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We analyze chaos in the well-known nonautonomous Double-Gyre system. A key focus is on
folding, which is possibly the less-studied aspect of the “stretching+ folding = chaos” mantra
of chaotic dynamics. Despite the Double-Gyre not having the classical homoclinic structure for
the usage of the Smale—Birkhoff theorem to establish chaos, we use the concept of folding to
prove the existence of an embedded horseshoe map. We also show how curvature of manifolds
can be used to identify fold points in the Double-Gyre. This method is applicable to general
nonautonomous flows in two dimensions, defined for either finite or infinite times.
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1. Introduction

A well-known mechanism through which chaos can
arise in deterministic dynamical systems is by the
combined effect of stretching and folding. Stretch-
ing will separate nearby points, while folding can
abruptly bring together points which were initially
far away. Various ways which quantify the stretch-
ing (most notably finite-time Lyapunov exponents)

abound in the literature lghadden et al. m& Froy-
land & Padberg-Gehle, [2012; , 20164;

Tallapragada. & Rosd, [2013; Nevins & Kelley, 2016;
Ma,_et alJ, 2nld}. Folding, however, is much less

addressed. In this paper, we specifically focus
on the concept of folding in two different ways.
Firstly, it is used to prove that a highly-studied
testbed for numerical methods — the Double-Gyre
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|Shadden et all, 2005] — is chaotic. While the fact

that this system is chaotic is “known” anecdotally,
it appears that a proof of this fact is not avail-
able, and we are able to provide it in this paper
using the concept of folding in a specific way. Sec-
ondly, we propose a method for quantifying folding
in general two-dimensional nonautonomous dynam-
ical systems. This is through computing the curva-
ture along distinguished one-dimensional curves of
the system.

The presence of stretching and folding in a
dynamical system leads to a range of properties
usually associated with chaos (sensitivity to ini-
tial conditions, presence of countably many periodic
orbits and uncountably many aperiodic ones, the
presence of a dense orbit, etc). Smale’s horseshoe
map [Rossler. 11977: Holmes, 1986; Arrowsmith &
Vivaldi, 1993; Chenl, [2006; |Alligood et all, 1994]
forms a paradigm for this mechanism, and in prov-
ing that this system is chaotic the basic strategy
is to exploit the conjugacy of the map’s action
with shift dynamics on bi-infinite sequences [Alli-
good et al., 1996; Namikawa & Hashimoto, 2004].
Thus, in proving that two-dimensional maps are
chaotic, it is sufficient to establish the existence of
horseshoe-like maps within them. One standard way
in which this arises is through the presence of a
transverse intersection between the stable and the
unstable manifolds of a fixed point of the map; the
Smale—Birkhoff theorem
|.]_9.8.j lH_cﬂ.m.es] |.]_9_9_d lAlth_o_d_eI_alJ []_9_9_6] prov1des
a method for constructing the horseshoe map in
that situation. The original theorem is for homo-
clinic situations; that is, there must be a trans-
verse intersection between the stable and the unsta-
ble manifolds of the same fixed point of a discrete
dynamical system. The basic intuition is that it is
then possible to identify a quadrilateral piece of
space near the intersection (call it A), which even-
tually gets mapped back on top of itself exactly
like a horseshoe map. The homoclinic nature is cru-
cial in this argument, since it enables A to get
mapped “all the way round” since after it gets
pulled out along the unstable manifold direction,
it will then get pulled in along the stable manifold
direction.

The Smale-Birkhoff theorem does not apply to
the Double-Gyre flow [Shadden et al., M], since it
does not have a homoclinic structure. The Double-
Gyre was initially proposed by |[Shadden et al. [2005]

as a toy model for two adjacent oceanic gyres. It

has since taken on a prominent role as a testbed in
the development of a range of numerical diagnos-
tics associated with transport and transport bar-
riers

[Allshouse & Peacock,

2015; Em&%%sm
harsan et al Garaboa-
Paz & Perez- Munuzunm m
\McIlhany & Wiggins, M, IMosovskv & Melss],
12011; Brunton & Rowley, 2010; Lipinski & Mohseni,
12010; [Duc & Siegmund, 2008; Tallapragada & Ross,
2013; Bollt_et all, 2012; Bollt, 2000; Bollt et all,
12002; [Froyland, 2013, etc.]. Numerics amply demon-
strate that there is chaotic transport between the
two gyres, which can each be thought of as a
Lagrangian coherent structure Halle Kelley
et al. |M Haller & Yuaﬂ
DDJH, Onu_et_all, 2015]. The ﬁeld of Lagranglan
coherent structures continues to attract tremendous
interest, and there is in particular a multitude of
diagnostic techniques that are either being refined
or newly developed for the analysis of fluid trans-
port associated with them. Well-established meth-
ods include finite-time Lyapunov exponent fields

: 2016 Huntley
et al., 2015; : Johnson &
Meneveau, 3!!]3 BozorgMagham & Roqq m;
MMMM_BM%MWBL & Ouel-
lette, m transfer (Perron—Frobenius) operator
approaches lan P ro-Gehld. 2009: Froy-
land et al._,_ : \Dellnitz & Junge, IM; Froy-
land et al. - averages along trajectories [Wig-
gins & Mancho 12014: Mancho et _all, 12013: Poje
et al., 1999; Mancho et all, [2003; Mezic et all,
-] and curves of extremal attraction/repulsion
IBlazevski & Halleﬂ, m; Teramoto et al], m;
Farazmand & Halleﬂ, w] Other methods include
clustering approaches [Hadjighasem et all, 2016:
Huntley et al. |M] Froyland & Padberg- Gehd

ML topologlcal entropy
: , 12016, mlmasz_uhiﬁea.ulﬂ,
|, ergodic-theory related approaches [Budisic &

Mezic, 2012] and curvature [Ma & Bollt. [2015; Ma

et al., ]. The latter approach is particularly

relevant to the current paper, and will be revis-
ited later. The main point, though, is that the

Double-Gyre is often used to test these methods,

sometimes against each other [Allshouse & Peacock,
]. In doing so, the “complicated” (i.e. chaotic)

nature of the Double-Gyre is taken as given. How-
ever, there is as yet no proof that it is actually
chaotic!
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From the theoretical perspective, the impedi-
ment to using the Smale-Birkhoff theorem is that
the entity separating the two gyres is not homo-
clinic, but rather heteroclinic. That is, it is associ-
ated with the stable manifold of a fixed point (of
a relevant Poincaré map), and the unstable man-
ifold of a different fixed point, intersecting. The
standard horseshoe construction fails in this sit-
uation. An approach might be to appeal to an
extension of the Smale-Birkhoff theorem due to
[1989], in which she considers a “hetero-
clinic cycle” in which intersection patterns between
stable/unstable manifold structures of a collection
of fixed points form a cycle. Under generic condi-
tions, it is then shown that a horseshoe construc-
tion can be made in this situation as well ,
@]; effectively, the region A gets mapped around,
going near each fixed point, and eventually return-
ing to form a horseshoe-like set falling on top of
A. Unfortunately, the Double-Gyre does not fall
into this generic situation. While there is a hete-
roclinic cycle geometry in the Double-Gyre, only
one of the connections between fixed points pos-
sesses the generic transverse intersection pattern.
All other connections are situations in which a sta-
ble manifold coincides with an unstable manifold,
and thus the heteroclinic extension M, @]
to the Smale-Birkhoff theorem is inapplicable.

Given the importance of the Double-Gyre as
a testbed, and the implicit agreement that it is
chaotic, an actual proof of its chaotic nature would
seem important. We provide exactly that in Sec. [
We first develop analytical approximations to the
stable and unstable manifolds. These are then used
to identify “fold points” which are the basis for
a horseshoe construction, leading to Theorem [l in
which we establish the chaotic nature of the Double-
Gyre.

A main ingredient leading to chaos appear-
ing in the Double-Gyre is the fact that the sta-
ble and unstable manifolds fold. We address this
issue in a complementary fashion in Sec. 3. Here,
we are inspired by recent work on using curvature
in Lagranjian coherent structure analysis [Ma &
Bollt, ]. In the current context, though, the
argument is simple: if stable/unstable manifolds
fold, then the curvature at those fold points must
get anomalously large. Using the Double-Gyre as
a testbed, we both numerically and theoretically
track such points of large curvature. We establish
numerically that the fold points do indeed possess
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the behavior established in our proof of chaos in
the Double-Gyre. Using the curvature in this way
can be done for general two-dimensional nonau-
tonomous flows. The Double-Gyre is time-periodic,
which allows for thinking of the dynamical system
either in continuous time, or in discrete time (in
relation to a Poincaré map). However, it is possi-
ble to use the curvature in nonautonomous systems
with any time-dependence, by thinking of the stable
and unstable manifolds as being attached to hyper-

bolic tragectories Ju et _all. 2003; Muller-Karger
et al., : Vleck, ] rather than fixed points.

Moreover, using curvature in this way can also be
done for specialized curves arising from using any
diagnostic procedure in finite-time flows.

2. Horseshoe Map Chaos in the
Double-Gyre Flow

The Double-Gyre flow was initially introduced by
Shadden et _all [2007], and has since been studied
extensively as a canonical example of complicated
transport in nonautonomous flows [Allshouse &

Peacock, [2015; (Williams et all, mﬂ; Pratt et all,
2015; Balasurivd, 2016a; [Sudharsan et all, 2016;
Rosi et _all, M; Garaboa-Paz & Perez—Munuzuri,
2015; Ma & Bolltl, 2013; McIlhany & Wigging, 2013;
Mosovsky & Meisgl, m; Brunton & Rowleﬂ, M;
Lipinski & Mohseni, 2010; Duc & Siegmund, 2008,

etc.]. Its flow is given by

&1 = —mAsin[rp(xy,t)] cos[mrs]

G
¢(x17t) (1)

T9 = mAcos[rd(x1,t)] sin[rs] Ey.
1

in which A >0 and 0 < ¢ < 1, and
P(x1,t) := esin(wt)x? + (1 — 2esin(wt))z;.

This is usually viewed in the spatial domain §2 :=
[0,2] x [0, 1], and when & = 0 possesses two counter-
rotating gyres: one in (0,1) x (0,1) and the other
n (1,2) x (0,1). This is a steady situation in which
the gyres are separated by a heteroclinic manifold
x1 = 1, which is the stable manifold of (1,0) and
the unstable manifold of (1,1). This manifold can
be expressed parametrically by

Tl(t) =1,
teR (2)
2 ’
To(t) = = cot ™! em AL,
T
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which is an exact solution to ([l), with ¢ represent-
ing time, when ¢ = 0. Here, t = 0 corresponds
to wg = 1/2, and Za(t) — 1 when ¢t — —oo and
To(t) — 0 when t — co.

When ¢ # 0, the flow () is nonautonomous. In
this case of the “classical” Double-Gyre, it is time-
periodic as well (for an analysis similar to what is
to be presented for the aperiodic Double-Gyre, see
|Balasuriya, 20164]). Despite the nonautonomous
nature, the lines 1 = 0, 1 = 2, o = 0 and
xg = 1 (i.e. the boundary of ) remain invariant.
Thus, there is no possibility of chaotic motion being
created in the system by the mechanism reported
by Bertozzi , which requires the heteroclinic
network to break apart all the way around. How-
ever — as is well-known anecdotally and numeri-
cally though a proof does not seem to appear in
the literature yet — the heteroclinic manifold which
separates the two gyres, does break apart such that
transverse intersections are created. The proof is
straightforward.

Theorem 1 [Heteroclinic  Intersections].  There
exists €g such that for |e| € (0,£¢), at any time t,
the stable and unstable manifolds adjacent to x1 =1
intersect each other transversely an infinite number
of times.

Proof. See Appendix A. N

Despite perhaps conventional belief, Theorem [I]
does not in and of itself prove the presence of
chaos in the Double-Gyre. The original Smale—
Birkhoff theorem |Guckenheimer & Holmed, [1983;
Holmed, [1990; [Alligood et all, [199€] can only guar-
antee chaos, in the sense of symbolic dynamics, for
homoclinic tangles. If the heteroclinics on the outer
boundaries of €2 also exhibited heteroclinic tangling,
then the results of ] can help extend
this result. This is because fluid would travel from
one heteroclinic tangle to the next, and so on, until
arriving back again in the region of the initial tan-
gle. It can be shown , ] that dynamics
similar to Smale’s horseshoe map [Guckenheimer &
Holmes, [1983; [Holmed, [1990; [Alligood et _all, 1996]
ensues, and a continual repetition of this process
can be proven to produce chaotic dynamics. How-
ever, in this case the heteroclinic manifolds on the
boundary of £ in the Double-Gyre do not break
apart. Indeed, (1) was proposed ﬂShadd.en_at_aU,
Eﬁ] to preserve these boundaries, in order for it to
be a model for an oceanic Double-Gyre enclosed by

land. Therefore, additional work is needed to estab-
lish how chaotic transport occurs in the Double-
Gyre due to the heteroclinic tangle adjacent to
xr1 = 1.

The crux to the argument is the fact that the
stable and unstable manifolds in the heteroclinic
tangle have folds in them. We will show that fluid
adjacent to such folds gets transported around the
gyres and back again into the heteroclinic tangle
region. In doing so, we will need analytical approx-
imations for the stable and unstable manifolds,
and the hyperbolic trajectories to which they are
attached, for small |e]. In the following, we think of
these entities as nonautonomous ones, i.e. not neces-
sarily in terms of a Poincaré map. From this view-
point, a hyperbolic trajectory is defined in terms
of exponentlal dichotomy conditions [Coppel @

, (1986 [Palmed, 1984; Balasuriy,
m M and its local stable manifold is asso-
ciated with the projection operator of the expo-
nential dichotomy. The global stable manifold is of
course the continuation of this. All these entities are
therefore parametrized by time ¢t € R. The time-
periodicity property of the Double-Gyre will allow
for identification of these nonautonomous entities
equivalently in terms of a Poincaré map P; which
takes the flow from time ¢ to ¢ 4+ 27/w; the hyper-
bolic trajectory location would be a hyperbolic fixed
point of P; and the nonautonomous stable manifold
will coincide with the stable manifold (with respect
to P;) of this hyperbolic fixed point. The advan-
tage of the nonautomous viewpoint is that the vari-
ation with ¢ is retained, whereas if considering a
Poincaré map P, then it is necessary to think of
t € [0,27/w). Thus, there is in actuality a family of
Poincaré maps. We will go back and forth between
these continuous-time and discrete-time viewpoints,
as needed.

Using the continuous-time approach, the hyper-
bolic trajectory and (a part of) its stable manifold
can be approximated by the following theorem.

Theorem 2 [Stable Manifold]. Let P € R be given.
Then, there exists €y such that for |e] € (0,¢e¢), the
saddle point at (1,0) when ¢ = 0, perturbs to a
time-varying hyperbolic trajectory x3 (t) = (x7(t),0)
given by

x5 (t) = 1 + e cos O sin(wt 4 0) + O(e?);
(3)

w
6 :=tan ! —.
an” ——
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Moreover, the stable manifold emanating from x; (t)
at a time t can be approximated in the vicinity of
x1 = 1 in the parametric form

Spot) = 1+ 2 A

TP = “sech (w2 Ap)

X / tanh (7% A7) sech (72 A7)
P

X sin[w(r +t — p)]dr + O(e?)

_ 2
t 1€7rAp

2
S
t —_
x5(p, )—Wco

for p € [P,00), and moreover if its reciprocal slope
at x7(t), is Os(t), then there exists K, such that
0s()| < 2K for (t,e) € R x [0,&0).

Proof. See Appendix B. W

An alternative expression for the leading-order
stable manifold can be obtained by eliminating the
parameter p from (). Since

p= L In (cot 7T_5U2>
m2A 2
the stable manifold’s leading-order term at each
time t can be expressed as a graph from xzo to
x1. Now, a similar theorem holds for the unstable

manifold.

Theorem 3 [Unstable Manifold]. Let P € R be
given. Then, there exists £y such that for |e| €
(0,£0), the saddle point at (1,1) when € = 0, per-
turbs to a time-varying hyperbolic trajectory xj(t) =
(x}(t),1), given by
¥ (t) = 1 + e cos Osin(wt — 0) + O(?);
w (5)
6 :=tan ' —.
N An2
Moreover, the unstable manifold emanating from
X} (t) at a time t can be approximated in the vicinity
of r1 = 1 in the parametric form

Upt) =1 — 2 A
P = T e (w2 Ap)
P
x/ tanh(m* A7) sech (72 Ar) ©)

x sinfw(r +t — p)]dr + O(e?)

2
:L'g<p7 t) = ; cot ™! eﬂjAp
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forp € (—o0, P, and moreover if its reciprocal slope
at xj(t) is 0,(t), then there exists K, such that
10,(t)] < 2K, for (t,e) € R x [0,e0).

Proof. The proof is similar to that of Theorem [,
and will be skipped. N

By taking the limit as p — oo of the p-derivative
of the expression (H), it is possible to show that
the direction of emanation of the stable manifold
remains vertical to O(e). The same is true for the
unstable manifold; these observations are a special
case of the manifold emanation theory developed
in [Balasuriyal, 2016b]. Now, we have already estab-
lished that the unstable and stable manifolds inter-
sect infinitely often. Using the expressions in Theo-
rems Zland ], the nature of this intersection pattern,
and the lobes created as a result of these intersec-
tions, can be determined. We show the intersection
pattern at a particular time instance in Fig. [, which
was produced with the analytical approximation
obtained above, but the computation of the unsta-
ble manifold was stopped after a point. The unsta-
ble manifold can be represented as x1 = x1(z2) for
p < Py, (where P, is an unspecified value), because
for p — —o0, the unstable manifold approaches the
hyperbolic trajectory xj, from which the unstable
manifold emanates in a well-defined manner. In this
region, we shall refer to the unstable manifold as
the primary unstable manifold, for which (@) gives
a good approximation for small enough |e|. Larger
p-values correspond to approaching xo = 0, and
here, the unstable manifold will criss-cross the sta-
ble manifold infinitely often between the displayed
ending and x9 = 0. The stable manifold near o =0
is nearly a straight line emanating upwards from the
point x7 (t). However, the intersection points with
the criss-crossing unstable manifold must accumu-
late to xj (t), forcing the corresponding lobes to get
elongated in the 4xi-directions in order to main-
tain incompressibility. Thus, the unstable manifold
in this region will be influenced by global effects,
and hence the expression (@) becomes illegitimate.
It may not be possible to represent the unstable
manifold in the form x; = zq(x2) in this nonpri-
mary region. We are able to prove that this is indeed
the case, while highlighting a particular behavior.

Theorem 4 [Fold Re-entrenchment]. Let t € R, and
suppose & > 0 is given. Define N5 to be the one-
sided neighborhood of the primary unstable manifold
of width &, near the hyperbolic trajectory location

1750156-5
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Fig. 1.

0.10 —
0.08[

0.06

X2

0.02]

0.00L
0.0

1.5 2.0

Intersection pattern of stable (dashed green) and unstable (solid red) manifolds predicted by Theorems B and [3]

obtained using the O(e)-formulae at t = 0 with e = 0.3, A =1 and w = 40: (a) in the full domain and (b) zoomed in close to

zo = 0.

xp(t) = (z}(t),1), as shown in Fig.[A Then, there
exists €9 such that for any ¢ € (0,e9), the unsta-
ble manifold emanating from x}(t) will wrap around
the gyre and re-enter Ng, forming a fold in the
sense that there is a region within this neighborhood
such that a horizontal line will intersect the unstable
manifold at least twice.

Proof. See Appendix C. H

The geometry associated with Theorem M is
shown in Fig. @l There is a heteroclinic network
(shown in blue) connecting the nonautonomous

CHORY) 2.1

g L
N
‘
8
R B P(B)
u

(x,(0,0) (2,0)
Fig. 2. The geometry around the right gyre which ensures

that the unstable manifold returns to within ¢ of itself after
wrapping around the boundary of €2, as described in Theo-
rem Fl and Appendix C.

hyperbolic trajectories xj(t) and xj(t) along the
outer boundaries of €. This figure only shows the
network around the right gyre, but there is a sim-
ilar one around the left. We note that this is a
degenerate situation in that the heteroclinic net-
work does not break apart in a transverse way. The
parts along the boundary of 2 simply persist as
straight lines. This is to be contrasted with the
results of that generically, hetero-
clinic networks which exist for ¢ = 0 break apart
through transverse intersections along each hetero-
clinic segment. The Double-Gyre does not follow
this, because the nature of the flow is such that the
boundary of € is forced to remain invariant and
regular. Therefore, Bertozzi’s method for proving
existence of a chaotic Smale horseshoe and chaotic
transport in a heteroclinic tangle does not apply for
the Double-Gyre. This is because we have had to
establish Theorem [l as a first step in our alternate
proof of chaos.

The main point of Theorem Ml is that an unsta-
ble manifold segment L with a fold in it can be
found in any arbitrarily small strip of width J near
the primary part of the unstable manifold ema-
nating from (z(t),1). The precise shape of this
unstable manifold segment is unknown; for exam-
ple, it may possess many folds. However, Theorem @]
ensures that there will be at least one fold, in the
sense that on the two sides of such a fold point,
the unstable manifold has a larger x5 value than at
the fold point. We note that there is no claim that
fold points are mapped to fold points. That is, it
is not necessarily true that the point labeled u in
Fig. @ will eventually flow to the leading fold in L.
Its image, v/, need not be a fold point at all.

1750156-6



Now with the re-entrenchment theorem, we
are ready to show that the Double-Gyre flow has
an embedded horseshoe map. The standard Smale

horseshoe map is well known , ;

iti ,12013] to be the map of
rectangle, T, : R — R across itself, which in briefest
terms, implies the standard package of results corre-
sponding to fully developed chaos. Here, our “rect-
angle” will be slightly different.

Theorem 5 [Horseshoe Map|. The Double-Gyre sys-
tem has an embedded horseshoe, near the point
(1,1). As such, the dynamics of the system is equiv-
alent to a shift-map on a restricted subset, and there
1s fully developed chaos, at least on this subset.

Proof. See Fig. Bl Near the point, (1,1), the unsta-
ble manifold shown has been established above. A
set A, shown by the red boundaries, will be con-
structed in the re-entrechment region guaranteed by
Theorem . A “vertical” line, parallel to the emer-
gent unstable manifold, comprises its left bound-
ary. We next note that there is an infinite number
of re-entrenching lobes accumulating to the primary
unstable manifold. Thus, the curves associated with
these lobes, while entering the region “horizontally,”
will become “vertical” in approaching the unsta-
ble manifold. This enables the drawing of the “top”

Quantifying the Role of Folding in Nonautonomous Flows

boundary of A as a curve which passes through the
hyperbolic trajectory but is then normal to each of
the curve segments comprising the re-entrenching
lobes; see Fig.[Bl The “bottom” boundary can also
be constructed using the same orthogonality idea.
Finally, the “right” boundary of A is formed by
drawing a curve which does not intersect any lobe.
Having constructed A, choose n to be large enough
such that when applying the strobing Poincaré map
P n-times to A, part of the set A will stretch along
the unstable manifold and re-entrench. Meanwhile,
since A also “shrinks” towards the unstable mani-
fold by the action of P, there will continue to be
a part of P"(A) which remains within A. There-
fore, the set P™"(A) N A will consist of at least two
strips as shown on the right in Fig. [3. While A is
not a rectangle as in the usual horseshoe construc-
tion [Alligood et al). [1996; Robinson. 1999; Bollt &
Santitissadeekorn, 5!)13], this process generates an
embedded horseshoe |[Robinson. 11999: Bollt & San-
titissadeekorn, |2£1]£z|] Define the map T' = P™, and
let ' = N2 TYA). Then T : I' — T is semi-
conjugate to a Bernoulli shift map on two-symbols,
s : Yo — Yo, with details in standard references.
We have claimed only semi-conjugacy since with-
out showing uniform contraction, then it is possible
that many points are symbolized by one symbolic
sequence. W

(0,1) L Near (1,1) (2,1) /
—~
ﬂ T
Ll on
| [P (A)
e
_{f
é
(0,0) 7 (2,0) T

Near (1,0)

(a)
Fig. 3.

(b)

A topological horseshoe embedded in the Double-Gyre. (a) As described in proof of Theorem[5] a topological rectangle

set labeled A and shown in red, can be defined transversally to the re-entrenchment region and (b) there is a time n > 0 such

that P"™(A) N A has stretched into two branches.
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Notice that this presentation of an embed-
ded horseshoe is by direct construction, rather
than the usual Smale-Birkhoff theorem that fol-
lows showing a transverse intersection of stable and
unstable manifolds, which fails for reasons already
described. Instead we have relied largely on the re-
entrenchment theorem.

3. Folding Defined by Curvature in
the Double-Gyre Flow

We have established the existence of chaos in the
Double-Gyre system for small enough €. The crux of
this argument comes from the lobes re-entrenching.
Now, these lobes are specifically formed through
the folding of the manifolds. The relevance of fold-
ing is less studied than stretching (for which, for

example, finite-time Lvapunov exponents [Shadden
et al,POD: A lshonse & Peacoch, PO1E: Brunton &
Rowleym Garaboa-
Paz & Perez—Munuzurim,

M] are a valuable tool), though both contribute
toward chaotic transport. In this section, we follow a
recently emerginﬁ idea [Ma_ef all. 2016; Gajaman-
nage & Bollt, of examining the folding pro-
cess in terms of curvature of the manifolds. Specif-
ically, we follow the points of high curvature in

determining where the “folding is generated,” and
the “stretching” of the regions in-between. Thus,

1.03

1.02

1.011

-
T

we highlight how stretching and folding interplay
in generating the horseshoe-driven chaotic motion
in the Double-Gyre. We use both analytical and
numerical methods in this analysis, and obtain sim-
ilar results.

The analytical expressions in (B]) and (@) allow
for a O(e) parametric representation of the primary
segments of the stable and unstable manifolds, in
terms of the parameter p, at each fixed time ¢. These
expressions enable the determination of the location
of fold points, distance between points on each man-
ifold, and also the curvature at each point on the
manifold, as shown in Appendix D. Since z5(p) is
monotonic in p, fold points can simply be obtained
by examining turning points of 7 (p) with respect to
p; these also represent turning points with respect
to the variable z5. We show in Fig. @ the first four
fold points of the stable manifold ! as shown by the
dots in (a). The locations of these in (x1, z2)-space
are shown in Fig. B, where (b) presents a close-up
view of (a). The same color-coding is used for the
four points in both Figs. @ and B. We note that,
because the stable manifold curve must intersect the
unstable manifold curve (not shown in Fig. B but
this emanates downwards from near (1, 1)) infinitely
many times, there must be infinitely many fold
points. We only show the first four, since by The-
orem [2 the approximation () breaks down in the
limit p — —oo. This is because the stable manifold

091

0.8

0.7

0.6

5~ 0.99 & 05
0.98- 04
03f
097}
02t
0961 01t
0.95 ‘ ‘ ‘ ‘ ‘ ‘ o ‘
~0.4 -02 0 02 0.4 06 08 1 -0.4 0.2 0 02 0.4 06 08 1
p p
(a) =1 (p) (b) z3(p)
Fig. 4. Identification of the first four fold points in the stable manifold, with parameters A =1, w =40, ¢ = 0.1 and ¢t = 0.

1Bearing in mind that p — oo approaches the hyperbolic trajectory xj (¢), these correspond to the largest p values for which

dz$ /dp is zero.
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extends outwards and is impacted by swirling
around the boundaries of the Double-Gyre, whereas
the expression () is only locally valid near z; = 1.

In this case we have worked with analytical
expressions, and have the advantage of knowing
that the turning points of z] with respect to p
are equivalent to the turning points with respect
to 5. General stable manifold curves will not dis-
play such behavior (and indeed, neither does this,
if taking more negative p values or increasing ¢ fur-
ther). We propose as a more general way of deter-
mining the folding points the points at which the
curvature exhibits a marked maximum. We illus-
trate the usage of this criterion in Fig. [, computed

logarithm of Curvature

-055 -05 -045 -04 -035 -03 -025 -02 -0.15 -0.1
p
(a)

Fig. 6.
parameter values as in Figs. [ and Bl
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0.95F

091

0.85F

081

0.751

0.7

0.65F

0.6

0.92 0.94 1.04

(b) Close-up

The four fold points determined in Fig.[4 illustrated in (z1,x2)-space.

at the same parameter values as Fig.[4l in which we
show the logarithm of the curvature in terms of p
[using (D.5))] and also arclength [using also .
The same four points identified in Figs. (] and
are shown in this figure. When proceeding from
right to left, i.e. from the hyperbolic trajectory
near (1,0) in Fig. [, we can see that the curva-
ture is initially close to zero, corresponding to the
almost straight line emanating from the hyperbolic
trajectory. Then, the first [blue] foldpoint emerges
as a local maximum point in curvature. The next
high-curvature points have increasingly larger val-
ues, and also increasingly sharper peaks, in the cur-
vature plot of Fig.

logarithm of Curvature

08 1 2 14 16 18 2 22 24
Arc-length
(b)

The logarithm of the curvature along the stable manifold plotted against (a) p and (b) arclength, at the same
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Fig. 7.

(a) The difference of arclength at two consecutive folding points plotted against the ith folding point and (b) the

logarithm of the difference of arclength at two consecutive folding points plotted against the ith folding point, at the same

parameter values as in Figs. [4HE

Note that in Fig. [6] we used different p range
than in Figs. 4 and [Bl to capture more peak points
of curvature. We computed the arclength in Fig.
with respect to the point p = 41.7151 and the
absolute value of arclength is used for the -
axis. According to Fig. [l(a), we can observe more
extremes of curvature as p move towards negative
infinity. From Fig. Bl(b), we notice that as we pro-
ceed along the arclength, the peaks of curvature
become larger and the space between two nearest
peak points is increased.

We used ten consecutive folding points (the first
at p = —0.2417, and the tenth at p = —0.9485) from
the range (—1,0) to create Fig. [0. In Fig. [ the
arclength (S;) at the ith folding point is computed
by taking the integral from the point p = 41.7151
to the ith folding point, and here we used abso-
lute value of the arclength. These figures give an
idea about the arclength distance between folding
points. Figure[f[b) fits a perfect line in logarithmic
scale with the slope of m = 0.7663 by using lin-
ear regression. We can conclude from these results

i ,
~
09 ] 0.99H 1
08f
o7k 098
~ 06f ~
< X 097
05F
0.4t 096
0.3f
095
0.2t
01t ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
o 02 04 06 08 1 12 14 16 18 2 02 04 06 08 1 12 14 16 18 2
X, %
(a) (z1,z2) full-space (b) Close-up
Fig. 8. The stable manifold with the parameter values of the numerical method, N = 100000 and w = 40, in (a) (21, x2)-phase

space and (b) zoomed around zo = 1.
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logarithm of (1 —x2)

Fig. 9. The stable manifold with the parameter values
of the numerical method, N = 100000 and w = 40, in
(z1,In(1 — x2))-space (to elucidate the structure).

that the arclength between two consecutive folding
points grow exponentially, when p moves toward the
negative infinity.

From Fig. [10, we can notice that as we pro-
ceed along the arclength, the extremes of curva-
ture become progressively larger due to folded lobes
squeezing between lobes as seen in Fig. B, but
spaced progressively further apart, between rela-
tively flat segments, and the near zero curvature
points are inflection points.

We note that Figs. RHIO were plotted numer-
ically and we used same parameter values as in
Figs. BHO with N = 100000. Here N is the num-
ber of sampling points of the function.

From this study, we can conclude that there
were infinitely many folding points around zo = 1
along the stable manifold and there were infinitely

Logarithm of Curvature

1 15 2 25 3 35
Arc Length

Fig. 10. The logarithm of curvature with respect to the
arclength, when N = 100000, w = 40.
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many folding points around x2 = 0 along the unsta-
ble manifold. We were able to see that the curva-
ture became high at each folding point and these
high-curvature values were increased when the sta-
ble manifold approached x5 = 1. Also we were able
to figure out that the arclength between two near-
est folding points was increased, when the stable
manifold approached xo = 1.

4. Concluding Remarks

In this paper, we have specifically addressed the
concept of folding, particularly in relation to the
Double-Gyre flow. The folds in the stable and unsta-
ble manifolds were used to construct a horseshoe
map in this flow, and thereby prove the implicitly
accepted fact that the system is chaotic. We also
show how tracking the curvature is an excellent
method for characterizing folding. In highlighting
the role of folding, we have addressed an aspect of
chaos which is seldom quantified.

Acknowledgments

S. Balasuriya acknowledges support from the
Australian  Research  Council through grant
FT130100484, and travel support from the Uni-
versity of Adelaide and Clarkson University during
his visit to Clarkson when this work was initi-
ated. E. Bollt is supported by, the Army Research
Office, N68164-EG and W911NF-12-1-0276, and
the ONR N00014-15-1-2093, and the NGA, and K.
G. D. Sulalitha Priyankara is supported directly by
Clarkson University.

References

Alligood, K., Sauer, T. & Yorke, J. [1996] Chaos: An
Introduction to Dynamical Systems (Springer-Verlag,
NY).

Allshouse, M. & Peacock, T. [2015] “Lagrangian based
methods for coherent structure detection,” Chaos 25,
097617.

Arrowsmith, D. & Vivaldi, F. [1993] “Some p-adic rep-
resentations of the Smale horseshoe,” Phys. Lett. A
176, 292-294.

Balasuriya, S. [2005a] “Direct chaotic flux quantification
in perturbed planar flows: General time-periodicity,”
SIAM J. Appl. Dyn. Syst. 4, 282-311.

Balasuriya, S. [2005b] “Optimal perturbation for en-
hanced chaotic transport,” Physica D 202, 155-176.

Balasuriya, S. [2006] “Cross-separatrix flux in time-

aperiodic and time-impulsive flows,” Nonlinearity 19,
2775-2795.

1750156-11



K. G. D. Sulalitha Priyankara et al.

Balasuriya, S. [2011] “A tangential displacement theory
for locating perturbed saddles and their manifolds,”
SIAM J. Appl. Dyn. Syst. 10, 1100-1126.

Balasuriya, S. [2014] “Nonautonomous flows as open
dynamical systems: Characterising escape rates and
time-varying boundaries,” FErgodic Theory, Open
Dynamics, and Coherent Structures, Springer Proc.
Mathematics and Statistics, Vol. 70 (Springer),
pp. 1-30.

Balasuriya, S. [2016a] Barriers and Transport in
Unsteady Flows: A Melnikov Approach, Mathe-
matical Modeling and Computation (SIAM Press,
Philadelphia).

Balasuriya, S. [2016b] “Local stable and unstable mani-
folds and their control in nonautonomous finite-time
flows,” J. Nonlin. Sci. 26, 895-927.

Balasuriya, S. & Ouellette, N. [2016] “Hyperbolic neigh-
borhoods as organizers of finite-time exponential
stretching,” APS Division of Fluid Dynamics Meet-
ing Abstracts.

Balasuriya, S., Kalampattel, R. & Ouellette, N. [2016]
“Hyperbolic neighbourhoods as organizers of finite-
time exponential stretching,” J. Fluid Mech. 807,
509-545.

Balibrea, F. & Snoha, L. [2003] “Topological entropy of
Devaney chaotic maps,” Topol. Appl. 133, 225-239.
Battelli, F. & Lazzari, C. [1986] “Exponential dicho-
tomies, heteroclinic orbits and Melnikov functions,”

J. Diff. Eqs. 86, 342-366.

Bertozzi, A. [1988] “Heteroclinic orbits and chaotic
dynamics in planar fluid flows,” STAM J. Math. Anal.
19, 1271-1294.

Blazevski, D. & Haller, G. [2014] “Hyperbolic and ellip-
tic transport barriers in three-dimensional unsteady
flows,” Physica D 273, 46-62.

Bollt, E. [2000] “Controlling chaos and the inverse
Frobenius—Perron problem: Global stabilization of
arbitrary invariant measures,” Int. J. Bifurcation and
Chaos 10, 1033-1050.

Bollt, E., Billings, L. & Schwartz, I. [2002] “A manifold
independent approach to understanding transport in
stochastic dynamical systems,” Physica D 173, 153~
177.

Bollt, E., Luttman, A., Kramer, S. & Basnayake, R.
[2012] “Measurable dynamics analysis of transport in
the Gulf of Mexico during the oil spill,” Int. J. Bifur-
cation and Chaos 22, 1230012-1-12.

Bollt, E. & Santitissadeekorn, N. [2013] Applied
and Computational Measurable Dynamics, Mathe-
matical Modeling and Computation (SIAM Press,
Philadelphia).

BozorgMagham, A. & Ross, S. [2015] “Atmo-
spheric Lagrangian coherent structures considering
unresolved turbulence and forecast uncertainty,”
Commun. Nonlin. Sci. Numer. Simul. 22, 964-979.

Branicki, M. & Wiggins, S. [2010] “Finite-time
Lagrangian transport analysis: Stable and unstable
manifolds of hyperbolic trajectories and finite-time
Lyapunov exponents,” Nonlin. Proc. Geophys. 17,
1-36.

Brunton, S. & Rowley, C. [2010] “Fast computation
of finite-time Lyapunov exponent fields for unsteady
flows,” Chaos 20, 017503.

Budisic, M. & Merzic, 1. [2012] “Geometry of the ergodic
quotient reveals coherent structures in flows,” Physica
D 241, 1255-1269.

Chen, Y. [2006] “Smale horseshoe via the anti-
integrability,” Chaos Solit. Fract. 28, 377-385.

Coppel, W. [1978] Dichotomies in Stability Theory, Lec-
ture Notes in Mathematics (Springer-Verlag, Berlin).

Dellnitz, M. & Junge, O. [2002] “Set oriented numer-
ical methods for dynamical systems,” Handbook of
Dynamical Systems, Vol. 2 (North-Holland, Amster-
dam), pp. 221-264.

Duc, L. & Siegmund, S. [2008] “Hyperbolicity and invari-
ant manifolds for planar nonautonomous systems on
finite time intervals,” Int. J. Bifurcation and Chaos
18, 641-674.

Farazmand, M. & Haller, G. [2013] “Attracting and
repelling Lagrangian coherent structures from a single
computation,” Chaos 23, 023101.

Froyland, G., Padberg-Gehle, K., England, M. &
Treguier, A. [2007] “Detection of coherent oceanic
structures via transfer operators,” Phys. Rev. Lett.
98, 224503.

Froyland, G. & Padberg-Gehle, K. [2009] “Almost-
invariant sets and invariant manifolds connecting
probabilistic and geometric descriptions of coherent
structures in flows,” Physica D 238, 1507-1523.

Froyland, G., Santitissadeekorn, N. & Monahan,
A. [2010] “Transport in time-dependent dynami-
cal systems: Finite-time coherent sets,” Chaos 20,
043116.

Froyland, G. & Padberg-Gehle, K. [2012] “Finite-time
entropy: A probabilistic approach for measuring non-
linear stretching,” Physica D 241, 1612-1628.

Froyland, G. [2013] “An analytic framework for iden-
tifying finite-time coherent sets in time-dependent
dynamical systems,” Physica D 250, 1-19.

Froyland, G. & Padberg-Gehle, K. [2015] “A rough-and-
ready cluster-based approach for extracting finite-
time coherent sets from sparse and incomplete tra-
jectory data,” Chaos 25, 087406.

Gajamannage, K. & Bollt, E. [2016] “Detecting phase
transitions in collective motion using manifold’s cur-
vature,” Math. Biosci. Engin. 14, 437-453.

Garaboa-Paz, D. & Perez-Munuzuri, V. [2015] “A
method to calculate finite-time Lyapunov exponents
for intertial particles in incompressible flows,” Nonlin.
Proc. Geophys. 22, 571-577.

1750156-12



Guckenheimer, J. & Holmes, P. [1983] Nonlinear
Oscillations, Dynamical Systems and Bifurcations of
Vector Fields (Springer, NY).

Hadjighasem, A., Karrasch, D., Teramoto, H. & Haller,
G. [2016] “Spectral-clustering approach to Lagrangian
vortex detection,” Phys. Rev. F 93, 063107.

Haller, G. & Yuan, G. [2000] “Lagrangian coherent struc-
tures and mixing in two-dimensional turbulence,”
Physica D 147, 352-370.

Haller, G. [2015] “Lagrangian coherent structures,” Ann.
Rev. Fluid Mech. 47, 137-162.

He, G., Pan, C., Feng, L., Gao, Q. & Wang, J. [2016]
“Evolution of Lagrangian coherent structures in a
cylinder-wake disturbed flat plate boundary layer,”
J. Fluid Mech. 792, 274-306.

Holmes, P. [1986] “Knotted periodic orbits in suspen-
sions of Smale’s horseshoe: Period multiplying and
cabled knots,” Physica D 21, 7-41.

Holmes, P. [1990] “Poincaré, celestial mechanics,
dynamical-systems theory and chaos,” Phys. Rep.
193, 137-163.

Huntley, H., Lipphardt, B., Jacobs, G. & Kirwan, A.
[2015] “Clusters, deformation, and dilation: Diagnos-
tics for material accumulation regions,” J. Geophys.
Res.: Oceans 120, 6622-6636.

Johnson, P. & Meneveau, C. [2015] “Large-deviation
joint statistics of the finite-time Lyapunov spectrum
in isotropic turbulence,” Phys. Fluids 27, 085110.

Ju, N, Small, D. & Wiggins, S. [2003] “Existence and
computation of hyperbolic trajectories of aperiodi-
cally time dependent vector fields and their approx-
imations,” Int. J. Bifurcation and Chaos 13, 1449-
1457.

Karrasch, D., Farazmand, M. & Haller, G. [2015]
“Attraction-based computation of hyperbolic Lag-
rangian coherent structures,” J. Comput. Dyn. 2,
83-93.

Kelley, D., Allshouse, M. & Ouellette, N. [2013]
“Lagrangian coherent structures separate dynami-
cally distinct regions in fluid flows,” Phys. Rev. E 88,
013017.

Lipinski, D. & Mohseni, K. [2010] “A ridge tracking
algorithm and error estimate for efficient computa-
tion of Lagrangian coherent structures,” Chaos 20,
017504.

Ma, T. & Bollt, E. [2013] “Relatively coherent sets as
a hierarchical partition method,” Int. J. Bifurcation
and Chaos 23, 1330026-1-17.

Ma, T. & Bollt, E. [2014] “Differential geometry perspec-
tive of shape coherence and curvature evolution by
finite-time nonhyperbolic splitting,” SIAM J. Appl.
Dyn. Syst. 13, 1106-1136.

Ma, T. & Bollt, E. [2015] “Shape coherence and finite-
time curvature evolution,” Int. J. Bifurcation and
Chaos 25, 1550076-1-10.

Quantifying the Role of Folding in Nonautonomous Flows

Ma, T., Ouellette, N. & Bollt, E. [2016] “Stretching and
folding in finite time,” Chaos 26, 023112.

Mancho, M., Small, D., Wiggins, S. & Ide, K. [2003]
“Computation of stable and unstable manifolds of
hyperbolic trajectories in two-dimensional, aperiod-
ically time-dependent vector fields,” Physica D 182,
188-222.

Mancho, A., Wiggins, S., Curbelo, J. & Mendoza, C.
[2013] “Lagrangian descriptors: A method for reveal-
ing phase space structures of general time dependent
dynamical systems,” Commun. Nonlin. Sci. Numer.
Simul. 18, 3530-3557.

MclIlhany, K. & Wiggins, S. [2012] “Eulerian indicators
under continuously varying conditions,” Phys. Fluids
24, 073601.

Melnikov, V. [1963] “On the stability of the centre for
time-periodic perturbations,” Trans. Moscow Math.
Soc. 12, 1-56.

Mezic, 1., Loire, S., Fonoberov, V. & Hogan, P. [2010] “A
new mixing diagnostic and Gulf oil spill movement,”
Science 330, 486-489.

Mosovsky, B. & Meiss, J. [2011] “Transport in transi-
tory dynamical systems,” SIAM J. Appl. Dyn. Syst.
10, 35-65.

Muller-Karger, C., Mirena, A. & Lopez, J. [2000]
“Hyperbolic trajectories for pick-and-place operations
to elude obstacles,” IEEE Trans. Robot. Automat. 16,
294-300.

Namikawa, J. & Hashimoto, T. [2004] “Dynamics and
computation in functional shifts,” Nonlinearity 17,
1317.

Nelson, D. & Jacobs, G. [2015] “DG-FTLE: Lagrangian
coherent structures with high-order discontinuous-
Galerkin methods,” J. Comput. Phys. 295, 65-86.

Nevins, T. & Kelley, D. [2016] “Optimal stretching
in advection-reaction—diffusion systems,” Phys. Rev.
Lett. 117, 164502.

Onu, K., Huhn, F. & Haller, G. [2015] “{LCS} Tool:
A computational platform for Lagrangian coherent
structures,” J. Comput. Sci. 7, 26-36.

Palmer, K. [1984] “Exponential dichotomies and
transversal homoclinic points,” J. Diff. Eqs. 55, 225—
256.

Poje, A., Haller, G. & Mezic, I. [1999] “The geometry and
statistics of mixing in aperiodic flows,” Phys. Fluids
11, 2963-2968.

Pratt, K., Meiss, J. & Crimaldi, J. [2015] “Reaction
enhancement of initially distant scalars by Lagrangian
coherent structures,” Phys. Fluids 27, 035106.

Robinson, C. [1999] Dynamical Systems: Stabiliy, Sym-
bolic Dynamics and Chaos, Studies in Advanced
Mathematics (CRC Press).

Rom-Kedar, V., Leonard, A. & Wiggins, S. [1990] “An
analytical study of transport, mixing and chaos in an
unsteady vortical flow,” J. Fluid Mech. 214, 347-394.

1750156-13



K. G. D. Sulalitha Priyankara et al.

Rom-Kedar, V. & Poje, A. [1999] “Universal proper-
ties of chaotic transport in the presence of diffusion,”
Phys. Fluids 11, 2044-2057.

Rosi, G., Walker, A. & Rival, D. [2015] “Lagrangian
coherent structure identification using a Voronoi
tessellation-based networking algorithm,” Fxp. Fluids
56, 189.

Rossler, O. [1977] “Horseshoe-map chaos in the Lorenz
equation,” Phys. Lett. A 60, 392-394.

Sattari, S., Chen, Q. & Mitchell, K. [2016] “Using hete-
roclinic orbits to quantify topological entropy in fluid
flows,” Chaos 26, 033112.

Shadden, S., Lekien, F. & Marsden, J. [2005] “Definition
and properties of Lagrangian coherent structures from
finite-time Lyapunov exponents in two-dimensional
aperiodic flows,” Physica D 212, 271-304.

Sudharsan, M., Brunton, S. & Riley, J. [2016]
“Lagrangian coherent structures and inertial particle
dynamics,” Phys. Rev. F 93, 033108.

Tallapragada, P. & Ross, S. [2013] “A set-oriented defin-
tion of finite-time Lyapunov exponents and coher-
ent sets,” Commun. Nonlin. Sci. Numer. Simul. 18,
1106-1126.

Teramoto, H., Haller, G. & Komatsuzaki, T. [2013]
“Detecting invariant manifolds as stationary LCSs in
autonomous dynamical systems,” Chaos 23, 043107.

Tumasz, S. & Thiffeault, J. [2013] “Estimating topologi-
cal entropy from the motion of stirring rods,” Procedia
IUTAM 7, 117-126.

Vleck, E. V. [1994] “Numerical shadowing near hyper-
bolic trajectories,” SIAM J. Sci. Comput. 16, 1177—
1189.

Wiggins, S. [1992] Chaotic Transport in Dynamical Sys-

tems (Springer-Verlag, NY).
|

gz, y,t) = <

Here, we follow the methodology of quantifying the
signed distance between the perturbed manifolds at
a location X(p) = (1,Z2(p)) on the unperturbed
heteroclinic. At a general time ¢, the vector from
the stable to the unstable manifold, going through
this point and pointing in the z;-direction, can be
expressed by

d(p,t) =e——%

valid for p € [-P,P] and t € [-T,T], for P, T
finite. This is a signed distance, which is positive
if the vector points in the +z-direction, and the
Melnikov function in this interpretation is given by

[Balasuriya, 20164, 2014, 2006]
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Appendix A

Proof of Theorem [ (Heteroclinic
Intersections)

The standard method in these situations is to use
the Melnikov technique [Melniko w; Gucken-
heimer & Holmes, ; %, m, which is
a perturbative technique with respect to £. We will
work with the nonautonomous approach as detailed
in lBalasmjg&J, 120_1_621] in particular, whose approach
is to imagine the manifolds as being parametrized

by time ¢ continuously. This requires writing () in
the perturbed form

% = f(x) +eg(x,t) + O(?)

in which x = (z,y), and the O(£?) term is uniformly
bounded on 2 x R. Taylor expansions of enable
the identifications

—mAsin(mwx) cos(m
. y) < (mz) cos( y))

wA cos(mz) sin(my)

and

—7m2A(2? — 2x) cos(my) cos(nx) _
. ) . sin(wt).
mAsin(ry)[2 cos(mx)(z — 1) — w(x* — 2z) sin(wz)]

f(x(7)) ANg(X(T), 7+t —p)dr

1\4(11%15)2/oo

o

with the wedge product defined by f A g := f1g2 —
fog1 in component form. Now, substituting the rel-
evant f and g, inserting X(7) = (1, Z2(7)), and sim-
plifying leads to

M(p,t) = 7r3A2/ tanh(72 A7) sech (72 A7)

x sinfw(r +t — p)|dr

w .
= wsech 5 sinfw(t — p)]

=: R(w) sinjw(t — p)], (A.2)
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where the final simplification (A.2) is obtainable by
writing sin[w(7 + ¢ — p)] = sin[w(t — p)] cos(wT) +
cos|w(t—p)|sin(wT) and splitting the integrals [Bal-
asuriya, 2014, [2005a, 2005b, etc.], and performing
the one nonzero integral that results. At each fixed
t, M(p,t) clearly has nonsimple zeros when p =
t — mr/w, m € Z. From (A, this indicates
that d(p,t) has nearby zeros for small enough |e].
Thus, the stable and unstable manifolds intersect —
infinitely many times, in fact — in each time slice.
This leads to a heteroclinic tangle near x; =
1, resulting in complicated transport between the
gyres. This transport can be quantified to leadini—

order in £ as an instantaneous fluzx
20164, 12014, |20_O_6|] from the left to the right gyre

by

eM(p,t) = eR(w) sinfw(t — p)], (A.3)

as an average flur [Rom-Kedar & Pojd, 1999] by

eR(w), or (in terms of lobes created through the

intersections% as a lobe area ﬂBQm;K.e_d.ar_e_uiJ, |l9_9ﬂ;

| of eR(w)2m/w. A

)

Appendix B
Proof of Theorem [2] (Stable Manifold)

This proof relies on the expressions for the per-
turbed stable manifold obtained in Theorem 2.7 in

[Balasuriyd, 2011] and Theorem 2 in [Balasuriyd,
|

P RS(T)M*(p, 7+t —p)+£(X(7)) - g(X(T), 7T+t —p)
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]. While those results are derived for the more
general situation of compressible flows which are not
necessarily time-periodic, these relaxations are not
necessary in the present context. Using the nota-
tion already introduced in the proof of Theorem [T,
the stable manifold at a time ¢ can be represented
parametrically by

M?*(p,t)
If(%(p))|?

B® (pa t) = 2
fRirT ] +oe)

for p € [P,00) (any P which is finite), in which
the L notation indicates the rotation of a vector by
+7/2, and expressions for M* and B® will be given
shortly. In this case, since X(p), the unperturbed
stable manifold, simply lies along the line x; = 1,
the velocity f along it is directly in the negative y-
direction. Thus, f* is simply the component of f in
the +x1-direction. Now, the Melnikov function M*
is given by

X0.0) = X(p) 4| (%)

+

w0 = | (&) A g(R(r), T+t — p)dr,

this therefore represents the perturbation of the
stable manifold in the normal direction to the orig-
inal manifold. The tangential perturbation is given
by the function

B (p.) = [f(=(p)) /O
where

(f5) T (x(©)[(Df

)T (%(§) + (D

REGE ar

R (€)=

We immediately dispense with the more compli-
cated tangential displacement since it is easy to ver-
ify that for the Double-Gyre, R* =0 and f - g = 0.
Therefore, there is no change to the xo-coordinate,
and we can write using ([2)) that z§(p,t) = Ta(p) =
% cot™1 em AP, Using the results derived in the proof
of Theorem [, we can write the Melnikov function as

M?(p,t) = 7r3A2/ tanh(7? A7) sech (72 A1)
p

x sinfw(r +t —p)ldr

£)(x(E)IE ()

£(x(5)I?

|

which cannot be evaluated in terms of simple func-
tions unlike in (A2). Next, using X(p) as given
in (@), we have

e 0 - 0
(x(p)) = (ﬂASiH(W@(p))) B <7rA sech (7r2Ap)>

and the stable manifold expression () results.
The location of the hyperbolic trajectory can be
obtained by appealing directly to Theorem 2.10
in ﬂB_aia‘s_um;Ld lZQill] but here we adopt a more

2Tt can be represented in a complicated way in terms of hypergeometric functions, but this is not particularly illuminating

and hence will be avoided.
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intuitive, formal, approach. We now have the z1-coordinate of the perturbed stable manifold given by (H),
which upon changing the variable of integration (and with the higher-order term neglected for convenience)
can be written as

s 9 > tanh(r2A(T — t + p)) sech (T2 A(T — t + p))
zi(p,t) =1+em A/t sech (72Ap)

Since the hyperbolic trajectory is approached in the limit p — oo, applying this limit inside the integral
gives

sin wrdT.

o0
xi(oo,t) =1+ 57r2Ae7r2At/ e AT sinwrdr
t
which can be integrated and reorganized to give (). The zo-coordinate of the hyperbolic trajectory remains
fixed at x9 = 0 since it is easy to see that this line is invariant for the full flow (). Next, the reciprocal
slope of the manifold at the hyperbolic trajectory is needed. This is zero when € = 0, and Theorem 2.2 can

be used to prove that the O(g)-correction to this is zero. More intuitively, this occurs because

H oo h(m?A(r — h (2 A(T —
oz} gng/ d [tanh(m“A(T —t +p))sech (T°A(T —t +p)) sinwrdr
dx$ ! op . ¢ dp sech (w2 Ap)
— = lim = lim
dr3|ye ) P00 0T pooo AL ech (24
R o T %sec (7= Ap)

d [tanh(ﬂA(r —t+p))sech (72 A(T — t +p))

-1
sech (m2 Ap) }

[e.e]
d
:aw/ lim 2
t Pee

P sinwrdT
& sech (w2 Ap)
tanh(m2A(7 —t + p)) sech (T2 A(T — t + p)) B 1]
sech (m*Ap) sinwrdr

m [
—em lim
t P

sech (72 Ap)

sin wrdT

/°° . tanh(m?A(r —t +p)) — 1
=em lim
¢ sech (w2 Ap)

p—00

sech 2(m2A(T — t + p))

_ 1;
67T/t poo —sech (w2 Ap) tanh(m2 Ap)

where we have utilized the fact that sech [r2A(T —
t + p)]/sech [72Ap] — 1 as p — oo, and L’Hopital’s
rule has been used several times. Thus, the O(e)
correction to the slope is zero. Given that the func-
tions here are all uniformly bounded in suitably
high norms, uniformly for t € R, it is clear that
the O(g?) correction is bounded. W

Appendix C

Proof of Theorem [l (Fold
Re-Entrenchment)

The outer boundaries of €2 can be easily seen to
be invariant for any e. For convenience, we only
address the wrapping around ensuing from the right
gyre; the left gyre also causes the identical behavior.

sinwrdr =0,

Consider the line o = 0, along the interface of the
right gyre, that is, for x} (¢) < x1 < 2. The flow on
this satisfies

1 = —mAsin(rd(z,1)).

Now, when € = 0, we have 7 (t) = 1, and ¢ goes
from 1 at this value to 2 at 2. Since sin m¢ is neg-
ative in this range, @1 is positive in this interval. If
0<le| <1/2, ¢(x1,t) =1 when

. 2esinwt—1+V1+ 4¢2 sin%wt

T1=2T: -
2e sinwt

as long as sinwt # 0. (If sinwt = 0, then z = 1.)
Thus for z1 € (Z,2), ¢(x1,t) lies between 1 and 2,
and therefore the vector field points to the right
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along the lower boundary of the right gyre, in an
interval near xy = 2. Using this, and a similar idea
for the top of the right gyre, we can obtain the
behavior as shown in Fig. @ by the blue curves. This
picture is drawn at a general time ¢, and the red
and green represent respectively the unstable and
the stable manifolds, whose behavior of this form
is guaranteed by Theorems 2 and Bl Only parts of
the stable manifold near 9 = 0 and the unstable
manifold near xo = 0 and x9 = 1 are shown. While
the arrows drawn on the blue bounding lines are
the instantaneous directions of the velocity, those
drawn on the stable/unstable manifolds are not nec-
essarily the instantaneous velocity directions, since
these manifolds, and their anchor points x;*(t),
are themselves moving (mostly horizontally in the
regions near xo = 0 and x5 = 1). The true instanta-
neous velocity of particles on these manifolds is the
superposition of the indicated arrows on the mani-
folds, and this additional motion.

Now, it must be borne in mind that the unsta-
ble manifold intersects the stable one infinitely
often near (x7(t),0), with the intersection points
accumulating towards this instantaneous hyperbolic
trajectory location. However, the lobe structures
created as a result of this intersection must have
equal areas, since under iteration of the Poincaré
map P which samples the flow from this time ¢
to the time t + 27 /w (i.e. strobing the flow at the
period of the velocity field), these lobes must get
mapped to one another. The lobe with end marked
by B, must get mapped to the next lobe with end
marked by P(B). This lobe must get thin in the
xo-direction (indeed, this width is almost not dis-
cernible in Fig. [2) because the intersection points
accumulate to (7 (t),0). However, the flow of () is
incompressible, and thus area-preserving. The lobe
which has P(B) marked at its end must therefore
have the same area as that marked with a B, and
this is only achievable if it extends outwards. This
extension in the z1-direction of the unstable mani-
fold is also implied by the formulee for ¥ (p, t) shown
in Theorem Bl One can therefore determine parts of
the unstable manifold which are arbitrarily close to
the line 9 = 0, and there will be regions of this
manifold which have x-coordinates greater than Z.
By continuity, the velocity at such a location can
be made arbitrarily close to the velocity on x9 = 0.
Thus, if considering the blob marked B in Fig.
which is at an end of a lobe structure (where the
unstable manifold folds) and assuming that this has

Quantifying the Role of Folding in Nonautonomous Flows

been chosen to be within this region of influence,
as time passes it will get pulled along by a velocity
which is very close to that of the blue lines. Eventu-
ally, therefore, it must get pulled all the way around
the right gyre, and emerge along the blue line at the
top of the right gyre.

While the flow along this boundary line is to the
left for x1 near 2, we want to show something more
specific: that the flow along this line approaches
the hyperbolic trajectory location zj.(t), as approx-
imated in (@l). Focus, then, on flow along this blue
line, that is on the invariant line {ze = 1,0 < z; <
2}, which obeys

1 = wAsin(ro(z1,t)).

Let z(t) = x1(t) — «}(t), and suppose that z1(0) >
x}(0). Since trajectories cannot cross on this one-
dimensional phase space, it is clear that x(t) >
xp(t) for t > 0. Now 0 < zp(t) < z1(t) < 2
because the end points 0 and 2 are fixed points
of the above, even if the flow is nonautonomous.
Therefore 0 < z(t) < 2, and 2(t) can be shown to
satisfy the differential equation

Tz emzsinwt

z = 2w Asin [— +

5 5 (z1 + ) —2)

mw(zy +a})  em(xr + o) sinwt
2 2

XCOS|:

X (1 + 2 — 2)}

inwt
— —omAsin| = 4+ TEEE ) oy~ 2)
2 2
u 1 u 3 t
« sin [w(xl +2:L'h ) em(xy —i—;vh) sinw

x(a:1+:c7,j—2)}

When € = 0, z(t) = 1, and in this situation

7T.731(t)
2

whose velocity field is sign definite since both 1 and
z must lie in (0, 2). Despite being nonautonomous,
its solution z must decay to the fixed point z = 0.
When € # 0, noting also that z}} = 1+ O(e), it is
clear that one can find |¢| small enough such that
the sign definite nature will persist if 2 (¢) were cho-
sen sufficiently close to zj(t). Therefore, along the

Tz
Z = —2wAsin > sin <0,
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blue line at the top of Fig.[2] for suitably small ||,
trajectories will be attracted towards the hyperbolic
trajectory xj(t).

Once we have this property, continuity ensures
that trajectories inside €2 but near to this must also
follow the behavior of proceeding towards the left.
Trajectories can be made to approach xj(t) arbi-
trarily closely, by choosing trajectories which were
sufficiently close to the blue line. However, the fluid
blob B as shown in Fig. @l will at some time in the
future be as close as we like to the “heteroclinic
network” shown in blue in Fig. @l and thus will
eventually be subject to behavior imputed for the
line xo = 1. When approaching z}(¢), this blob will
therefore be subject to the unstable manifold ema-
nating from x}(t), and get pulled down along it.

Consider the point u, which is at the leading-
edge of the lobe marked B in Fig. Pl That is, this
is a fold point. By the above argument, the flow
of the Double-Gyre will ensure that its image u’
will eventually be within Ns. We want to show the
existence of a fold point within Ns. However, there
is no guarantee that the point «' will also corre-
spond to a leading-edge, i.e. a fold point. To estab-
lish the existence of a fold point, we argue that the
unstable manifold must pass through u’. Now, both
ends of the unstable manifold must wrap back all
the way around the boundary of €2, adjacent to the
blue lines, and come back to intersect the stable
manifold of (7 (t),0) near to this point, since these
intersection points accumulate towards (z}(t),0).
Hence, both ends of the unstable manifold which
pass through «' must come all the way back. This
ensures that there must be a fold point within Ng;
the unstable manifold must “bend back” to achieve
this.

It is also instructive to think of what happens
in terms of the Poincaré map and lobes. It has been
argued that there are infinitely many lobes “below”
the one pictured near B in Fig.[2l As one proceeds
“downwards,” each of these lobes is closer to the
blue heteroclinic network than the previous one,
and therefore subject to the motion along the net-
work more. Thus, each successive lobe will get elon-
gated along the network more. The end result from
this process is that in Ny, in addition to the lobe L
pictured in Fig. [, there will be an infinite number ofI

lobes which accumulate towards the unstable mani-
fold emanating from x}'. These will stretch along the
unstable manifold (they cannot intersect because
the lobe boundaries are themselves part of the same
unstable manifold), and therefore will follow the
undulations that the primary part of the unstable
manifold has been shown to have. H

Appendix D

Expressions from the Analytical
Approximations

Here we list some expressions related to determin-
ing the curvature and fold points from the analytical
approximations given by Theorems [ and[3l At each
fixed time ¢, the primary stable/unstable manifold
curves can be thought of as being given parametri-
cally by @) and (@), where p is the parameter. We
will only show calculations for the stable manifold,
since the unstable manifold calculations are similar.
By applying integration by parts and a straightfor-
ward change-of-variable to (), the O(g) expression
for the xi-coordinate of the stable manifold, given
in @), can be recast as

z5(t) = 1 + esin(wt) + ew cosh(n? Ap)
X / sech [ A(u — t 4 p)] cos(wu)du.
t

Its derivative is therefore

dzi
dp

= cwn? A cosh(m2 Ap) / sech [1? A(u — t + p)]
¢

x {tanh[r?Ap] — tanh[r?A(u — t + p)]}
x cos(wu)du.

While not obvious in the above representation, it
turns out that dzq/dp takes on a sinusoidal form in
t, which helps us locate its zeros quickly. To obtain
this form, we first define

fi1(v,p) = ewn? A cosh(n? Ap) sech (7% Av)
x [tanh(72 Ap) — tanh(7? Av)]

and

T(p) = \/ ( /p " (o) cos(wv)dv)2 + ( /p ~ h.p) sin(wv)dv)Q.
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Then, after some trigonometric manipulations, it is
possible to write

Cil—gg = J(p) cos[w(p —t) — O(p)],
h ; (D.1)
0(p) = cos ! /p f1(v, p) cos(wv)dv |

J(p)

from which zeros can be obtained easily using a
Newton—-Raphson method. These represent param-
eter values p corresponding to fold points, as long
as d?xy/dp? is sign definite. This takes the form

d*as
dp?

= cwn? A% cosh(r2 Ap)

X / sech [1? A(u — t + p)] cos(wu)
t
x {2tanh?[r2A(u — t + p)]
— tanh[r? Ap] tanh[r? A(u — t + p)]
— tanh?[7% Ap] }du + ewn? A% sinh (7 Ap)

X /too sech [12A(u — t 4 p)]

x cos(wu){tanh[r? Ap]
— tanh[r2A(u — t + p)] }du.
(D.2)

Quantifying the Role of Folding in Nonautonomous Flows

It is straightforward to compute the p-derivatives of
the zo-coordinate in (@) to be

d S
dip2 = —mAsech (7r2Ap),
Py (D.3)
d$22 = 13 A% sech (7r2Ap) tanh(7r2Ap).
P

Given expressions (D.I)-(D.3), the following geo-
metrical quantities are easy to compute:

e The arclength between two points with paramet-
ric coordinates p; and ps:

P2 das\ 2 das\ 2
5(101,102):/ \/( 1) +( 2) dp.
P dp dp

(D.4)

e The curvature at a general location p on the sta-
ble manifold:

d*xs dey  dPxf das

dp? dp dp? dp

dx} 2 n dzs 2
dp dp
These expressions can also be used to determine the

arclength and curvature of the wunstable manifold,
by substituting the expressions for zj , instead.

33" (D.5)
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