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ABSTRACT

Animal groups embody patterns that are recognizable to
even untrained human observers. However, there is no universal
definition of collective behavior within or between species, which
makes comparison among different animal aggregations impos-
sible. In this work, we use the ISOMAP, a machine-learning
algorithm originally developed for machine vision, to quantita-
tively explore low dimensionality definitive of collective behavior
in five different animal species over three experimental condi-
tions: natural motion, attraction to a single source, and attrac-
tion to two sources. This algorithm embeds video data from each
experiment onto a low-dimensional manifold and identifies the
dimensionality of that manifold. We find that the method differ-
entiates between the embedding manifold dimension for the five
species and, within the three experiments for two of the species,
it reports significantly different results depending on the experi-
mental condition. This analytical method may enable identifica-
tion of the underlying motivations of collective behavior, which
are not completely understood in the biology community as of
yet.
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INTRODUCTION

Animals in almost every taxon exhibit collective behavior
at some point in their life cycle [1]. These groups- including
fish schools [2], bird flocks [3], insect swarms [4], and human
crowds [5]- comprise a wide variety of interactions among their
members which result in strikingly different behaviors. For ex-
ample, a fish school may exhibit loose social shoaling while for-
aging for food, but highly aligned motion when responding to
a predator [6]. While observable behaviors exhibited by animal
groups are well studied in the biology literature, the mechanisms
driving collective behavior are established only in part. Although
drivers such as hydro- or aerodynamic advantage, increased abil-
ity to identify predators, and increased mating success may pro-
vide a foundation for collective behavior [7], the full range of
benefits and detractors which result from living in a group has
yet to be demonstrated.

Animal groups exhibiting collective behavior demonstrate
patterns that are recognizable to even untrained human observers
[8]. However, there is no previously-established universal def-
inition of collective behavior within or between species, which
makes comparison among different animal aggregations impos-
sible. The motivation for this work is to enable the analysis of
collective behavior by applying algorithms for pattern recogni-
tion, studied by the machine learning community, to data from
animal groups.
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Within the last few decades, a large number of machine
learning algorithms have been developed with the goal of ex-
tracting patterns from large and high-dimensional data sets [9].
These algorithms, including support vector machines [10], local
linear embedding [11], hidden Markov models [12], and prin-
cipal component analysis [13], find applications in an ample
spectrum of science and engineering problems, from individ-
ual human recognition through biometric data [14] to identify-
ing trends in climate and weather [15]. Many of these meth-
ods are based on embedding a data set on a manifold and then
seeking patterns in the manifold, which correspond to patterns
in the raw data set. Among these algorithms, the isometric map-
ping (ISOMAP), originally developed for machine vision [16],
is unique in that it preserves geodesic distances in the raw data
set and in the lower-dimensional coordinates it extracts. This
property ensures that features of the low-dimensional manifold,
on which the data set may be embedded, are present in the raw
data itself. In its most fundamental interpretation, this property
means that a high-dimensional data set which can be embedded
on a low-dimensional manifold using the ISOMAP algorithm can
be completely described by a small number of parameters.

In this work, we use ISOMAP to quantitatively explore col-
lective behavior in five different animal species- namely humans,
ants, frogs, chickens, and mosquitofish- in three experimental
conditions: natural motion, attraction to a single source, and at-
traction to two sources. This algorithm has been previously used
to define collective behavior as the presence of low-dimensional
embedding manifolds in a large data set [17]. In this previous
study by our group, such low-dimensional structures are identi-
fied in a simulated swarm exhibiting collective behavior. On the
contrary, low-dimensional manifolds are absent when collective
behavior is not observed. The same analysis is also conducted
on video data from a fish school. In [18], group fragmentation
in multi-agent systems is studied by analyzing the topological
features of these low-dimensional manifolds. Here, using appro-
priately scaled physical and temporal dimensions, we compare
the dimensionality of the embedding manifolds identified in each
data set by the ISOMAP algorithm. We find that the species has a
significant effect on the embedding manifold dimension when all
experimental conditions are amalgamated, while the number of
sources does not play a dominant role when all species are com-
bined. However, when each species is evaluated independently,
the number of sources have a significant effect in two cases.
These results suggest that topological features of the ISOMAP
embedding manifold offer viable tools to identify and classify
collective behavior within and between social animal species.

MATERIALS AND METHODS
The experiment described in this work was approved by the

Polytechnic Institute of New York University (NYU-Poly) Ani-
mal Welfare Oversight Committee AWOC-2012-102. Both the
housing and the experimental procedure were designed to mini-
mize stress in the animals.

Animals and apparatus
Mosquitofish (Gambusia affinis) and juvenile chickens (Gal-

lus domesticus) were procured from an online aquarium source
(LiveAquaria.com, Rhinelander, WI, 54501 USA) and an on-
line poultry source (Meyer Hatchery, 626 Ohio, 89 Polk, OH,
44866 USA) respectively, while underwater frogs (Xenopus lae-
vis) were obtained from a local aquarium store (Petland Dis-
counts, Brooklyn, NY, 11201 USA). Humans (Homo sapiens)
were recorded in proximity of NYU-Poly at Six MetroTech Cen-
ter (Brooklyn, NY, 11201 USA) and ants (Tetramorium caespi-
tum) in a public park in Brooklyn (Ave K and Ocean Pkwy,
Brooklyn, NY, 11230 USA).

Captive populations of fish, frogs, and chickens were ob-
served in controlled conditions. Fish and frogs were housed
in the facility vivarium in the Department of Mechanical and
Aerospace Engineering at NYU-Poly, while chickens were main-
tained in a private facility in proximity of NYU-Poly. Approx-
imately 20 individuals for each species were acclimated for a
minimum of 12 days prior to the experimental campaign. Fish
and frogs were housed separately in holding tanks 50cm long,
25cm wide, and 30cm high, with a capacity of 36 liters each,
while chickens were housed in an open-top cubic structure with
side length 43cm. Water and air temperature were maintained
constant at 26±2◦C, and illumination was provided by diffused
lights for ten hours each day in accordance with the circadian
rhythm of these species. All populations were fed once a day
after the conclusion of the daily experimental session. Fish
were fed with commercial flake food (Hagen Corp., Nutrafin
max, USA), frogs with frozen bloodworms, and chickens with
commercial granulated food (Chick Starter-200lbs, P/U, Meyer
Hatchery, USA.

For the three captive populations, the housing structures
doubled as experimental apparatuses. For data acquisition of
collective behavior in frogs and chickens, a digital video-camera
(Canon, Vixia HG20, Japan) was suspended above test structure.
For experiments with fish, the camera recorded a lateral view of
the aquarium. In each case, the camera was placed at an ap-
propriate distance to capture the entire domain accessible by the
animals. The feeding sources for the fish were floating rings ad-
hered to the aquarium side, into which floating flake food was
placed as a stimulus. For frogs, the food source was negatively
buoyant, thus not necessitating any physical constraint in the ex-
perimental apparatus. The food sources used for chickens were
standard feed bowls.

Populations of humans and ants were observed in uncon-
trolled conditions and their collective behavior was recorded by
suspending the camera to provide a bird’s eye view of the uncon-
strained experimental area. The height of the camera was large
enough to capture animals proximal to the two attractive sources,
when they were present. For ants, the food source was placed
on the ground close to the animals. For humans, the attractive
sources were features already existing in the physical landscape:
a breakfast kiosk and a metro station entrance. Figure 1 shows
sample experimental video frames for each species.
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Experimental procedure
The selected animal taxa were chosen based on their avail-

ability, cost, and the possibility to be easily managed in a sim-
ple captive condition. Controlled laboratory experiments were
favored for fish, frogs, and chickens to optimize managing ex-
perimental procedures.

The experiments were conducted as follows: the social be-
havior of each animal group was analyzed in three scenarios.
Specifically, we analyzed the baseline of the social behavior for
each animal group and their intra-specific interactions, as well
when one or two contemporary sources of attraction were ex-
perimentally provided to them. The aim of the experiments was
twofold:

1. understanding the different behaviors across species and
2. investigating how the presence one or more sources of at-

traction distort the natural behavior in each species.

The sources of attraction were represented by sources of food
in all the experiments, except for the case of humans, in which
the sources of attraction were represented by the breakfast kiosk
and by one of the entrances of the metro station in Jay Street,
Brooklyn, NY, which are active hubs during the time when the
data was acquired, see Fig. 1(a). The behavior of each animal
group was studied and the experimental setup adapted accord-
ingly to their average dimension and maximum speed. All the
parameters were calculated before the start of the experiments to
standardize the recordings. Specifically, each group had a dif-
ferent characteristic length and magnitude of velocity; therefore
different frame samples and different recording time are selected
for each species. The second parameter standardized was the dis-
tance between the feeding sources. This evaluation was based on
the distance observed between the kiosk and the subway station
(7m) used as attraction sources in the experiment with humans.
The ratio between this distance and the mean body length was
kept constant across the animal groups. The main experimental
parameters are reported in Table 1.

Humans, ants, frogs, chicken, and fish were experimentally
observed at the same time window, same perspective, and po-
sition everyday for ten consecutive days. Experimental videos
were processed and transformed to snapshots (thirty frames per
second) by using MTS converter and Avidemux programs.

Data analysis
As observed in [17], a formal definition of collective behav-

ior is the existence of a low-dimensional stable invariant mani-
fold in the space of the trajectories of the agents of the system.
To detect the existence of such a manifold, we use the ISOMAP
algorithm, which is a method for computing a quasi-isometric
low-dimensional embedding of a set of high-dimensional data
points [16]. Note that we apply the ISOMAP algorithm directly
to video footage data sets, as low-dimensionality manifests itself
even in the high-dimensional space of images in which collective
dynamics is observed [17]. Now, we will first review the main

(a)

(b)

(c)

(d)

(e)

Figure 1. SNAPSHOT OF VIDEO DATA FROM EXPERIMENTS WITH
(a) HUMANS, (b) ANTS, (c) FROGS, (d) CHICKEN, AND (e) FISH.
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steps of the algorithm and then describe its application on the
collected video data.

ISOMAP algorithm Consider an array of n d-
dimensional data points with the goal of embedding them
on a possibly lower dimensional manifold. Namely, given a data
set Z = {zi}n

i=1 ⊂ Rd , we aim at building a corresponding data
set Y = {yi}n

i=1 ⊂ Rd̄ , embedded in an invariant manifold, and
assessing if d̄� d. The manifold can be represented through the
following implicit parametrization

µ : Y → Z, (1)

where

zi j = µ j(yi1 , . . . ,yid̄ ), (2)

for i = 1, . . . ,n, and j = 1, . . . ,d. Here, the second subscript is
used to identify vector components.

The ISOMAP algorithm is based on the classical multidi-
mensional scaling method (MDS) [19], which is not applied to
the ambient Euclidean space, but rather considers shortest paths
along a discrete graph approximation of the manifold. The main
steps of the algorithm can be summarized as follows:

1. Construct a neighbors graph to approximate the embed-
ding manifold. We introduce the graph G = {V ,E}, where
the elements of the set of vertices V = {vi}n

i=1 match the
data points Z = {zi}n

i=1, while the elements of the set of
edges E are unordered pairs of vertices in the graph. We
assign edges to connect vertices that are either ε-neighbors
or ν-nearest neighbors. For instance, we can construct a
ν-nearest neighbors graph, which consists of edges {vi,v j}
corresponding to the ν-closest data points z j to zi, for each
i= 1, . . . ,n, with respect to the Euclidean distance in the am-
bient space, denoted by dZ(zi,z j). We define Mn ∈ Rn×n as
the matrix encoding the weighted graph of intrinsic manifold
distances corresponding to the graph G , whose i j-th entry is
denoted by Mn(i, j). For each edge {vi,v j} ∈ E , we define
the distances Mn(i, j) ≈ dZ(zi,z j) and, for all {vi,v j} /∈ E ,
we set Mn(i, j) = ∞ to forbid jumps between branches of the
underlying manifold.

2. Compute the graph geodesic matrix to approximate the
geodesic of the manifold. This step can be performed using
well-established methods to compute shortest paths, such as
Floyd’s algorithm [20] or Dijkstra’s algorithms [21]. From
Mn, we compute an approximate geodesic distance matrix
DM ∈ Rn×n, whose i j-th entry is the shortest weighted path
length between each vi to v j, being an approximation of
manifold geodesic distances.

3. Approximate manifold distance by ν-nearest neighbor
distance. The distance matrix DM from the previous step

is used to approximate the geodesic distances of the man-
ifold between zi and z j by the distance between vi and v j.
The accuracy of the approximation increases with data den-
sity. If ν is too large or data density is too low, then some
neighbors might be on separate manifold branches, resulting
in a poor representation of the manifold.

4. Perform an MDS on DM . The input to the MDS is the ma-
trix DM computed in step 2) from the input data Z. The
outputs are the projective variables Y in the intrinsic vari-
ables.

The outputs of the ISOMAP algorithm are the transformed
data points on an embedding manifold for the input data set Z
and the vector R of residual variances, which, in turn, quanti-
fies the proportion of data points not lying on such manifold.
From the norm of the residual variances, we determine the di-
mensionality of the embedding manifold that well approximates
Z. Specifically, to identify the dimensionality, we say that it cor-
responds to the minimum value d̄ such that R(d̄) is less than 0.05.

Video analysis Before starting the analysis, we need to
appropriately sample the set of video frames, so that in each
experiment the differences between one pixel and the next one
is comparable. To this aim, the sampling period s has to be
inversely proportional to the speed vpix of each species on the
screen. As reference, we consider the experiments in which the
speed is higher, that is, the fish experiment with feeding sources,
and we set the sampling period to 1 frame. All the other sam-
pling periods are taken accordingly and are reported in Table 1.
After extracting the video frames, the next step is the application
of the ISOMAP algorithm to 960×640 pixel values in the range
1 to 256 for the gray scale image at each of the sampled frames,
using ν = 11.

Fish Humans Ants Frogs Chickens

T 30 600 390 480 480

s 1 20 13 16 16

δ 16 700 1 16 35

Table 1. EXPERIMENTAL PARAMETERS: LENGTH T OF THE
VIDEOS (SECONDS), SAMPLING PERIOD, AND DISTANCE δ BE-
TWEEN THE TWO SOURCES (CENTIMETERS). IN THE FISH EXPER-
IMENTS, vpix IS REDUCED BY A FACTOR OF TWENTY FOR CON-
DITIONS WHERE SOURCES ARE ABSENT. IN THAT CASE, WE SET
T = 600 AND s = 20.

Statistics
For each species, we acquire ten replicate trials in each of

the three conditions: zero, one, and two sources. These trials are
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Figure 2. TWO-DIMENSIONAL EMBEDDING MANIFOLD GENER-
ATED BY THE ISOMAP ALGORITHM FOR A REPRESENTATIVE TRIAL
FROM FISH EXPERIMENTS WITHOUT SOURCES OF ATTRACTION.
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Figure 3. RESIDUAL VARIANCE FOR THE ISOMAP ALGORITHM
PERFORMED ON A REPRESENTATIVE TRIAL FROM FISH EXPERI-
MENTS WITHOUT SOURCES OF ATTRACTION.

analyzed individually with a modified code from [22] to yield an
isomap dimensionality. To analyze the effect of species and ex-
perimental condition on ISOMAP dimensionality, we perform a
two-way analysis of variance (ANOVA) [23] with condition and
species as independent variables and the ISOMAP dimensional-
ity as dependent variable. A one-way ANOVA is also performed
on each species’ ISOMAP dimensionalities independently with
condition as independent variable. For both ANOVAs, post-hoc
analysis is achieved using Fisher’s protected least squares differ-
ences (PLSD) [24] when a significant main effect is observed.

Figure 4. TWO-DIMENSIONAL EMBEDDING MANIFOLD GENER-
ATED BY THE ISOMAP ALGORITHM FOR A REPRESENTATIVE TRIAL
FROM FISH EXPERIMENTS WITH ONE SOURCE OF ATTRACTION.
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Figure 5. RESIDUAL VARIANCE FOR THE ISOMAP ALGORITHM
PERFORMED ON A REPRESENTATIVE TRIAL FROM FISH EXPERI-
MENTS WITH ONE SOURCE OF ATTRACTION.

RESULTS
To provide an insight on the outputs of the ISOMAP algo-

rithm, we focus on two representative trials selected from the fish
experiments, with zero and one source of attraction, respectively.
In Figs. 2-5, we report the two-dimensional embedding mani-
fold and the residual variance plot for the selected trials. Figure 2
clearly illustrates that the dimensionality d̄ is higher than 2, while
from Fig. 3, we observe that R(d) > 0.05 for all d = 1, . . . ,11,
and therefore d̄ > 11. When a source is added, then the mani-
fold is clearly two-dimensional, as illustrated in Figs. 4 and 5:
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dimension 2 is clearly detected, as R(2) = 0.04.
When we amalgamate all trials from each species, we find

that species has a significant main effect on the dimensionality
of the ISOMAP manifold (Two-way ANOVA, F(4,133) = 21.7,
p < 0.01). Results are reported in Fig. 6, including pairwise
post-hoc tests. The ISOMAP dimensionality from the only in-
sect species, ants, is significantly different from all other species.
Two of the remaining species, frogs and fish, are significantly dif-
ferent from all but one other species and two, humans and chick-
ens, are significantly different from all but two other species.

a,b

c

a

b,d

d

Figure 6. MEAN ISOMAP DIMENSIONALITY FOR THIRTY TRIALS OF
EACH SPECIES, THAT IS, WITH ALL THREE EXPERIMENTAL CONDI-
TIONS COMBINED. ERROR BARS SHOW ONE STANDARD ERROR.
MEANS NOT SHARING A COMMON SUPERSCRIPT ARE SIGNIFI-
CANTLY DIFFERENT IN POST-HOC TESTS (FISHER’S PLSD, p <
0.05).

Combining all the species for each experimental condition,
the effect of condition fails to reach statistical significance (Two-
way ANOVA, F(2,133) = 2.3, p = 0.11), see Fig. 7. Neverthe-
less, the p-value from pairwise post-hoc tests show higher sig-
nificance comparing zero and a non-zero source conditions. In
particular, we find p = 0.07 comparing zero and one source and
p = 0.25 comparing zero and two sources.

To delve further into the behavior of each species, we con-
sider a one-way ANOVA with condition as independent variable
for each species, see Fig. 8. We find no significant main ef-
fect of condition for humans, ants, and frogs (One-way ANOVA,
F(2,27) = 2.1, p = 0.14 for humans; F(2,27) = 0.7, p = 0.51 for
ants; F(2,27) = 1.2, p = 0.31 for frogs). However, condition sig-
nificantly influences ISOMAP dimensionality for chickens and
fish (One-way ANOVA, F(2,27) = 3.6, p < 0.05 for chickens;
F(2,25) = 44.3, p < 0.01 for fish). In both cases, we find more
significant differences when zero and non-zero source conditions

p=0.07

p=0.25

p=0.51

Figure 7. MEAN ISOMAP DIMENSIONALITY FOR FIFTY TRIALS
OF EACH CONDITION, THAT IS, WITH ALL FIVE SPECIES COM-
BINED. ERROR BARS SHOW ONE STANDARD ERROR. SIGNIFI-
CANCE FROM POST-HOC TESTS ARE INDICATED (FISHER’S PLSD).

are compared, rather than comparing the one and two source con-
ditions.

p=0.05   p=0.63

p<0.05

p<0.01 p=0.43

p<0.01

p=0.64   p=0.30

p=0.14

p=0.68   p=0.26

p=0.47

p=0.05

p=0.22

p=0.44

Figure 8. MEAN ISOMAP DIMENSIONALITY FOR TEN TRIALS OF
EACH CONDITION FOR EACH OF THE FIVE SPECIES. ERROR BARS
SHOW ONE STANDARD ERROR. SIGNIFICANCE FROM POST-HOC
TESTS ARE INDICATED (FISHER’S PLSD) AND SIGNIFICANT DIF-
FERENCES ARE BOLDED.

CONCLUSIONS
In this paper, we analyzed collective behavior in animal

groups. Specifically, we collected video data of five different
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species over three different experimental conditions: natural mo-
tion, attraction to a single source, and attraction to two sources.
For each species and experimental condition, video data were
collected at the same time window for ten consecutive days. Ac-
cording to [17], we defined collective behavior as the existence
of a low-dimensional stable invariant manifold in the space of the
trajectories of the agents of the system. The ISOMAP algorithm,
originally developed for machine vision, was employed to em-
bed the collected video data on low-dimensional manifolds and
thus detect the presence of low-dimensionality in terms of small
residual error of fit. The dimensionality of the manifold that well
approximates the data was detected by analyzing the norm of
the residual variances. The results of the ISOMAP analysis were
then amalgamated over all trials from each species, and a statisti-
cal analysis was performed to test how significant are the effects
of species and experimental conditions.

We found that the algorithm differentiates between the em-
bedding manifold dimension for the five species and, within the
three experiments for two of the species, reports significantly dif-
ferent results depending on experimental condition. Stimulated
by the results presented in this paper, current work is devoted to
the formalization of a method for automated classification of col-
lective behavior in animal groups from row video data, that may
provide valuable insight to identify the underlying of collective
motion, and to characterize similarities and peculiarities across
the species.
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