transition matrix
T is stochastic. We find in this case that the transition kernel reminds us of a fuzzy but
periodically repeated version of the map. See Figure 2. However, the FP operator embeds to
a transition matrix T , which “appears” roughly as a different form of the original map; see
Figure 3.
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Figure 3. The stochastic matrix T150 shown, from (36), exactly represents the stochastic FP operator of
the stochastic tent map (47) with trig noise (37) and basis set (40) using N = 150. Note that T (150) is a matrix
of size N/2 + 1 = 150/2 + 1 = 76 square. Compare to the matrices in (48) of smaller N .

There is an interesting correspondence between the spectra of eigenvalues of the two
matrices D and T . Since T is stochastic, its largest eigenvalue is equal to unity. Moreover, it
is the only eigenvalue with modulus one, which follows from the fact that the kernel P(x, y)
vanishes only for x − y = 1/2 (mod 1), and the two-step probability function is everywhere
positive:

(46)

∫
M

P(x, z)P(z, y)dz > 0 for x, y ∈ M

(see [16, Th. 5.7.4]). A particularly useful consequence and simplification is that the eigenstate
corresponding to the largest eigenvalue of the matrix represents the invariant density of the
system, ρ∗ = Pf (ρ∗); this can be easily found numerically by diagonalizing T .

All of the other eigenvalues are included inside the unit circle and their moduli |λi| charac-
terize the decay rates. It is worth emphasizing that the spectra of both matrix representations
of the FP operator, by matrices D of size (N + 1) × (N + 1) used in [20, 21, 22] and the sto-
chastic T matrices of size (N/2+1)× (N/2+1) developed here, coincide up to the additional
N/2 eigenvalues which are equal to zero; see the appendix for details.

For concreteness let us discuss an exemplary one-dimensional dynamical system, a tent
map:
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(47) τ(x) :=

{
2x if 0 ≤ x ≤ 1/2,

2(1 − x) if 1/2 ≤ x ≤ 1.

Simple integration allows us to obtain the analytic form of the transition matrix T (N) for the
tent map (47) perturbed by additive noise characterized by small values of N ,

T (2) =
1

2

[
1 1
1 1

]
, T (4) =

1

24

⎡
⎣ 11 3 11

6 6 6
7 15 7

⎤
⎦ , T (6) =

1

320

⎡
⎢⎢⎣

145 25 25 145
69 45 45 69
51 75 75 51
55 175 175 55

⎤
⎥⎥⎦ .

(48)

In the simplest case N = 2 the transition matrix is bistochastic, but it is not so for
larger N . However, for this system, the matrix T (N) is of rank one for arbitrary value of the
noise parameter N . The spectrum of T contains one eigenvalue equal to unity and all others
equal to zero. This implies that every initial density is projected onto an invariant density
already after the first iteration of the map. This is not the case for other dynamical systems
τ , including the logistic map τr(x) = rx(1 − x), for which the spectrum contains several
resonances—eigenvalues of moduli smaller than one—which describe the decaying modes of
the system [21].

In this way we have established a relation between a sequence of noisy systems τN and
the deterministic dynamical system τ . A stochastic system (18) with the noise profile (37) for
a fixed noise parameter N is described by a stochastic matrix T (N) of size K = N/2 + 1 and
acts in the Hilbert space HK .

We have shown that the sequence of transition matrices T (N) corresponds to the dynamical
system τ in the sense that the sequence μN of the invariant measures of T (N) converges weakly
to the τ -invariant measure μ in the deterministic limit N → ∞. Furthermore, for any initial
density ρ the sequence of vectors ρ′N transformed by PPN

converges weakly to the density
transformed by the FP operator associated with τ . Observe that the above property holds
not only for one-dimensional systems but also for dynamical system τ in higher dimensional
measure spaces.

6. General example. In this section we construct a fairly rich family of transition densities
satisfying the assumptions (20). Let {gN}N≥1 be a sequence of C2 (this condition can be
weakened) nonnegative functions with support in [−1/2, 1/2] such that gN (−1/2) = gN (1/2)
for all N ≥ 1 and which converges to Dirac’s delta δ0 as N → ∞.

Each gN , which can be also seen as a 1-periodic function on the whole real line, can be
approximated by its partial Fourier sum arbitrarily close in the supremum norm. Let

(49) hN (ξ) = cS(N) + a0,N + 2

S(N)∑
s=1

(as,N cos(2sπξ) + bs,N sin(2sπξ))

be an approximation obtained from Fourier approximation by shifting it up by a small constant
cS(N) to ensure hN ≥ 0 on [−1/2, 1/2]. We have cS(N) → 0 as S(N) → ∞. We can make the
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functions hN also converge to Dirac’s delta δ0 as N → ∞. Using the functions hN we define
a family of densities:

(50) PN (ξ) = hN (ξ)/

∫ 1/2

−1/2
hN (t)dt, N = 1, 2, 3, . . . ,

and then a family of transition densities

PN (x, y) = PN (x− y), N = 1, 2, 3, . . . .

Since

cos(2sπ(x− y)) = cos(2sπx) cos(2sπy) + sin(2sπx) sin(2sπy),

sin(2sπ(x− y)) = sin(2sπx) cos(2sπy) − cos(2sπx) sin(2sπy),

it is clear that the assumptions (20)(c) are satisfied with un(x) equal to cos(2sπx) or sin(2sπx)
and vm(y) equal to cos(2sπy) or sin(2sπy) for 0 ≤ s ≤ S(N). It is also clear that for each
x ∈ [0, 1], PN (x, ·) converges to Dirac’s delta δx as N → ∞. To have the condition (3) of the
next section satisfied it is enough to start with even functions gN .

Example. Let g(ξ) = (0.2 + x2) exp(−x2) and gN (ξ) = Ng(Nξ), restricted to [−1/2, 1/2]
and extended periodically to the whole real line, N ≥ 1. Then, the gN ’s are positive and
converge to Dirac’s δ0 as N → ∞. In particular, let us consider g6. Its Fourier approximation,
with S(6) = 5, is

1.24032 + 1.14838 cos(2πξ) − 0.470309 cos(4πξ) − 0.530699 cos(6πξ)

− 0.163161 cos(8πξ) − 0.0225748 cos(10πξ).

We have used such a poor approximation to make the example simpler. We can choose
constant cS(6) = 0 and after normalization we obtain

P6(ξ) = 1 + 0.92587 cos(2πξ) − 0.37918 cos(4πξ) − 0.42787 cos(6πξ)

− 0.131547 cos(8πξ) − 0.01820 cos(10πξ).

See the transition density in Figure 4.

We have

P6(x− y) = 1 + 0.92587 cos(2πx) cos(2πy) + 0.92587 sin(2πx) sin(2πy)

− 0.37918 cos(4πx) cos(4πy) − 0.37918 sin(4πx) sin(4πy)

− 0.42787 cos(6πx) cos(6πy) − 0.42787 sin(6πx) sin(6πy)

− 0.131547 cos(8πx) cos(8πy) − 0.131547 sin(8πx) sin(8πy)

− 0.01820 cos(10πx) cos(10πy) − 0.01820 sin(10πx) sin(10πy).

See the transition kernel in Figure 5.
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Figure 4. The transition density P6(ξ).

Figure 5. The transition kernel P6(τ(x), y) for the logistic map τ(x) = 4x(1 − x), with S(6) = 5.

In the notation of section 4 let us define

u0(x) = 1,

u2s+1(x) = cos(2(s + 1)sπx), s = 0, 1, 2, 3, 4,

u2s(x) = sin(2sπx), s = 1, 2, 3, 4, 5,

v0(y) = 1,

v2s+1(y) = cos(2(s + 1)πy), s = 0, 1, 2, 3, 4,

v2s(y) = sin(2sπy), s = 1, 2, 3, 4, 5.
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Then, matrix A = (Amn)0≤m,n≤10 is the diagonal matrix with the diagonal

[1, 0.92587, 0.92587,−0.37918,−0.37918,−0.42787,−0.42787,−0.131547,−0.131547,

−0.01820,−0.01820],

and we have
ṽm = Ammvm, m = 0, 1, . . . , 10.

Let us consider the dynamics given by the logistic map τ : x �→ 4x(1 − x). Matrix D
defined in (27) and representing FP operator PP6 is

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0
0.2441 −0.3096 0 −0.08859 0 −0.1209 0 −0.01639 0 −0.0007850 0
−0.1717 0.2016 0 −0.1313 0 0.00547 0 0.01382 0 0.001494 0
0.1752 −0.1940 0 −0.09397 0 0.06079 0 0.02395 0 −0.002347 0
−0.1372 0.1658 0 −0.0159 0 0.06947 0 −0.02997 0 −0.004869 0
0.1436 −0.1506 0 −0.07445 0 0.08111 0 −0.006781 0 −0.002915 0
−0.1178 0.1397 0 0.00971 0 0.02136 0 −0.02983 0 0.001684 0
0.1246 −0.1268 0 −0.06176 0 0.07547 0 −0.01636 0 −0.0003029 0
−0.1051 0.1223 0 0.01799 0 −0.00139 0 −0.01922 0 0.002802 0
0.1116 −0.1116 0 −0.05331 0 0.06756 0 −0.01849 0 0.001108 0

−0.09589 0.1098 0 0.02112 0 −0.01226 0 −0.01162 0 0.002350 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(51)

The eigenvalues of D are

1,−.4086428809, 0.0800412,−0.0117582, 0.00331119,−0.000739709, 0, 0, 0, 0, 0.

Although in this case all eigenvalues of D are real, in general they are complex. Since matrix D
is real, the eigenvalues are placed symmetrically with respect to the real axis. The eigenvector
for eigenvalue 1 is

w = [1, 0.164834,−0.154604, 0.139482,−0.107445, 0.116956,−0.0938748, 0.102202,

−0.0843296, 0.0918404,−0.0772548],

and it provides a rough approximation
∑10

m=0 w[m]ṽm(ξ) to the τ -invariant density. A much
better approximation shown in Figure 6 is obtained by taking the same noise profile for N = 40
and S = 30, which results in matrix D of size 2S + 1 = 61.

For a comparison we performed Ulam’s approximation of the invariant density of τ using
an N × N matrix with N = 61. For φm = N · 1[(m−1)/N,m/N ], Ulam’s probabilistic matrix
U = {Uij} can be obtained by putting

Uij = (1/N)

∫ 1

0
φi(t)φj(τ(t))dt, 1 ≤ i, j ≤ N.

We found the 1-eigenvector w of U , and the function fN =
∑N

m=1 w[m]φm is Ulam’s approxi-
mation to τ -invariant density. It is shown in Figure 7.
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Figure 6. An approximation to the invariant density of the logistic map (dashed line) obtained as an
invariant density of transition matrix D of size 61 × 61 (solid line).

Figure 7. An approximation to the invariant density of the logistic map (dashed line) obtained by Ulam’s
method with 61 × 61 matrix (solid line).

The L1 errors of approximation were comparable: 0.17 for Ulam’s method and 0.20 for
our method. Our method produces a smooth approximating function which is nicer for a
smooth invariant density. Our method is also more general in the sense that it can be used to
approximate not only the invariant density itself but also the invariant density of a random
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perturbation of a map by a possibly very strange perturbing distribution. This was shown in
the example above. On the other hand, Ulam’s method is definitely simpler and its theoretical
properties are well studied.

7. Approximation by basis Markov maps. While not all maps and noise profiles allow for
the map to be basis Markov, in this section we will show that a non–basis Markov map may
be weakly well approximated by basis Markov maps. In this sense, the finite approximations
offered by basis Markov maps can be thought of as a good description of the general behavior,
since the invariant measures of the finite approximations due to the basis Markov maps have
weak-∗ limits to the invariant measures of the general maps.

Let us consider a family of the transition probabilities PN (·, ·) such that, for each x ∈ M ,
PN (x, ·) converges to Dirac’s delta δx as N → ∞.

We require the following assumptions about the transition probabilities PN (·, ·):
1. PN (·, ·) is measurable as a function of two variables.
2. For every x we have

∫
M PN (x, y)dy = 1.

3. For every y ∈ M we have ∫
M

PN (x, y)dx = 1.

4. Let B(x, r) = {y : |x− y| < r} and

(52) pN (x, r) =

∫
M\B(x,r)

PN (x, y)dy.

Then, for any r > 0,

pN (r) = sup
x∈M

pN (x, r) → 0 as N → +∞.

Assumptions 1–3 are typical for probability measures, while assumption 4 is also rather
mild, and it is easy to check that all four assumptions are satisfied by the cosine noise (37).

Under these assumptions, the following can be easily proved.

Proposition. Let M = [0, 1]. For any ρ ∈ L1(M) we have

(53)

∫
M

ρ(x)PN (x, y)dx → ρ(y) as N → ∞

in L1(M).

In Theorem 1 below we assume that the transformation τ : [0, 1] → [0, 1] is continuous.
This assumption can be weakened (say, to piecewise continuous) if we impose additional
restrictions on the transition probabilities PN (say, such that all measures μN and their weak
limits are continuous measures; see, for example, [8]).

Theorem 1. Let the transformation τ be continuous. Under the assumptions 1, 2, and 4,
it follows that if μN is an invariant measure of the stochastic perturbation of transformation f
defined by the transition probability PN , then every weak-∗ limit point of the set {μN : N ≥ 1}
is an f-invariant measure.

This theorem can be proved following the ideas of Khasminskii [12].
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A more precise result can be proved under more restrictive assumptions on the transfor-
mation τ .

Theorem 2. Let the transformation τ be piecewise C2 and piecewise expanding, i.e., |τ ′| >
2, where it exists. Then, under the assumptions 1–4, every weak-∗ limit point of the set
{μN : N ≥ 1} is a τ -invariant absolutely continuous measure.

This result was proved in Theorem I.B. of [8]. The perturbations we consider are of
“convolution type” and since we treat an interval as a circle an extra factor of 2 does not
occur. The example of the famous W -map [11] shows that the condition |τ ′| > 2 cannot be
weakened.

8. Concluding remarks. In this work we have introduced the concept of basis Markov
stochastic systems, for which the associated FP operator is finite. This property resembles
the class of deterministic systems with a Markov partition. However, the Markov partition is
characteristic to a very special class of deterministic systems, while the basis Markov property
is related to the kind of stochastic perturbation. It holds for any deterministic system τ ,
subjected to an additive noise with a profile satisfying the separability condition (20). In this
way such a random dynamical system can be described by a stochastic transition matrix of a
finite size K, which diverges in the deterministic limit.

We have shown an intimate relationship between the sequence of stochastic matrices which
act in the space of K-point probability distributions and the FP operator Pτ of the determinis-
tic system, which acts in the infinite dimensional space: In the deterministic limit K → ∞ the
invariant densities of stochastic matrices converge in a weak sense to the invariant measure
of the deterministic system τ . Thus, constructing the transition matrices T and decreas-
ing the noise strength (and increasing the dimensionality K), one may construct arbitrary
approximations of the FP operator Pτ .

Some discussion regarding generality is in order. While it is not clear at this stage how
many families of examples exist that satisfy the properties in (20), we presented a concrete
example in section 5, the cosine noise example, (37), with corresponding basis functions (40).
We find this example instructive due to its general appearance as similar to the familiar
Gaussian distribution and the fact that it provides a finite representation of the FP operator Pτ

by a stochastic transition matrix T . Furthermore, in section 6 we presented a general technique
of designing one-dimensional noise profiles which satisfy the separability conditions (20).

Note that the described method is not restricted to one-dimensional systems. On the
contrary, the entire construction can be directly applied to a general case of multidimensional
dynamical systems. In particular, the definition (20)(c) of separable noise profiles works for
the case of an L-dimensional system, provided the variables x and y represent vectors with L
components each.

If the dynamical system acts on the L-torus, for example, M = [0, 1]L, one can take the
Cartesian product of the cosine noise (37) setting

(54) PN (ξ1, . . . , ξL) = CL
N cosN (πξ1) cosN (πξ2) · · · cosN (πξL),

where ξk = xk − yk and k = 1, . . . , L. This form of the additive noise was used in [20] to
analyze a two-dimensional system (a variant of the baker map) and to compare the spectral
properties of the FP operator associated with the classical stochastic system with properties
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of the propagator of the corresponding quantum evolution. In such a case the deterministic
limit of the classical noisy system, K → ∞, is related to the classical limit, � → 0, of the
corresponding quantum dynamics.

Note that for basis Markov stochastic systems, the transition matrices T exactly describe
the action of the dynamical system with additive noise on densities. Thus our construction
differs from an approach applied in [13, 19, 28], where a finite dimensional description of the
density dynamics of a deterministic system was achieved by truncation of an infinite transition
operator Pτ to the finite dimension K. The effect of such a truncation may also be regarded
as a kind of noise depending on the matrix size K and the base, in which Pτ is represented.
On the other hand, in our case a suitable choice of the noise profile added to the deterministic
system distinguishes a relevant basis, in which the FP operator of the perturbed system is
finite.

Appendix. Isospectral matrices. In this appendix we show that the matrix D defined
by (27) and used in [20, 21, 22] to represent the FP operator and the stochastic transition
matrix T share the same nonzero part of the spectrum. We make use of the following algebraic
result.

Lemma. Let A be a square matrix of size N × N and 	s a vector of length N containing
only nonzero entries. Then the matrix

(55) Bjk ≡ Ajk
sj
sk

has the same spectrum as A.

(There is no summation over repeating indices.)

Proof. To study equation det(B − λ1) = 0 we start analyzing an exemplary term PB of
the determinant. It consists of a product of N elements Bi,σ(j), where σ(i) stands for a certain
permutation of the indices. The product of N factors of the type si/sσ(i) is equal to unity so
that

(56) PB
σ =

∏
i

Bi,σ(i) =
∏
i

Bi,σ(i)
s1s2 · · · sN
s1s2 · · · sN

=
∏
i

Ai,σ(i).

Thus every term contributing to the free coefficient of the characteristic equation will be the
same, PB

σ = PA
σ ; hence these coefficients for both matrices A and B are equal. Since the

diagonal elements of both matrices coincide, Bjj = Ajj , all terms forming the coefficients
standing by an arbitrary power of λ are the same for both matrices. Therefore, characteristic
equations for both matrices are equal and so are their spectra.

Treating all nonzero elements of the vector sk, k = 1, . . . ,K, as vector 	s, we may apply
the lemma to (36) and obtain equivalence of the spectrum of T and the nonzero part of the
spectrum of D. Since integrals (25) vanish for odd values of m, every second column of D is
equal to zero, and the remaining N/2 eigenvalues of D are equal to zero.
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