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Abstract—The design of reliable, dynamic, fault-tolerant hy-
brid smart grid communication networks is a challenge to
achieve for autonomous power grids. A simulation-based param-
eter optimization framework is proposed to tune parameters
of hybrid communication technologies to achieve the optimal
network performance. It consists of three main components: a
parallel executor used to speedup a list of simulations; a sampler
running simulations with all possible parameter sets for the
input parameter variables by using the parallel executor at each
generation; and a hybrid stochastic optimization algorithm for
tuning configurable parameters of hybrid designs and applica-
tion parameter variables. The proposed hybrid metaheuristic
optimization algorithm combines an evolutionary algorithm with
a gradient method to quickly achieve an approximate globally
optimum solution. Three optimization test functions are employed
to train the adjustable parameters of the hybrid algorithm. Re-
sults show that the proposed parameter optimization framework
helps the designer to choose the right hybrid architecture with an
optimal parameter set for a large-scale broadband PLC-WiMAX
hybrid smart grid communication network.

I. INTRODUCTION

The power grids worldwide are evolving into smart grids by
adding intelligence to the operation and control of the system[1],
[2], [3]. As a result, it becomes increasingly important to
explore the communication capabilities of different types of
smart grid topologies [4], [5]. The envisioned smart grid
communication network for distributed applications broadly
consists of Home Area Networks (HAN), Neighborhood Area
Networks (NAN), and a Wide Area Network (WAN), and it is
expected that a variety of communication technologies will be
utilized in the hybrid communications systems infrastructure
[6]. The design of hybrid communication networks are not
straightforward, because the different technologies used in
different sub-network have a large number of configurable
parameters which increases the amount of experimental (or
simulation) tests necessary for their evaluation. The non-
deterministic nature of the environment is another factor
which makes network design difficult. The hybrid smart grid
communication network must be fault tolerant and adaptive
because of the dynamic network topology caused by dynamic
power grid topology and changing objectives of different smart
grid applications.

The design of a hybrid smart grid communication network
requires a simulation-based optimization method to tune the
configuration parameters of communication technologies and

parameters of smart grid applications. A simulation-based
parameter optimization framework is proposed in this paper
to help the designer choose the right hybrid architecture
with an optimal parameter set. This scalable and extendable
framework may accept different communication technologies
on top of different topologies, and identify the optimal
configurable parameters for each related communications model
and application parameters for that hybrid design.

The novel contribution of this work is the simulation-based
parameter optimization framework with features of parallel
computing and using a hybrid evolutionary search algorithm.
The proposed design provides a simulation-based optimization
tool than can help designers identify the optimal parameter set
for a selected hybrid communication configuration. Although
the hybrid evolutionary search agorithm has previously been
investigated in [7] and [8], this algorithm is utilized in
this paper to develop a new tool that performs network
parameter optimization. While there has been similar previous
work done to simulate hybrid communication networks as
in [9] and [10], the proposed algorithm has been designed
specifically to be used with NS3. NS3 is an open-source
discrete-event network simulator capable of simulating many
important aspects of communication technologies: such as
propagation model, spectral model, payload modulation coding
scheme, and service flow type [11]. Using the simulator, the
optimization algorithm tunes all the input parameters, at both
the application and architectural level, to provide an optimum
set within the required QoS metrics. The large parameter space
and the simulation-based genetic algorithm impose a heavy
computational load. It is beneficial to parallelize execution of
these computationally intensive simulations and thus speed-
up the performance of the simulation-based optimization
algorithm. Through combining a gradient-based algorithm and
a genetic algorithm, the hybrid evolutionary gradient algorithm
is proposed as a new parameter identification algorithm. The
primary application of this framework is thus the optimization
of network configuration parameters and application parameters
through extensive hybrid communication system simulations.
The proposed solution provides a way to design and optimize
hybrid smart grid communication systems in a highly non-
deterministic environment for a large number of cooperating
intelligent power grid devices.
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II. NS3-BASED HYBRID SMART GRID COMMUNICATION
NETWORKS

NS3 can be set to operate in many different modes [11].
In deterministic mode, it will produce replicable results while
testing the application. In probabilistic mode, it will also
simulate the non-deterministic nature of the the communication
channel and the low-level communication protocols of a
variety of communication technologies. It can be used to
test communication technologies, protocols, and algorithms
through the performance metrics of the designed smart grid
network architectures and applications. It also can incorporate
an arbitrary number of Photovoltaic (PV), smart meter and data
concentrator communication nodes, on arbitrary topologies and
it allows to implement the customized applications such as
settings of packet size and data rate

A suite of hybrid smart grid communication system simu-
lations using NS3 have been developed for distributed smart
grid application [6]. NS3 was chosen because of its popularity,
open-source nature, and the existing availability of models for
numerous networking functionalities. In the envisioned hybrid
smart grid communication networks, the Home Area Network
(HAN) considers the LoWPAN and PLC technologies, the
Neighbor Area Network (NAN) can choose WiFi, WiMAX,
and Ethernet cable, while the wide area network is assumed
to employ optical cables. The corresponding NS3 modules
of these alternative technologies can be configurable with
multiple parameters. Referring to the initial manual verification
results shows that both broadband PLC (BPLC) and WiMAX
models have more variable parameters with high impacts on
the designed system’s performance[6]. Thus, the hybrid BPLC-
WiMAX design is considered to verify the efficasy of the
proposed parameter identification framework. Table I lists
all configurable parameters of both BPLC and WiMAX NS3
models. The spectrum model of BPLC has three adjustable
parameters: low-bound frequency, high-bound frequency, and
number of channels. [6], [11], [12] provide a detailed descrip-
tion of the other parameters.

Similar to the core NS3 modules for different technologies,
the smart grid application layer may also be parameterized. Two
commonly used application parameters considered in designing
smart grid applications are the packet size and data rate of PV
measurement or curtailment control signal messages. Thus, the
purpose of tuning adjustable parameters of hybrid designs is to
search out optimal configurations of different communication
technologies and optimal parameters for the distributed smart
grid applications. The expected optimization algorithm is built
around the NS3 simulator and it calls the simulator with the
configurable parameter set of network models and applications.

III. SIMULATION-BASED PARAMETER OPTIMIZATION
FRAMEWORK

The framework for this tool was designed to utilize three
main components. It consists of a parallel executor wrapped
inside a sampler, which itself is wrapped inside the hybrid
optimization algorithm. The core module of the design is the
parallel executor, which also processes the raw results. The
list of simulations to run is provided by the sampler which

TABLE I
CONFIGURABLE PARAMETERS OF THE BPLC-WIMAX HYBRID DESIGN

Model Parameter Values

BPLC

Low frequency 1− 2 (MHz)

High frequency 3− 100 (MHz)

Channel number 100− 1200

Payload modulation
coding scheme

QAM64 rateless, QAM32 rateless,
QAM4 rateless, QAM64 12 21,
BPSK 1 2, BPSK rateless

Header modulation coding BPSK 1 2, BPSK 1 4

WiMAX

Phy layer modulation QAM16-12, QAM16-34, QAM64-32,
QAM64-34,BPSK-12,QPSK-12,BPSK-34

Service flow UGS, RTPS, NRTPS, BE

Propagation model Friis, Cost231, Random, Log

Scheduler SIMPLE, MBQOS, RTPS

Application Data rate 16− 56 (Kbps)

Packet size 64− 2048 (Bytes)

simulates all scenarios required by the optimizer algorithm for
a single generation. It also handles data storage, additional post-
processing, and initial comparison of the results. The optimizer
algorithm determines which simulation scenarios are required
to be tested and provides them as a list of parameters to the
sampler. The high level block diagram of this framework is
provided in Figure 1

Fig. 1. High-Level Framework Block Diagram

A. Parallel Executor

The purpose of the parallel executor is to run a large number
of simulations in parallel by using the ubiquitous multicore
physical or virtual processors available to most systems, and
it has been implemented using the “concurrent.futures” and
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“multiprocessing” modules in python. It may also be extended
using the mpi4py module to take advantage of highly scalable
cluster computing resources. The parallelism and scalability
of this parallel executor allows for greatly improved computa-
tional time by efficiently utilizing all available computational
resources.

B. Sampler

Three critical system design requirements are considered to
validate the performance of each hybrid communications design,
and they are a single trip latency of 300 ms or less, throughput
of 9.6 Kbps or more, and packet loss rate of 1% or less [6]. To
further quantify the performance value of different parameter
settings and to better compare similar cases, a weighted cost
function is proposed [13] as below,

cost =

3∑
i=1

wi ∗ xi + CCi

where CCi =

10000 xi ≥ limi+

0 limi− < xi < limi+

10000 xi ≤ limi−

(1)

where x1 is latency, x2 is throughput, x3 is packet loss rate,
and wi, i = 1, 2, 3 is the weight factor of the ith metric,
which is the product of importance factor of this metric
relative to the other metrics and the unit factor of this metric.
In this paper, three corresponding weight factors are set as
w1 = 1000, w2 = 0.001, w3 = 20. CCi, i = 1, 2, 3 refers to
the conditional costs of the ith metric which allow setting
predefined conditional limits, such as boundary conditions of
this metric [limi−, limi+]. Thus, using these conditional costs,
the out-of-bounds regions of these metrics result in a very
high cost which effectively restricts the optimization algorithm
to search for results within the specified boundary of these
metrics.

C. Hybrid Evolutionary Gradient Algorithm

To identify the optimal parameter set for the specific hybrid
communications system design, there are two commonly-
used algorithms namely, gradient descent and evolutionary
algorithms [14], [15]. Similar to hill climb algorithms, the
gradient-based algorithms perturb an initial guess along all
available degrees of freedom to improve the objective function
value, and the best perturbed position becomes the new position
at each iteration, until no perturbation can improve the objective.
Meanwhile, the evolutionary algorithm is a selective random
search algorithm designed to achieve a global optimum within
a large parameter space[16]. The general idea of many variants
of these algorithms is to identify dominant solutions and to
breed these solutions until the global optimum is found. There
is a finite chance for mutation of each parameter every time a
new solution is bred. Only the best solutions are retained in the
breeding population as the elite population. Both populations
are limited in size so as to reduce the overall computational
requirements.

To take advantage of both the quick optima identification
ability of the gradient-based algorithm and the broad optima

search ability of the evolutionary algorithm, the hybrid algo-
rithm is proposed in this paper. This hybrid approach allows
the algorithm to initially perform a broad search along the
parameter space using a fixed population size with random
mutations and elites and then quickly narrow down on the
optimum by performing a gradient descent. In this way, the
hybrid algorithm consists of the following three steps: Step 1.
the evolutionary algorithm is executed first for each generation;
Step 2, if a new optimum is found, the gradient algorithm
is executed with this solution as the initial guess; Step 3,
If the gradient descent algorithm identifies a more optimal
solution, the new solution is added to the breeding population
for the next generation. This leads to the algorithm quickly
finding local minima and breaking out of them over multiple
generations. The simulations are run using the sampler. The
sampler firstly builds a list of simulation commands using a
set of adjustable parameters and their available values in the
master processor. Then, the sampler runs the parallel executor
to execute these simulations in all available slave processors in
parallel. Finally, the master processor continue to post-process
the simulation results including evaluating their performance
values through the above proposed weighted cost function,
and sorting them into different categories. The detailed hybrid
optimization algorithm is listed in Algorithm 1. ExecutorPool
refers to the pool of workers which is maintained by the
parallel executor. BestHash holds the hash of the simulation
result with the lowest cost so far. Position refers to the initial
parameter set the gradient algorithm perturbs. MaxPop is the
general population size. PopList refers to the population used
to breed V alues for the next generation. Simulated annealing
is implemented using a random chance to use the general
population in Results to breed the next generation instead of
Elites.

IV. OPTIMIZATION TEST FUNCTIONS

To validate the performance of the above proposed parameter
optimization framework, many different types of test functions
have been used to benchmark the optimization algorithm
[17]. For the comparison purpose, the Rastrigin, Eggholder,
and Rosenbrock functions were selected specifically due to
their different natures which pose different challenges to the
optimization algorithm design in this paper.

1) Rastrigin function: It features with the periodic nature
and a distinct global optimum, and has a global minima at
(0,0) with many, evenly spaced, local minima surrounding it,
and defined in Equation (2):

f(xn) = 10n+

n∑
i=1

(x2i − 10cos(2πxi)) (2)

where n is the number of input variables, xi is the ith input
variable. These notation are applied for the rest two functions.

2) Eggholder Function: This function has a distinct global
optima with a more pseudo-random arrangement of the local
minima surrounding it. It is given by:

f(x) =

n−1∑
i=1

[−xi sin(
√
|xi − xi+1 − 47|)

−(xi+1 + 47) sin(
√
|0.5xi + xi+1 + 47|)]

(3)
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Algorithm 1 Hybrid Evolutionary Gradient Algorithm
1: (Parameters, V alues)← GetParamV als(script)
2: Evolutionary algorithm starts
3: for gen = 0 to maxGen do
4: Run Sampler with ExecutorPool
5: for Result from ExecutorPool do
6: parse Result into ParsedResult
7: obtain Hash of ParsedResult
8: store ParsedResult with Hash as the key
9: end for

10: BestHash← hash(min(cost(Elites))),
11: Position is obtained from values of BestHash
12: Gradient algorithm starts
13: while Position has changed do
14: Perturb Position to (Parameters, V alues)
15: Run Sampler with ExecutorPool
16: for Result from ExecutorPool do
17: parse Result into ParsedResult
18: obtain Hash of ParsedResult
19: store ParsedResult with Hash as the key
20: end for
21: if min(cost(Elites)) < cost(BestHash) then
22: BestHash← hash(min(cost(Elites)))
23: obtain new Position from new BestHash
24: end if
25: end while
26: Gradient algorithm ends
27: Preparation of the next generation starts
28: Limit population of Elites and Results
29: PopList selected as Elites or Results
30: clear V alues
31: for ParentA in PopList do
32: select different ParentB from PopList
33: for j = 0 to Length(Position) do
34: breed traits of ParentA and ParentB
35: add child traits to V alues
36: end for
37: end for
38: Preparation of the next generation ends
39: end for
40: Evolutionary algorithm ends
41: return Results(hash(min(cost(Elites))))

3) Rosenbrock Function: It features a distinct global opti-
mum within a long valley and one optimal solution at (1,1).
It shows very little variation across a wide range of the input
parameters, and is defined as:

f(xn) =

n−1∑
i=1

(100(x2i − xi+1)
2 + (1− xi)2) (4)

In this paper, three test functions were designed to accept
2 numerical and 2 non-numerical input parameters to more
accurately model the NS3 simulation environment for the
hybrid communication design of smart grid. To ensure that
the expected global optimum is within the range of the inputs,
three functions are scaled or offset as required.

TABLE II
COMPARISON OF DIFFERENT OPTIMIZATION METHODS

Optimization
Method

Failure Rate (%) (Average Failure Cost)
Rosenbrock Rastrigin Eggholder

Evolutionary 8.44 (8.493) 11.09 (8.3148) 10.16 (7.8154)
Gradient 95 (113930) 93.33 (141430) 95 (131800)
Hybrid 4.69 (6.05) 7.03 (6.0889) 6.02 (6.1299)

V. EXPERIMENTAL SIMULATION AND RESULTS

A. Reference Test Case A

The taxonomy feeder titled R2-25.00-1 [18] with 1080
nodes, referred to as Reference Test Case A (RTC-A), has
been selected to perform the validation of the developed
parameter identification platform. The detailed construction of
this test case is provided in [6]. The subsequent communication
infrastructure of RTC-A consists of 57 PV inverters, 275
smart meters, 10 data concentrators, and one edge router. It
is divided into 10 subareas based on the location of 10 data
concentrators. The BPLC-WiMAX hybrid communications
design is simulated with a large set of configurable parameters
of two communication models in the NS3 simulator on top of
the RTC-A.

B. Verification of Metaheuristics Optimization Algorithms

Using the three above described optimization test functions,
the purpose is to verify the training parameters of the proposed
hybrid optimization algorithm. The training parameters con-
sidered in this paper are mutation rate (MR), mutation chance
(MC), and maximum elites (ME) of the evolutionary algorithm,
and the step size (SS) of the gradient descent algorithm. The
mutation rate defines the maximum extent of a single mutation
as a percentage of the parent trait, mutation chance is the
percentage probability of a mutation occurring, and maximum
elites is maximum size of the elites as a percentage of the
total population. Increasing step size decreases the number
of gradient descent steps that will be performed and hence
only impacts computation speed. The resulting performance
comparison using the two metrics of average failure cost and
failure rate is conducted as below.

1) Performance Comparison of Three Algorithms: The
performance of three optimization algorithms: gradient, evolu-
tionary, and hybrid algorithms are compared in Table II. The
failure rate is defined as the percentage of cases where the
algorithm fails to identify the global optimum. The average
failure cost is calculated as the average distance of the found
solution to the global optimum upon failure. The genetic
algorithm performance, shown in the first column of Table
II, indicates that the evolutionary algorithm is capable at
determining the optimal solution on its own. There is certainly
room for improvement, however. The failure rates and costs
of the gradient descent algorithm are very high, as shown in
Table II. This indicates that gradient descent alone is not a
good method for identifying the optimum solution in such
cases. As expected, the verification results show that the hybrid
algorithm has improved performance compared with either the
evolutionary or gradient descent algorithm individually.
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Fig. 2. Comparison of Hybrid Algorithm in terms of Test Functions

2) Performance Characterization of the Hybrid Algorithm:
The hybrid algorithm in terms of failure rate and average
failure cost has been identified as the best option in the above
subsection. The effects of the parameters of this algorithm
is further explored using the three different optimization test
functions. To perform this analysis, the MC, MR, and ME
parameters are varied between 10-50% in intervals of 10%.
The results are shown in Figure 2. For each blue box plot, the
central mark indicates the median of solution generation, and
the bottom and top edges of the box indicate the 25th and
75th percentiles, respectively. Also the red cross indicates the
lowest and highest outliers.

For the Rastrigin function, the result shown as the left red
highlights in Figure 2 indicate that the best results can be
achieved when the mutation chance is as low as 10%, the
mutation rate is 40%, and the maximum elites is 50%. The
effect of these parameters is not as large as the effect of
the size of the elites list. This conclusion is derived from

the fact that with higher mutation chances, the performance
is still acceptable as long as the number of elites is 50%.
This indicates that the optimizer is able to search the breadth
of the function across the input variable range, however it
has difficulty narrowing down to the optimal solution unless
supported by a bigger elite list and lower mutation chance. The
average solution generation is the same or lower for all cases
in this hybrid scenario compared to the genetic algorithm. This
definitively indicates the benefit of implementing this hybrid
algorithm for these types of functions.

For the Rosenbrock function, the blue box plot indicates
that the best results are achieved when mutation chance=10%,
mutation rate =40%, and maximum elites=50% as shown in
the left red highlights in Figure 2. The results do not indicate
as much of an impact of these parameters on the solution
generation, compared to the other two test functions. This
indicates that although the parameters have some effect, the
overall effect of these parameters does not have as large an
impact on the solution generation. This may be attributed to
the fact that the function has a large valley handled by the
gradient descent portion of the algorithm.

For the Eggholder function, the box plot indicates that the
best results are located when the mutation chance is 20% ,
the mutation rate is 30%, and the maximum elites is 50%,
as shown in the right red highlights of Figure 2. Comparing
to the Rastrigin function, the best performance is achieved
with mutation chance=20%, not 10% and mutation rate=30%
instead of 40%. This indicates that the optimizer is able to
search the full width of the input variable range, however it has
difficulty narrowing down to the optimum. Thus, this function
requires more aggressive mutation to avoid getting trapped in
a local minimum.

From these results, it may be concluded that a setting of
mutation chance=10%, mutation rate=40%, and maximum
elites=50% will result in good performance across wide variety
of test functions or applications. These settings of the proposed
hybrid optimization algorithm are applied to tune the parameters
of the NS3-based hybrid smart grid communication system
design.

C. Parameter Identification Results

The proposed hybrid optimization algorithm takes both
numeric and non-numeric configurable parameters. The BPLC-
WiMAX hybrid design to be tested has the configurable
parameters shown in Table I. The optimal parameters as
identified by the proposed parameter optimization framework
are summarized in Table III. It is worth noting that the optimal
parameters of communication technology modes, namely BPLC
and WiMAX models, are almost coincident with the initial
manual results of [6].

A small portion of optimal cases as determined by the
optimizer for the BPLC-WiMAX hybrid design are shown
in Table V. Compared with the optimal cases identified by
the sampler in Table IV, the optimizer results have higher
granularity. To achieve this set of optimal cases, the trade-
offs made by the optimizer are apparent in observing the
parameter values used. Depending upon which trade-offs made
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by the optimizer are acceptable, the user has the option of
selecting from a large set of options, the size of which is
determined by the maximum elites parameter. It is noticeable
that the optimizer pushes the data rate as high as it can while
simultaneously optimizing the packet size for low latency and
packet loss rates. This is exactly the behavior needed from the
optimization framework.

From these results it is clear that the optimizer works well
in achieving the best possible network configuration within the
given range of parameters.

TABLE III
OPTIMAL PARAMETERS OF THE BPLC-WIMAX HYBRID DESIGN

Model Parameter Values

BPLC

Low frequency 2 (MHz)

High frequency 3 (MHz)

Channel number 1146

Payload modulation coding scheme QAM64 rateless

Header modulation coding BPSK 1 2

WiMAX

Phy layer modulation QAM16-12

Service flow Best Effort

Propagation model Friis

Scheduler SIMPLE

Application Data rate 55.98 (Kbps)

Packet size 66 (Bytes)

TABLE IV
RESULTS OF SAMPLING SIMULATED CONFIGURATION

Throughput (kbps) Latency (ms) PLR (%) DR (bps) Size (B)
55.979 6.832 0.057 56000 64
55.884 10.466 0.213 56000 128
55.993 17.923 0.027 56000 256
55.962 34.183 0.098 56000 512
56.016 64.539 0.031 56000 1024
55.91 129.253 0.296 56000 2048

TABLE V
OPTIMAL RESULTS FOR SIMULATED CONFIGURATION

Throughput (kbps) Latency (ms) PLR (%) DR (bps) Size (B)
55.937 5.512 0.074 55978 66
55.959 5.649 0.034 55980 66
55.977 5.661 0.035 55997 66
55.979 5.562 0.035 55999 67
55.979 5.487 0.057 56000 66
55.859 5.564 0.034 55880 68
55.971 5.612 0.055 55998 68
55.948 5.571 0.056 55973 66
55.964 5.472 0.038 55985 64

VI. CONCLUSION

This paper focuses on the development of simulation-
based parameter optimization framework to identify the op-
timal configurable parameters of different communication
technologies and application parameters for the large-scale
hybrid smart grid communication system design. From the
validation results, we have the following key findings: 1) the

proposed hybrid evolutionary search optimization algorithm
can improve convergence speed compared to the single gradient
or genetic algorithm. 2) the optimal parameter set of the
BPLC-WiMAX hybrid design is successfully identified by
the proposed algorithm. The best data rate is set to 55.98
Kbps and the optimal packet size is set to 66 bytes. The
parameters may be set and any further network analysis now
performed with confidence that the system has been optimally
designed. Planned future development for this tool includes
adding topology optimization capabilities and adaptive tuning
of the optimizer parameters.
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