ALL CONTINUOUS FUNCTIONS ON [a, b] ARE RIEMANN-INTEGRABLE

PRASHANT ATHAVALÉ

1. The statement of the theorem

Theorem. All real-valued continuous functions on the closed and bounded interval [a, b] are Riemannintegrable.

1.1. We need to know the following theorems.

- (i) Monotone convergence theorem
- (ii) Extreme value theorem
- (iii) Heine-Cantor theorem

1.2. We need to know the following concepts.

- (i) The lower sum $\mathcal{L}_{\mathcal{P}}$, upper sum $\mathcal{U}_{\mathcal{P}}$ and Riemann sum $\mathcal{R}_{\mathcal{P}}$ for a partition \mathcal{P} of [a, b].
- (ii) A sequence of dyadic partitions $\{\mathcal{P}_{2^n}\}_{n=0}^{\infty}$ of [a, b].
- (iii) Corresponding sums \mathcal{L}_{2^n} , \mathcal{U}_{2^n} and \mathcal{R}_{2^n} for a dyadic partition \mathcal{P}_{2^n} .
- (iv) The refinement \mathcal{P}' of \mathcal{P} .
- (v) Uniform continuity.

2. Modus Operandi

In this manuscript we follow the following five steps:

- (I) We show that $\lim_{n\to\infty} \mathcal{L}_{2^n}$ and $\lim_{n\to\infty} \mathcal{U}_{2^n}$ exist. We will use the monotone convergence theorem for this. In particular, we show that $\{\mathcal{L}_{2^n}\}_{n=0}^{\infty}$ is bounded and monotone increasing i.e. $\mathcal{L}_{2^n} \leq \mathcal{L}_{2^{n+1}}$.
- (II) We will show that $\lim_{n\to\infty} (\mathcal{U}_{2^n} \mathcal{L}_{2^n}) = 0$. To this effect we use the fact that f is uniformly continuous on [a, b], which follows from Heine-Cantor theorem. We further conclude from (I) that $\lim_{n\to\infty} \mathcal{U}_{2^n} = \lim_{n\to\infty} \mathcal{L}_{2^n}$. We denote this limit by I, i.e. $\lim_{n\to\infty} \mathcal{L}_{2^n} = I$.
- (III) Now, for a general partition \mathcal{P} of [a, b], we prove that $\mathcal{L}_{\mathcal{P}} \leq \mathcal{L}_{\mathcal{P}'} \leq \mathcal{U}_{\mathcal{P}'} \leq \mathcal{U}_{\mathcal{P}}$, where \mathcal{P}' is a refinement of \mathcal{P} . The proof of the fact that $\mathcal{L}_{\mathcal{P}} \leq \mathcal{L}_{\mathcal{P}'}$ is very similar to the proof of $\mathcal{L}_{2^n} \leq \mathcal{L}_{2^{n+1}}$.
- (IV) We show $\lim_{\|\mathcal{P}\|\to 0} (\mathcal{R}_{\mathcal{P}} \mathcal{R}_{\mathcal{P}'}) = 0$. This is done by realizing that $|\mathcal{R}_{\mathcal{P}} \mathcal{R}_{\mathcal{P}'}| \leq \mathcal{U}_{\mathcal{P}} \mathcal{L}_{\mathcal{P}}$, but we show $\lim_{n\to\infty} \mathcal{U}_{\mathcal{P}} \mathcal{L}_{\mathcal{P}} = 0$.
- (V) Finally we show $\lim_{\|\mathcal{P}\|\to 0} \mathcal{R}_{\mathcal{P}} = I$. This follows from the observation: $|\mathcal{R}_{\mathcal{P}} - I| \leq |\mathcal{R}_{\mathcal{P}} - \mathcal{R}_{\mathcal{P}'}| + |\mathcal{R}_{\mathcal{P}'} - \mathcal{L}_{2^n}| + |\mathcal{L}_{2^n} - I|$.

Date: March 4, 2015.

PRASHANT ATHAVALÉ

3. Preliminaries

Theorem (Monotone convergence theorem). Every bounded and monotone sequence is convergent.

Theorem (Extreme value theorem). A continuous function f on a closed and bounded (nonempty) interval [a, b] attains its extreme values.

Definition (Continuity at a point). We say that the function f is continuous at $x_0 \in [a, b]$ if for each $\epsilon > 0$, there exists $\delta > 0$ such that whenever $|x - x_0| < \delta$ thenever $|f(x) - f(x_0)| < \epsilon$.

(Note, that this δ may not work for a different x_0 .)

Definition (Continuity on an interval). We say that a function f is continuous on [a, b] if it is continuous at each point in [a, b].

Definition (Uniform continuity). We say that that the function f is uniformly continuous on [a, b] if for each $\epsilon > 0$ there exists a $\delta > 0$ such that

whenever $|x_1 - x_2| < \delta$ thenever $|f(x_1) - f(x_2)| < \epsilon$.

for all $x_1, x_2 \in [a, b]$.

(Note, that the same δ works for all $x_1, x_2 \in [a, b]$. The uniform continuity is much stronger condition than the continuity. All uniformly continuous function are continuous, but all continuous functions are not uniformly continuous.)

Theorem (Heine-Cantor). Every continuous function on a closed and bounded interval is uniformly continuous.

Definition (Partition). We define a partition \mathcal{P} of [a, b] as a finite sequence of numbers $\{x_0, x_1, x_2, \ldots, x_n\}$ such that $x_0 = a < x_0 < x_1 < x_2 \cdots < x_n = b$.

Definition (Refinement of a partition). We say that \mathcal{P}' is a refinement of \mathcal{P} if \mathcal{P}' contains all the points of \mathcal{P} , with few more points.

Definition (Norm of a partition). Norm of a partition \mathcal{P} denoted by $\|\mathcal{P}\|$ is defined as $\|\mathcal{P}\| = \max_{1 \leq i \leq n} |x_i - x_{i-1}|$.

Definition (Sequence of dyadic partition of an interval). We define the partition $\mathcal{P}_{2^0} = \{a, b\}$. We obtain the refinement $\mathcal{P}_{2^{n+1}}$ of \mathcal{P}_{2^n} by adding midpoints of subintervals from the previous partition \mathcal{P}_{2^n} .

i.e.
$$\mathcal{P}_{2^0} = \{a, b\}$$

 $\mathcal{P}_{2^1} = \{a, \frac{a+b}{2}, b\}$
 $\mathcal{P}_{2^2} = \{a, a + \frac{b-a}{4}, a + 2\frac{b-a}{4}, a + 3\frac{b-a}{4}, b\}$

¹the word "thenever" is copyrighted by Prashant Athavalé

 $\mathbf{2}$

Thus, we construct a sequence of partitions $\{\mathcal{P}_{2^n}\}_{n=0}$. Note, that there are 2^n subintervals in the partition \mathcal{P}_{2^n} of [a, b], each of length $\left(\frac{b-a}{2^n}\right)$.

Definition (Riemann sum $\mathcal{R}_{\mathcal{P}}$). We define the Riemann sum $\mathcal{R}_{\mathcal{P}}$ as

$$\mathcal{R}_{\mathcal{P}} := \sum_{i=1}^{n} f(x_i^*) \, \triangle x_i,$$

where x_i^* is any point in the *i*th subinterval $[x_{i-1}, x_i]$ of the partition \mathcal{P} of [a, b].

Definition (Lower sum). We define the lower sum $\mathcal{L}_{\mathcal{P}}$ as

$$\mathcal{L}_{\mathcal{P}} := \sum_{i=1}^{n} f_{i}^{min} \, \triangle x_{i},$$

where f_i^{min} is the minimum value of the function f on the i^{th} subinterval $[x_{i-1}, x_i]$ of the partition \mathcal{P} of [a, b].

Note, we know from the extreme value theorem that there exists a point $x_i^{min} \in [x_{i-1}, x_i]$ such that $f(x_i^{min}) = f_i^{min}$.

Definition (Upper sum). We define the upper sum $\mathcal{U}_{\mathcal{P}}$ as

$$\mathcal{U}_{\mathcal{P}} := \sum_{i=1}^{n} f_i^{max} \bigtriangleup x_i$$

where f_i^{max} is the maximum value of the function f on the i^{th} subinterval $[x_{i-1}, x_i]$ of the partition \mathcal{P} of [a, b].

Again, we know from the extreme value theorem that there exists a point $x_i^{max} \in [x_{i-1}, x_i]$ such that $f(x_i^{max}) = f_i^{max}$.

Remark. Special cases of the lower, upper, and Riemann sums for the dyadic partition \mathcal{P}_{2^n} are denoted by $\mathcal{L}_{2^n}, \mathcal{U}_{2^n}$ and \mathcal{R}_{2^n} . An important fact is that for dyadic partition $\Delta x_i = \left(\frac{b-a}{2^n}\right)$ for all subintervals of [a, b]. Thus,

$$\mathcal{L}_{2^n} := \left(\frac{b-a}{2^n}\right) \sum_{i=0}^{2^n} f_i^{min}, \quad \mathcal{U}_{2^n} := \left(\frac{b-a}{2^n}\right) \sum_{i=0}^{2^n} f_i^{max}, \quad \mathcal{R}_{2^n} := \left(\frac{b-a}{2^n}\right) \sum_{i=0}^{2^n} f(x_i^*).$$

Definition. We define the Riemann integral as the limit of the Riemann sum i.e.

$$\int_{a}^{b} f(x) dx = \lim_{\|\mathcal{P}\| \to 0} \mathcal{R}_{\mathcal{P}} = \lim_{\|\mathcal{P}\| \to 0} \sum_{i=0}^{n} f(x_{i}^{*}) \Delta x_{i},$$

where x_i^* is a point in the *i*th subinterval of [a, b], i.e. $x_i^* \in [x_{i-1}, x_i]$.

4. Results about the sequence of dyadic partition $\{\mathcal{P}_{2^n}\}_{n=0}^{\infty}$

Lemma 1. If f is a continuous function on [a, b] then the sequences $\{\mathcal{L}_{2^n}\}_{n=1}^{\infty}$ and $\{\mathcal{U}_{2^n}\}_{n=1}^{\infty}$ are bounded.

PRASHANT ATHAVALÉ

Proof. Let $M := \max_{x \in [a,b]} f(x)$ and $m := \min_{x \in [a,b]} f(x)$. By the extreme value theorem m and M exist and are finite real numbers. The following is true for all i and n:

$$m \le f_i^{min} \le f_i^{max} \le M$$

$$\sum_{i=1}^{2^n} m \le \sum_{i=1}^{2^n} f_i^{min} \le \sum_{i=1}^{2^n} f_i^{max} \le \sum_{i=1}^{2^n} M$$

$$\left(\frac{b-a}{2^n}\right) \sum_{i=1}^{2^n} m \le \left(\frac{b-a}{2^n}\right) \sum_{i=1}^{2^n} f_i^{min} \le \left(\frac{b-a}{2^n}\right) \sum_{i=1}^{2^n} f_i^{max} \le \left(\frac{b-a}{2^n}\right) \sum_{i=1}^{2^n} M$$

$$m(b-a) \le \mathcal{L}_{2^n} \le \mathcal{U}_{2^n} \le M(b-a)$$

Now if we could show that the sequence $\{\mathcal{L}_{2^n}\}_{n=0}^{\infty}$ is monotone increasing, then we can conclude from the monotone convergence theorem that sequence $\{\mathcal{L}_{2^n}\}_{n=0}^{\infty}$ must converge. To show that $\{\mathcal{L}_{2^n}\}_{n=0}^{\infty}$ is monotone increasing we need to show that $\mathcal{L}_{2^{n+1}} \geq \mathcal{L}_{2^n}$.

Lemma 2. For the dyadic sequence of partitions of [a,b], the sequence $\{\mathcal{L}_{2^n}\}_{n=1}^{\infty}$ is monotone increasing.

Proof. Let us divide the i^{th} subinterval $[x_{i-1}, x_i]$ in half to get two subintervals, the left subinterval: $[x_{i-1}, \frac{x_{i-1}+x_i}{2}]$ and the right subinterval: $[\frac{x_{i-1}+x_i}{2}, x_i]$. Let $f_{i,left}^{min}$ be the minimum value of f on the left subinterval and $f_{i,right}^{min}$ be the minimum value of f on the right subinterval. As f_i^{min} is the minimum over the bigger subinterval $[x_{i-1}, x_i]$, we must have

$$f_{i,left}^{min} \ge f_i^{min}$$
 as well as $f_{i,right}^{min} \ge f_i^{min}$.

Thus, adding these equations and dividing by 2 we get

$$\begin{aligned} \frac{1}{2}(f_{i,left}^{min} + f_{i,right}^{min}) &\geq f_i^{min} \\ \sum_{i=1}^{2^n} \frac{1}{2}(f_{i,left}^{min} + f_{i,right}^{min}) &\geq \sum_{i=1}^{2^n} f_i^{min} \\ \left(\frac{b-a}{2^n}\right) \sum_{i=1}^{2^n} \frac{1}{2}(f_{i,left}^{min} + f_{i,right}^{min}) &\geq \left(\frac{b-a}{2^n}\right) \sum_{i=1}^{2^n} f_i^{min} \\ \left(\frac{b-a}{2^{n+1}}\right) \sum_{i=1}^{2^n} (f_{i,left}^{min} + f_{i,right}^{min}) &\geq \left(\frac{b-a}{2^n}\right) \sum_{i=1}^{2^n} f_i^{min} \end{aligned}$$

Notice that the left side of the above inequality $\left(\frac{b-a}{2^{n+1}}\right)\sum_{i=1}^{2^n} (f_{i,left}^{min} + f_{i,right}^{min}) = \mathcal{L}_{2^{n+1}}$ and the right hand side $\left(\frac{b-a}{2^n}\right)\sum_{i=1}^{2^n} f_i^{min} = \mathcal{L}_{2^n}$, thus we have

$$\mathcal{L}_{2^{n+1}} \ge \mathcal{L}_{2^n},$$

i.e. the sequence $\{\mathcal{L}_{2^n}\}_{n=1}^{\infty}$ is monotone increasing.

Similarly, we can prove that for the dyadic sequence of partitions of [a, b], the sequence $\{\mathcal{U}_{2^n}\}_{n=1}^{\infty}$ is monotone decreasing.

Theorem 1. The limits $\lim_{n\to\infty} \mathcal{L}_{2^n}$ and $\lim_{n\to\infty} \mathcal{U}_{2^n}$ exist.

Proof. We have proven that the sequences $\{\mathcal{L}_{2^n}\}_{n=1}^{\infty}$ and $\{\mathcal{U}_{2^n}\}_{n=1}^{\infty}$ are bounded and monotone, thus we conclude from the monotone convergence theorem that the sequences converge.

Now we would like to show that $\lim_{n\to\infty} {\mathcal{L}_{2^n}}_{n=1}^{\infty} = \lim_{n\to\infty} {\mathcal{U}_{2^n}}_{n=1}^{\infty}$. Why? because we already know that $\mathcal{L}_{2^n} \leq \mathcal{R}_{2^n} \leq \mathcal{U}_{2^n}$, thus if $\lim_{n\to\infty} \mathcal{L}_{2^n} = \lim_{n\to\infty} \mathcal{U}_{2^n} = I$, then we can conclude by the squeeze theorem that $\lim_{n\to\infty} \mathcal{R}_{2^n} = I$.

Lemma (The small-span lemma). If f is a continuous function on [a, b], then for any $\epsilon > 0$ there exists a real number $\delta > 0$ such that whenever $\|\mathcal{P}\| < \delta$, then $f_i^{max} - f_i^{min} < \epsilon$ on any i^{th} subinterval of \mathcal{P} .

Proof. If f is continuous on the closed and bounded interval [a, b], then by the Heine-Cantor theorem f is uniformly continuous on [a, b]. Let $\epsilon > 0$ be given. As f is uniformly continuous, there exists $\delta > 0$ such that

whenever
$$|x_1 - x_2| < \delta$$

thenever $|f(x_1) - f(x_2)| < \epsilon$.

Given $\delta > 0$ we can always find a partition \mathcal{P} of [a, b] with $||\mathcal{P}|| < \delta$. It follows that the length of any i^{th} subinterval i.e. $|x_i - x_{i-1}| \leq ||\mathcal{P}|| < \delta$. We know that $|x_i^{max} - x_i^{min}| \leq |x_i - x_{i-1}|$, hence $|x_i^{max} - x_i^{min}| < \delta$. Thus, as a consequence of uniform continuity of f, we get $|f(x_i^{max}) - f(x_i^{min})| = f_i^{max} - f_i^{min} < \epsilon$ for any i^{th} subinterval.

Remark. The small-span lemma can also be stated in terms of **dyadic partitions**: If f is a continuous function on [a, b], then for any $\epsilon > 0$ there exists an integer N and therefore such that whenever n > N, thenever $f_i^{max} - f_i^{min} < \epsilon$ on any i^{th} subinterval of \mathcal{P}_{2^n} .

Lemma 3. For a sequence \mathcal{P}_{2^n} of dyadic partitions of [a, b]

$$\lim_{n\to\infty} (\mathcal{U}_{2^n} - \mathcal{L}_{2^n}) = 0.$$

Proof. Notice, that $\mathcal{U}_{2^n} - \mathcal{L}_{2^n} \leq \left(\frac{b-a}{2^n}\right) \sum_{i=1}^{2^n} f_i^{max} - f_i^{min}$. To prove that $\lim_{n\to\infty} \mathcal{U}_{2^n} - \mathcal{L}_{2^n} = 0$, we need to show that for any $\epsilon > 0$ there exists an integer

 $f^{max} - f^{min} < c^*$

N such that $\mathcal{U}_{2^n} - \mathcal{L}_{2^n} < \epsilon$ for all n > N.

By the small-span lemma, for any ϵ^* there exists an integer N such that for all i and for all n > N.

$$\int_{i}^{2^{n}} f_{i}^{max} - f_{i}^{min} < \sum_{i=1}^{2^{n}} \epsilon^{*}$$

$$\left(\frac{b-a}{2^{n}}\right) \sum_{i=1}^{2^{n}} f_{i}^{max} - f_{i}^{min} < \left(\frac{b-a}{2^{n}}\right) \sum_{i=1}^{2^{n}} \epsilon^{*} = \left(\frac{b-a}{2^{n}}\right) 2^{n} \epsilon^{*} = (b-a)\epsilon^{*}$$

$$\mathcal{U}_{2^{n}} - \mathcal{L}_{2^{n}} < (b-a)\epsilon^{*}.$$

This is true for any $\epsilon^* > 0$, hence it is true for $\epsilon^* = \frac{\epsilon}{b-a}$. Thus, for any $\epsilon > 0$ there exists an integer N such that $|\mathcal{U}_{2^n} - \mathcal{L}_{2^n}| < \epsilon$ for all n > N, i.e. $\lim_{n \to \infty} (\mathcal{U}_{2^n} - \mathcal{L}_{2^n}) = 0$.

Remark 1. As $\lim_{n\to\infty} \mathcal{L}_{2^n}$ and $\lim_{n\to\infty} \mathcal{U}_{2^n}$ both exist, and $\lim_{n\to\infty} (\mathcal{U}_{2^n} - \mathcal{L}_{2^n}) = 0$, we can conclude that $\lim_{n\to\infty} \mathcal{L}_{2^n} = \lim_{n\to\infty} \mathcal{U}_{2^n}$. Let us denote this limit by I, i.e. $\lim_{n\to\infty} \mathcal{L}_{2^n} = I$.

PRASHANT ATHAVALÉ

Moreover, $\mathcal{L}_{2^n} \leq \mathcal{R}_{2^n} \leq \mathcal{U}_{2^n}$, and $\lim_{n\to\infty} \mathcal{L}_{2^n} = \lim_{n\to\infty} \mathcal{U}_{2^n} = I$; we can conclude $\lim_{n\to\infty} \mathcal{R}_{2^n} = I$.

5. Results related to the general partition \mathcal{P}

Let \mathcal{P} be a general partition on [a, b].

Lemma 4.

$$\lim_{\|\mathcal{P}\|\to 0} (\mathcal{U}_{\mathcal{P}} - \mathcal{L}_{\mathcal{P}}) = 0.$$

Proof. To show that $\lim_{\|\mathcal{P}\|\to 0} (\mathcal{U}_{\mathcal{P}} - \mathcal{L}_{\mathcal{P}}) = 0$, we need show that for any $\epsilon > 0$ there exists $\delta > 0$ such that whenever $|\|\mathcal{P}\| - 0| < \delta$ i.e. whenever $\|\mathcal{P}\| < \delta$, thenever $\mathcal{U}_{\mathcal{P}} - \mathcal{L}_{\mathcal{P}} < \epsilon$. Let us look at $\mathcal{U}_{\mathcal{P}} - \mathcal{L}_{\mathcal{P}}$.

$$\mathcal{U}_{\mathcal{P}} - \mathcal{L}_{\mathcal{P}} = \sum_{i=1}^{n} (f_i^{max} - f_i^{min}) \triangle x_i$$

Let $\epsilon > 0$ be given. Due to the uniform continuity of f we can find a number $\delta > 0$ for any $\epsilon^* > 0$, such that whenever $\|\mathcal{P}\| < \delta$, thenever $f_i^{max} - f_i^{min} < \epsilon^*$, for any i^{th} subinterval in \mathcal{P} . Notice also that $\sum_{i=1}^n \Delta x_i = b - a$. Thus,

$$\mathcal{U}_{\mathcal{P}} - \mathcal{L}_{\mathcal{P}} = \sum_{i=1}^{n} (f_{i}^{max} - f_{i}^{min}) \triangle x_{i} < \sum_{i=1}^{n} \epsilon^{*} \triangle x_{i} = \epsilon^{*} \sum_{i=1}^{n} \triangle x_{i} = \epsilon^{*} (b-a)$$

Thus, $\mathcal{U}_{\mathcal{P}} - \mathcal{L}_{\mathcal{P}} < \epsilon^{*} (b-a).$

This is true for any $\epsilon^* > 0$, thus we set $\epsilon^* = \frac{\epsilon}{b-a}$. Hence, given $\epsilon > 0$ we have found a number $\delta > 0$ such that whenever $\|\mathcal{P}\| < \delta$, thenever $\mathcal{U}_{\mathcal{P}} - \mathcal{L}_{\mathcal{P}} < \epsilon$, i.e. $\lim_{\|\mathcal{P}\| \to 0} (\mathcal{U}_{\mathcal{P}} - \mathcal{L}_{\mathcal{P}}) = 0$.

Lemma 5. Let \mathcal{P}' be a refinement of \mathcal{P} i.e. \mathcal{P}' is obtained by adding more points to \mathcal{P} . Then $\mathcal{L}_{\mathcal{P}} \leq \mathcal{L}_{\mathcal{P}'} \leq \mathcal{U}_{\mathcal{P}'} \leq \mathcal{U}_{\mathcal{P}}$.

Proof. $\mathcal{L}_{\mathcal{P}'} \leq \mathcal{U}_{\mathcal{P}'}$ is true by definition. The proof of $\mathcal{L}_{\mathcal{P}} \leq \mathcal{L}_{\mathcal{P}'}$ is very similar to the proof of $\mathcal{L}_{2^n} \leq \mathcal{L}_{2^{n+1}}$. This is left to the reader. Similarly, $\mathcal{U}_{\mathcal{P}'} \leq \mathcal{U}_{\mathcal{P}}$ also follows.

Remark. $\mathcal{L}_{\mathcal{P}'} \leq \mathcal{R}_{\mathcal{P}'} \leq \mathcal{U}_{\mathcal{P}'}$ by definition, and $\mathcal{L}_{\mathcal{P}} \leq \mathcal{R}_{\mathcal{P}} \leq \mathcal{U}_{\mathcal{P}}$, also by definition. Thus, it is true that

$$\mathcal{L}_{\mathcal{P}} \leq \mathcal{L}_{\mathcal{P}'} \leq \mathcal{R}_{\mathcal{P}'} \leq \mathcal{U}_{\mathcal{P}'} \leq \mathcal{U}_{\mathcal{P}} \ \mathcal{L}_{\mathcal{P}} \leq \mathcal{R}_{\mathcal{P}} \leq \mathcal{U}_{\mathcal{P}}$$

Theorem 2.

$$\lim_{\|\mathcal{P}\|\to 0} |\mathcal{R}_{\mathcal{P}} - \mathcal{R}_{\mathcal{P}'}| = 0.$$

Proof. We see from the previous remark, that both $\mathcal{R}_{\mathcal{P}}$ and $\mathcal{R}_{\mathcal{P}'}$ lie somewhere between $\mathcal{L}_{\mathcal{P}}$ and $\mathcal{U}_{\mathcal{P}}$. Thus, $|\mathcal{R}_{\mathcal{P}} - \mathcal{R}_{\mathcal{P}'}| < \mathcal{U}_{\mathcal{P}} - \mathcal{L}_{\mathcal{P}}$. But from the lemma ?? we have $\lim_{\|\mathcal{P}\|\to 0} (\mathcal{U}_{\mathcal{P}} - \mathcal{L}_{\mathcal{P}}) = 0$, thus we conclude that $\lim_{\|\mathcal{P}\|\to 0} |\mathcal{R}_{\mathcal{P}} - \mathcal{R}_{\mathcal{P}'}| = 0$.

6. The final stroke

Theorem 3.

$$\lim_{\|\mathcal{P}\|\to 0} \mathcal{R}_{\mathcal{P}} = I.$$

Proof. We want to show that given any $\epsilon > 0$ there exists $\delta > 0$ such that whenever $||\mathcal{P}|| < \delta$ thenever $|\mathcal{R}_{\mathcal{P}} - I| < \epsilon$.

Let us first fix $\epsilon > 0$, and now look at $|\mathcal{R}_{\mathcal{P}} - I|$.

$$\begin{aligned} |\mathcal{R}_{\mathcal{P}} - I| &= |\mathcal{R}_{\mathcal{P}} - \mathcal{L}_{2^{n}} + \mathcal{L}_{2^{n}} - I| \\ &\leq |\mathcal{R}_{\mathcal{P}} - \mathcal{L}_{2^{n}}| + |\mathcal{L}_{2^{n}} - I| \quad \text{(triangle inequality)} \\ &= |\mathcal{R}_{\mathcal{P}} - \mathcal{R}_{\mathcal{P}'} + \mathcal{R}_{\mathcal{P}'} - \mathcal{L}_{2^{n}}| + |\mathcal{L}_{2^{n}} - I| \\ &\leq |\mathcal{R}_{\mathcal{P}} - \mathcal{R}_{\mathcal{P}'}| + |\mathcal{R}_{\mathcal{P}'} - \mathcal{L}_{2^{n}}| + |\mathcal{L}_{2^{n}} - I| \quad \text{(triangle inequality)} \end{aligned}$$

- (1) If \mathcal{P}' is a refinement of \mathcal{P} , then given any $\epsilon_1 > 0$, we can find $\delta_1 > 0$ such that whenever $\|\mathcal{P}\| < \delta_1$ thenever $|\mathcal{R}_{\mathcal{P}} \mathcal{R}_{\mathcal{P}'}| < \epsilon_1$. Let us choose $\epsilon_1 = \frac{\epsilon}{3}$. Thus, there exists $\delta_1 > 0$ such that whenever $\|\mathcal{P}\| < \delta_1$ thenever $|\mathcal{R}_{\mathcal{P}} \mathcal{R}_{\mathcal{P}'}| < \frac{\epsilon}{3}$.
- (2) Note that \mathcal{P}_{2^n} is a special type of partition \mathcal{P} , and thus \mathcal{L}_{2^n} is a special type of Riemann sum $\mathcal{R}_{\mathcal{P}}$. Hence, if \mathcal{P}' is **also** a refinement of \mathcal{P}_{2^n} . Thus, given $\epsilon_2 = \frac{\epsilon}{3}$ there exists $\delta_2 > 0$ such that whenever $\|\mathcal{P}_{2^n}\| = \frac{b-a}{2^n} < \delta_2$, thenever $|\mathcal{R}_{\mathcal{P}'} \mathcal{L}_{2^n}| < \frac{\epsilon}{3}$.

Note, that we need both (1) and (2), therefore we need \mathcal{P}' to be a refinement of both \mathcal{P} and \mathcal{P}_{2^n} , i.e. \mathcal{P}' contains all points of \mathcal{P} and all point of \mathcal{P}_{2^n} and few more.

(3) As $I = \lim_{n \to \infty} \mathcal{L}_{2^n}$, by definition of limits, for $\epsilon_3 = \frac{\epsilon}{3}$ there exist N_3 such that $|\mathcal{L}_{2^n} - I| < \frac{\epsilon}{3}$ for all $n > N_3$ i.e. for all $||\mathcal{P}_{2^n}|| = \frac{b-a}{2^n} < \delta_3 = \frac{1}{2^{N_3}}$.

We want (1), (2) and (3) to be true simultaneously. Thus we replace δ_1, δ_2 and δ_3 with the minimum of three values, $\delta = \min\{\delta_1, \delta_2, \delta_3\}$. Thus all 3 inequalities will be true for this δ . So, whenever $\|\mathcal{P}\| < \delta$, thenever $|\mathcal{R}_{\mathcal{P}} - I| \leq |\mathcal{R}_{\mathcal{P}} - \mathcal{R}_{\mathcal{P}'}| + |\mathcal{R}_{\mathcal{P}'} - \mathcal{L}_{2^n}| + |\mathcal{L}_{2^n} - I| < \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon$. \Box

DONE!