ALL CONTINUOUS FUNCTIONS ON $[a, b]$ ARE RIEMANN-INTEGRABLE

PRASHANT ATHAVALÉ

1. The statement of the theorem

Theorem. All real-valued continuous functions on the closed and bounded interval $[a, b]$ are Riemannintegrable.

1.1. We need to know the following theorems.

(i) Monotone convergence theorem
(ii) Extreme value theorem
(iii) Heine-Cantor theorem

1.2. We need to know the following concepts.

(i) The lower sum $\mathcal{L}_{\mathcal{P}}$, upper sum $\mathcal{U}_{\mathcal{P}}$ and Riemann sum $\mathcal{R}_{\mathcal{P}}$ for a partition \mathcal{P} of $[a, b]$.
(ii) A sequence of dyadic partitions $\left\{\mathcal{P}_{2^{n}}\right\}_{n=0}^{\infty}$ of $[a, b]$.
(iii) Corresponding sums $\mathcal{L}_{2^{n}}, \mathcal{U}_{2^{n}}$ and $\mathcal{R}_{2^{n}}$ for a dyadic partition $\mathcal{P}_{2^{n}}$.
(iv) The refinement \mathcal{P}^{\prime} of \mathcal{P}.
(v) Uniform continuity.

2. Modus Operandi

In this manuscript we follow the following five steps:
(I) We show that $\lim _{n \rightarrow \infty} \mathcal{L}_{2}$ and $\lim _{n \rightarrow \infty} \mathcal{U}_{2^{n}}$ exist. We will use the monotone convergence theorem for this. In particular, we show that $\left\{\mathcal{L}_{2^{n}}\right\}_{n=0}^{\infty}$ is bounded and monotone increasing i.e. $\mathcal{L}_{2^{n}} \leq \mathcal{L}_{2^{n+1}}$.
(II) We will show that $\lim _{n \rightarrow \infty}\left(\mathcal{U}_{2^{n}}-\mathcal{L}_{2^{n}}\right)=0$.

To this effect we use the fact that f is uniformly continuous on $[a, b]$, which follows from Heine-Cantor theorem.
We further conclude from (I) that $\lim _{n \rightarrow \infty} \mathcal{U}_{2^{n}}=\lim _{n \rightarrow \infty} \mathcal{L}_{2^{n}}$.
We denote this limit by I, i.e. $\lim _{n \rightarrow \infty} \mathcal{L}_{2^{n}}=I$.
(III) Now, for a general partition \mathcal{P} of $[a, b]$, we prove that $\mathcal{L}_{\mathcal{P}} \leq \mathcal{L}_{\mathcal{P}^{\prime}} \leq \mathcal{U}_{\mathcal{P}^{\prime}} \leq \mathcal{U}_{\mathcal{P}}$, where \mathcal{P}^{\prime} is a refinement of \mathcal{P}. The proof of the fact that $\mathcal{L}_{\mathcal{P}} \leq \mathcal{L}_{\mathcal{P}^{\prime}}$ is very similar to the proof of $\mathcal{L}_{2^{n}} \leq \mathcal{L}_{2^{n+1}}$.
(IV) We show $\lim _{\|P\| \rightarrow 0}\left(\mathcal{R}_{\mathcal{P}}-\mathcal{R}_{\mathcal{P}^{\prime}}\right)=0$. This is done by realizing that $\left|\mathcal{R}_{\mathcal{P}}-\mathcal{R}_{\mathcal{P}^{\prime}}\right| \leq \mathcal{U}_{\mathcal{P}}-\mathcal{L}_{\mathcal{P}}$, but we show $\lim _{n \rightarrow \infty} \mathcal{U}_{\mathcal{P}}-\mathcal{L}_{\mathcal{P}}=0$.
(V) Finally we show $\lim _{\|\mathcal{P}\| \rightarrow 0} \mathcal{R}_{\mathcal{P}}=I$.

This follows from the observation: $\left|\mathcal{R}_{\mathcal{P}}-I\right| \leq\left|\mathcal{R}_{\mathcal{P}}-\mathcal{R}_{\mathcal{P}^{\prime}}\right|+\left|\mathcal{R}_{\mathcal{P}^{\prime}}-\mathcal{L}_{2^{n}}\right|+\left|\mathcal{L}_{2^{n}}-I\right|$.

3. Preliminaries

Theorem (Monotone convergence theorem). Every bounded and monotone sequence is convergent.
Theorem (Extreme value theorem). A continuous function f on a closed and bounded (nonempty) interval $[a, b]$ attains its extreme values.

Definition (Continuity at a point). We say that the function f is continuous at $x_{0} \in[a, b]$ if for each $\epsilon>0$, there exists $\delta>0$ such that whenever $\quad\left|x-x_{0}\right|<\delta$
thenever $^{1} \quad\left|f(x)-f\left(x_{0}\right)\right|<\epsilon$.
(Note, that this δ may not work for a different x_{0}.)
Definition (Continuity on an interval). We say that a function f is continuous on $[a, b]$ if it is continuous at each point in $[a, b]$.

Definition (Uniform continuity). We say that that the function f is uniformly continuous on $[a, b]$ if for each $\epsilon>0$ there exists a $\delta>0$ such that

$$
\begin{aligned}
& \text { whenever }\left|x_{1}-x_{2}\right|<\delta \\
& \text { thenever }\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|<\epsilon
\end{aligned}
$$

for all $x_{1}, x_{2} \in[a, b]$.
(Note, that the same δ works for all $x_{1}, x_{2} \in[a, b]$. The uniform continuity is much stronger condition than the continuity. All uniformly continuous function are continuous, but all continuous functions are not uniformly continuous.)
Theorem (Heine-Cantor). Every continuous function on a closed and bounded interval is uniformly continuous.
Definition (Partition). We define a partition \mathcal{P} of $[a, b]$ as a finite sequence of numbers $\left\{x_{0}, x_{1}, x_{2}, \ldots, x_{n}\right\}$ such that $x_{0}=a<x_{0}<x_{1}<x_{2} \cdots<x_{n}=b$.
Definition (Refinement of a partition). We say that \mathcal{P}^{\prime} is a refinement of \mathcal{P} if \mathcal{P}^{\prime} contains all the points of \mathcal{P}, with few more points.

Definition (Norm of a partition). Norm of a partition \mathcal{P} denoted by $\|\mathcal{P}\|$ is defined as $\|\mathcal{P}\|=$ $\max _{1 \leq i \leq n}\left|x_{i}-x_{i-1}\right|$.
Definition (Sequence of dyadic partition of an interval). We define the partition $\mathcal{P}_{2^{0}}=\{a, b\}$. We obtain the refinement $\mathcal{P}_{2^{n+1}}$ of $\mathcal{P}_{2^{n}}$ by adding midpoints of subintervals from the previous partition $\mathcal{P}_{2^{n}}$.

$$
\begin{array}{ll}
\text { i.e. } & \mathcal{P}_{2^{0}}=\{a, b\} \\
& \mathcal{P}_{2^{1}}=\left\{a, \frac{a+b}{2}, b\right\} \\
& \mathcal{P}_{2^{2}}=\left\{a, a+\frac{b-a}{4}, a+2 \frac{b-a}{4}, a+3 \frac{b-a}{4}, b\right\}
\end{array}
$$

[^0]Thus, we construct a sequence of partitions $\left\{\mathcal{P}_{2^{n}}\right\}_{n=0}$.
Note, that there are 2^{n} subintervals in the partition $\mathcal{P}_{2^{n}}$ of $[a, b]$, each of length $\left(\frac{b-a}{2^{n}}\right)$.
Definition (Riemann sum $\mathcal{R}_{\mathcal{P}}$). We define the Riemann sum $\mathcal{R}_{\mathcal{P}}$ as

$$
\mathcal{R}_{\mathcal{P}}:=\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \triangle x_{i}
$$

where x_{i}^{*} is any point in the $i^{t h}$ subinterval $\left[x_{i-1}, x_{i}\right]$ of the partition \mathcal{P} of $[a, b]$.
Definition (Lower sum). We define the lower sum $\mathcal{L}_{\mathcal{P}}$ as

$$
\mathcal{L}_{\mathcal{P}}:=\sum_{i=1}^{n} f_{i}^{\min } \triangle x_{i}
$$

where $f_{i}^{\text {min }}$ is the minimum value of the function f on the $i^{\text {th }}$ subinterval $\left[x_{i-1}, x_{i}\right]$ of the partition \mathcal{P} of $[a, b]$.

Note, we know from the extreme value theorem that there exists a point $x_{i}^{\min } \in\left[x_{i-1}, x_{i}\right]$ such that $f\left(x_{i}^{m i n}\right)=f_{i}^{m i n}$.

Definition (Upper sum). We define the upper sum $\mathcal{U}_{\mathcal{P}}$ as

$$
\mathcal{U}_{\mathcal{P}}:=\sum_{i=1}^{n} f_{i}^{\max } \triangle x_{i}
$$

where $f_{i}^{m a x}$ is the maximum value of the function f on the $i^{\text {th }}$ subinterval $\left[x_{i-1}, x_{i}\right]$ of the partition \mathcal{P} of $[a, b]$.

Again, we know from the extreme value theorem that there exists a point $x_{i}^{\max } \in\left[x_{i-1}, x_{i}\right]$ such that $f\left(x_{i}^{\max }\right)=f_{i}^{\max }$.

Remark. Special cases of the lower, upper, and Riemann sums for the dyadic partition $\mathcal{P}_{2^{n}}$ are denoted by $\mathcal{L}_{2^{n}}, \mathcal{U}_{2^{n}}$ and $\mathcal{R}_{2^{n}}$. An important fact is that for dyadic partition $\triangle x_{i}=\left(\frac{b-a}{2^{n}}\right)$ for all subintervals of $[a, b]$. Thus,

$$
\mathcal{L}_{2^{n}}:=\left(\frac{b-a}{2^{n}}\right) \sum_{i=0}^{2^{n}} f_{i}^{\text {min }}, \quad \mathcal{U}_{2^{n}}:=\left(\frac{b-a}{2^{n}}\right) \sum_{i=0}^{2^{n}} f_{i}^{\max }, \quad \mathcal{R}_{2^{n}}:=\left(\frac{b-a}{2^{n}}\right) \sum_{i=0}^{2^{n}} f\left(x_{i}^{*}\right)
$$

Definition. We define the Riemann integral as the limit of the Riemann sum i.e.

$$
\int_{a}^{b} f(x) d x=\lim _{\|\mathcal{P}\| \rightarrow 0} \mathcal{R}_{\mathcal{P}}=\lim _{\|\mathcal{P}\| \rightarrow 0} \sum_{i=0}^{n} f\left(x_{i}^{*}\right) \triangle x_{i}
$$

where x_{i}^{*} is a point in the $i^{t h}$ subinterval of $[a, b]$, i.e. $x_{i}^{*} \in\left[x_{i-1}, x_{i}\right]$.

4. Results about the sequence of dyadic partition $\left\{\mathcal{P}_{2^{n}}\right\}_{n=0}^{\infty}$

Lemma 1. If f is a continuous function on $[a, b]$ then the sequences $\left\{\mathcal{L}_{2^{n}}\right\}_{n=1}^{\infty}$ and $\left\{\mathcal{U}_{2^{n}}\right\}_{n=1}^{\infty}$ are bounded.

Proof. Let $M:=\max _{x \in[a, b]} f(x)$ and $m:=\min _{x \in[a, b]} f(x)$. By the extreme value theorem m and M exist and are finite real numbers. The following is true for all i and n :

$$
\begin{aligned}
& m \leq f_{i}^{\text {min }} \leq f_{i}^{\max } \leq M \\
& \sum_{i=1}^{2^{n}} m \leq \sum_{i=1}^{2^{n}} f_{i}^{\text {min }} \leq \sum_{i=1}^{2^{n}} f_{i}^{\text {max }} \leq \sum_{i=1}^{2^{n}} M \\
&\left(\frac{b-a}{2^{n}}\right) \sum_{i=1}^{2^{n}} m \leq\left(\frac{b-a}{2^{n}}\right) \sum_{i=1}^{2^{n}} f_{i}^{\min } \leq\left(\frac{b-a}{2^{n}}\right) \sum_{i=1}^{2^{n}} f_{i}^{\max } \leq\left(\frac{b-a}{2^{n}}\right) \sum_{i=1}^{2^{n}} M \\
& m(b-a) \leq \mathcal{L}_{2^{n}} \leq \mathcal{U}_{2^{n}} \leq M(b-a)
\end{aligned}
$$

Now if we could show that the sequence $\left\{\mathcal{L}_{2^{n}}\right\}_{n=0}^{\infty}$ is monotone increasing, then we can conclude from the monotone convergence theorem that sequence $\left\{\mathcal{L}_{2^{n}}\right\}_{n=0}^{\infty}$ must converge. To show that $\left\{\mathcal{L}_{2^{n}}\right\}_{n=0}^{\infty}$ is monotone increasing we need to show that $\mathcal{L}_{2^{n+1}} \geq \mathcal{L}_{2^{n}}$.
Lemma 2. For the dyadic sequence of partitions of $[a, b]$, the sequence $\left\{\mathcal{L}_{2^{n}}\right\}_{n=1}^{\infty}$ is monotone increasing.
Proof. Let us divide the $i^{\text {th }}$ subinterval $\left[x_{i-1}, x_{i}\right]$ in half to get two subintervals, the left subinterval: $\left[x_{i-1}, \frac{x_{i-1}+x_{i}}{2}\right]$ and the right subinterval: $\left[\frac{x_{i-1}+x_{i}}{2}, x_{i}\right]$. Let $f_{i, l e f t}^{\min }$ be the minimum value of f on the left subinterval and $f_{i, r i g h t}^{\text {min }}$ be the minimum value of f on the right subinterval. As $f_{i}^{\text {min }}$ is the minimum over the bigger subinterval $\left[x_{i-1}, x_{i}\right.$], we must have

$$
f_{i, l e f t}^{\min } \geq f_{i}^{\min } \quad \text { as well as } \quad f_{i, r i g h t}^{m i n} \geq f_{i}^{m i n}
$$

Thus, adding these equations and dividing by 2 we get

$$
\begin{aligned}
& \frac{1}{2}\left(f_{i, l e f t}^{m i n}\right. \\
& \sum_{i=1}^{2^{n}} \frac{1}{2}\left(f_{i, \text { right }}^{\min }\right)\left.\geq f_{i}^{\text {min }}+f_{i, \text { right }}^{\min }\right) \\
& \geq \sum_{i=1}^{2^{n}} f_{i}^{\text {min }} \\
&\left(\frac{b-a}{2^{n}}\right) \sum_{i=1}^{2^{n}} \frac{1}{2}\left(f_{i, l e f t}^{m i n}+f_{i, \text { right }}^{m i n}\right) \geq\left(\frac{b-a}{2^{n}}\right) \sum_{i=1}^{2^{n}} f_{i}^{\text {min }} \\
&\left(\frac{b-a}{2^{n+1}}\right) \sum_{i=1}^{2^{n}}\left(f_{i, l e f t}^{m i n}+f_{i, \text { right }}^{m i n}\right) \geq\left(\frac{b-a}{2^{n}}\right) \sum_{i=1}^{2^{n}} f_{i}^{\text {min }}
\end{aligned}
$$

Notice that the left side of the above inequality $\left(\frac{b-a}{2^{n+1}}\right) \sum_{i=1}^{2^{n}}\left(f_{i, l e f t}^{\min }+f_{i, r i g h t}^{\min }\right)=\mathcal{L}_{2^{n+1}}$ and the right hand side $\left(\frac{b-a}{2^{n}}\right) \sum_{i=1}^{2^{n}} f_{i}^{\text {min }}=\mathcal{L}_{2^{n}}$, thus we have

$$
\mathcal{L}_{2^{n+1}} \geq \mathcal{L}_{2^{n}}
$$

i.e. the sequence $\left\{\mathcal{L}_{2^{n}}\right\}_{n=1}^{\infty}$ is monotone increasing.

Similarly, we can prove that for the dyadic sequence of partitions of $[a, b]$, the sequence $\left\{\mathcal{U}_{2^{n}}\right\}_{n=1}^{\infty}$ is monotone decreasing.

Theorem 1. The limits $\lim _{n \rightarrow \infty} \mathcal{L}_{2^{n}}$ and $\lim _{n \rightarrow \infty} \mathcal{U}_{2^{n}}$ exist.
Proof. We have proven that the sequences $\left\{\mathcal{L}_{2^{n}}\right\}_{n=1}^{\infty}$ and $\left\{\mathcal{U}_{2^{n}}\right\}_{n=1}^{\infty}$ are bounded and monotone, thus we conclude from the monotone convergence theorem that the sequences converge.

Now we would like to show that $\lim _{n \rightarrow \infty}\left\{\mathcal{L}_{2^{n}}\right\}_{n=1}^{\infty}=\lim _{n \rightarrow \infty}\left\{\mathcal{U}_{2^{n}}\right\}_{n=1}^{\infty}$. Why? because we already know that $\mathcal{L}_{2^{n}} \leq \mathcal{R}_{2^{n}} \leq \mathcal{U}_{2^{n}}$, thus if $\lim _{n \rightarrow \infty} \mathcal{L}_{2^{n}}=\lim _{n \rightarrow \infty} \mathcal{U}_{2^{n}}=I$, then we can conclude by the squeeze theorem that $\lim _{n \rightarrow \infty} \mathcal{R}_{2^{n}}=I$.
Lemma (The small-span lemma). If f is a continuous function on $[a, b]$, then for any $\epsilon>0$ there exists a real number $\delta>0$ such that whenever $\|\mathcal{P}\|<\delta$, then $f_{i}^{\text {max }}-f_{i}^{\text {min }}<\epsilon$ on any $i^{\text {th }}$ subinterval of \mathcal{P}.

Proof. If f is continuous on the closed and bounded interval $[a, b]$, then by the Heine-Cantor theorem f is uniformly continuous on $[a, b]$. Let $\epsilon>0$ be given. As f is uniformly continuous, there exists $\delta>0$ such that

$$
\begin{aligned}
& \text { whenever }\left|x_{1}-x_{2}\right|<\delta \\
& \text { thenever }\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|<\epsilon
\end{aligned}
$$

Given $\delta>0$ we can always find a partition \mathcal{P} of $[a, b]$ with $\|\mathcal{P}\|<\delta$. It follows that the length of any $i^{t h}$ subinterval i.e. $\left|x_{i}-x_{i-1}\right| \leq\|\mathcal{P}\|<\delta$. We know that $\left|x_{i}^{\max }-x_{i}^{\text {min }}\right| \leq\left|x_{i}-x_{i-1}\right|$, hence $\left|x_{i}^{\max }-x_{i}^{\min }\right|<\delta$. Thus, as a consequence of uniform continuity of f, we get $\left|f\left(x_{i}^{\max }\right)-f\left(x_{i}^{\min }\right)\right|=$ $f_{i}^{\text {max }}-f_{i}^{\text {min }}<\epsilon$ for any $i^{t h}$ subinterval.

Remark. The small-span lemma can also be stated in terms of dyadic partitions: If f is a continuous function on $[a, b]$, then for any $\epsilon>0$ there exists an integer N and therefore such that whenever $n>N$, thenever $f_{i}^{\text {max }}-f_{i}^{\text {min }}<\epsilon$ on any $i^{\text {th }}$ subinterval of $\mathcal{P}_{2^{n}}$.
Lemma 3. For a sequence $\mathcal{P}_{2^{n}}$ of dyadic partitions of $[a, b]$

$$
\lim _{n \rightarrow \infty}\left(\mathcal{U}_{2^{n}}-\mathcal{L}_{2^{n}}\right)=0
$$

Proof. Notice, that $\mathcal{U}_{2^{n}}-\mathcal{L}_{2^{n}} \leq\left(\frac{b-a}{2^{n}}\right) \sum_{i=1}^{2^{n}} f_{i}^{\max }-f_{i}^{\text {min }}$.
To prove that $\lim _{n \rightarrow \infty} \mathcal{U}_{2^{n}}-\mathcal{L}_{2^{n}}=0$, we need to show that for any $\epsilon>0$ there exists an integer N such that $\mathcal{U}_{2^{n}}-\mathcal{L}_{2^{n}}<\epsilon$ for all $n>N$.
By the small-span lemma, for any ϵ^{*} there exists an integer N such that for all i and for all $n>N$.

$$
\begin{aligned}
f_{i}^{\max }-f_{i}^{\min } & <\epsilon^{*} \\
\sum_{i=1}^{2^{n}} f_{i}^{\max }-f_{i}^{\text {min }} & <\sum_{i=1}^{2^{n}} \epsilon^{*} \\
\left(\frac{b-a}{2^{n}}\right) \sum_{i=1}^{2^{n}} f_{i}^{\max }-f_{i}^{\text {min }} & <\left(\frac{b-a}{2^{n}}\right) \sum_{i=1}^{2^{n}} \epsilon^{*}=\left(\frac{b-a}{2^{n}}\right) 2^{n} \epsilon^{*}=(b-a) \epsilon^{*} \\
\mathcal{U}_{2^{n}}-\mathcal{L}_{2^{n}} & <(b-a) \epsilon^{*}
\end{aligned}
$$

This is true for any $\epsilon^{*}>0$, hence it is true for $\epsilon^{*}=\frac{\epsilon}{b-a}$. Thus, for any $\epsilon>0$ there exists an integer N such that $\left|\mathcal{U}_{2^{n}}-\mathcal{L}_{2^{n}}\right|<\epsilon$ for all $n>N$, i.e. $\lim _{n \rightarrow \infty}\left(\mathcal{U}_{2^{n}}-\mathcal{L}_{2^{n}}\right)=0$.
Remark 1. As $\lim _{n \rightarrow \infty} \mathcal{L}_{2^{n}}$ and $\lim _{n \rightarrow \infty} \mathcal{U}_{2^{n}}$ both exist, and $\lim _{n \rightarrow \infty}\left(\mathcal{U}_{2^{n}}-\mathcal{L}_{2^{n}}\right)=0$, we can conclude that $\lim _{n \rightarrow \infty} \mathcal{L}_{2^{n}}=\lim _{n \rightarrow \infty} \mathcal{U}_{2^{n}}$.
Let us denote this limit by I, i.e. $\lim _{n \rightarrow \infty} \mathcal{L}_{2^{n}}=I$.

Moreover, $\mathcal{L}_{2^{n}} \leq \mathcal{R}_{2^{n}} \leq \mathcal{U}_{2^{n}}$, and $\lim _{n \rightarrow \infty} \mathcal{L}_{2^{n}}=\lim _{n \rightarrow \infty} \mathcal{U}_{2^{n}}=I ;$ we can conclude $\lim _{n \rightarrow \infty} \mathcal{R}_{2^{n}}=I$.

5. Results Related to the general partition \mathcal{P}

Let \mathcal{P} be a general partition on $[a, b]$.

Lemma 4.

$$
\lim _{\|\mathcal{P}\| \rightarrow 0}\left(\mathcal{U}_{\mathcal{P}}-\mathcal{L}_{\mathcal{P}}\right)=0
$$

Proof. To show that $\lim _{\|\mathcal{P}\| \rightarrow 0}\left(\mathcal{U}_{\mathcal{P}}-\mathcal{L}_{\mathcal{P}}\right)=0$, we need show that for any $\epsilon>0$ there exists $\delta>0$ such that whenever $|\|\mathcal{P}\|-0|<\delta$ i.e. whenever $\|\mathcal{P}\|<\delta$, thenever $\mathcal{U}_{\mathcal{P}}-\mathcal{L}_{\mathcal{P}}<\epsilon$. Let us look at $\mathcal{U}_{\mathcal{P}}-\mathcal{L}_{\mathcal{P}}$.

$$
\mathcal{U}_{\mathcal{P}}-\mathcal{L}_{\mathcal{P}}=\sum_{i=1}^{n}\left(f_{i}^{\max }-f_{i}^{\min }\right) \triangle x_{i}
$$

Let $\epsilon>0$ be given. Due to the uniform continuity of f we can find a number $\delta>0$ for any $\epsilon^{*}>0$, such that whenever $\|\mathcal{P}\|<\delta$, thenever $f_{i}^{\text {max }}-f_{i}^{\text {min }}<\epsilon^{*}$, for any $i^{\text {th }}$ subinterval in \mathcal{P}. Notice also that $\sum_{i=1}^{n} \triangle x_{i}=b-a$. Thus,

$$
\begin{aligned}
& \mathcal{U}_{\mathcal{P}}-\mathcal{L}_{\mathcal{P}}
\end{aligned}=\sum_{i=1}^{n}\left(f_{i}^{\text {max }}-f_{i}^{\text {min }}\right) \triangle x_{i}<\sum_{i=1}^{n} \epsilon^{*} \triangle x_{i}=\epsilon^{*} \sum_{i=1}^{n} \triangle x_{i}=\epsilon^{*}(b-a)
$$

This is true for any $\epsilon^{*}>0$, thus we set $\epsilon^{*}=\frac{\epsilon}{b-a}$. Hence, given $\epsilon>0$ we have found a number $\delta>0$ such that whenever $\|\mathcal{P}\|<\delta$, thenever $\mathcal{U}_{\mathcal{P}}-\mathcal{L}_{\mathcal{P}}<\epsilon$, i.e. $\lim _{\|\mathcal{P}\| \rightarrow 0}\left(\mathcal{U}_{\mathcal{P}}-\mathcal{L}_{\mathcal{P}}\right)=0$.

Lemma 5. Let \mathcal{P}^{\prime} be a refinement of \mathcal{P} i.e. \mathcal{P}^{\prime} is obtained by adding more points to \mathcal{P}. Then $\mathcal{L}_{\mathcal{P}} \leq \mathcal{L}_{\mathcal{P}^{\prime}} \leq \mathcal{U}_{\mathcal{P}^{\prime}} \leq \mathcal{U}_{\mathcal{P}}$.
Proof. $\mathcal{L}_{\mathcal{P}^{\prime}} \leq \mathcal{U}_{\mathcal{P}^{\prime}}$ is true by definition. The proof of $\mathcal{L}_{\mathcal{P}} \leq \mathcal{L}_{\mathcal{P}^{\prime}}$ is very similar to the proof of $\mathcal{L}_{2^{n}} \leq \mathcal{L}_{2^{n+1}}$. This is left to the reader. Similarly, $\mathcal{U}_{\mathcal{P}^{\prime}} \leq \mathcal{U}_{\mathcal{P}}$ also follows.

Remark. $\mathcal{L}_{\mathcal{P}^{\prime}} \leq \mathcal{R}_{\mathcal{P}^{\prime}} \leq \mathcal{U}_{\mathcal{P}^{\prime}}$ by definition, and $\mathcal{L}_{\mathcal{P}} \leq \mathcal{R}_{\mathcal{P}} \leq \mathcal{U}_{\mathcal{P}}$, also by definition. Thus, it is true that

$$
\begin{aligned}
& \mathcal{L}_{\mathcal{P}} \leq \mathcal{L}_{\mathcal{P}^{\prime}} \leq \mathcal{R}_{\mathcal{P}^{\prime}} \leq \mathcal{U}_{\mathcal{P}^{\prime}} \leq \mathcal{U}_{\mathcal{P}} \\
& \mathcal{L}_{\mathcal{P}} \leq \mathcal{R}_{\mathcal{P}} \leq \quad \mathcal{U}_{\mathcal{P}}
\end{aligned}
$$

Theorem 2.

$$
\lim _{\|\mathcal{P}\| \rightarrow 0}\left|\mathcal{R}_{\mathcal{P}}-\mathcal{R}_{\mathcal{P}^{\prime}}\right|=0
$$

Proof. We see from the previous remark, that both $\mathcal{R}_{\mathcal{P}}$ and $\mathcal{R}_{\mathcal{P}^{\prime}}$ lie somewhere between $\mathcal{L}_{\mathcal{P}}$ and $\mathcal{U}_{\mathcal{P}}$. Thus, $\left|\mathcal{R}_{\mathcal{P}}-\mathcal{R}_{\mathcal{P}^{\prime}}\right|<\mathcal{U}_{\mathcal{P}}-\mathcal{L}_{\mathcal{P}}$. But from the lemma ?? we have $\lim _{\|\mathcal{P}\| \rightarrow 0}\left(\mathcal{U}_{\mathcal{P}}-\mathcal{L}_{\mathcal{P}}\right)=0$, thus we conclude that $\lim _{\|\mathcal{P}\| \rightarrow 0}\left|\mathcal{R}_{\mathcal{P}}-\mathcal{R}_{\mathcal{P}^{\prime}}\right|=0$.
6. The final stroke

Theorem 3.

$$
\lim _{\|\mathcal{P}\| \rightarrow 0} \mathcal{R}_{\mathcal{P}}=I
$$

Proof. We want to show that given any $\epsilon>0$ there exists $\delta>0$ such that whenever $\|\mathcal{P}\|<\delta$ thenever $\left|\mathcal{R}_{\mathcal{P}}-I\right|<\epsilon$.
Let us first fix $\epsilon>0$, and now look at $\left|\mathcal{R}_{\mathcal{P}}-I\right|$.

$$
\begin{aligned}
\left|\mathcal{R}_{\mathcal{P}}-I\right| & =\left|\mathcal{R}_{\mathcal{P}}-\mathcal{L}_{2^{n}}+\mathcal{L}_{2^{n}}-I\right| \\
& \leq\left|\mathcal{R}_{\mathcal{P}}-\mathcal{L}_{2^{n}}\right|+\left|\mathcal{L}_{2^{n}}-I\right| \quad \text { (triangle inequality) } \\
& =\left|\mathcal{R}_{\mathcal{P}}-\mathcal{R}_{\mathcal{P}^{\prime}}+\mathcal{R}_{\mathcal{P}^{\prime}}-\mathcal{L}_{2^{n}}\right|+\left|\mathcal{L}_{2^{n}}-I\right| \\
& \leq\left|\mathcal{R}_{\mathcal{P}}-\mathcal{R}_{\mathcal{P}^{\prime}}\right|+\left|\mathcal{R}_{\mathcal{P}^{\prime}}-\mathcal{L}_{2^{n}}\right|+\left|\mathcal{L}_{2^{n}}-I\right| \quad \text { (triangle inequality) }
\end{aligned}
$$

(1) If \mathcal{P}^{\prime} is a refinement of \mathcal{P}, then given any $\epsilon_{1}>0$, we can find $\delta_{1}>0$ such that whenever $\|\mathcal{P}\|<\delta_{1}$ thenever $\left|\mathcal{R}_{\mathcal{P}}-\mathcal{R}_{\mathcal{P}^{\prime}}\right|<\epsilon_{1}$. Let us choose $\epsilon_{1}=\frac{\epsilon}{3}$. Thus, there exists $\delta_{1}>0$ such that whenever $\|\mathcal{P}\|<\delta_{1}$ thenever $\left|\mathcal{R}_{\mathcal{P}}-\mathcal{R}_{\mathcal{P}^{\prime}}\right|<\frac{\epsilon}{3}$.
(2) Note that $\mathcal{P}_{2^{n}}$ is a special type of partition \mathcal{P}, and thus $\mathcal{L}_{2^{n}}$ is a special type of Riemann sum $\mathcal{R}_{\mathcal{P}}$. Hence, if \mathcal{P}^{\prime} is also a refinement of $\mathcal{P}_{2^{n}}$. Thus, given $\epsilon_{2}=\frac{\epsilon}{3}$ there exists $\delta_{2}>0$ such that whenever $\left\|\mathcal{P}_{2^{n}}\right\|=\frac{b-a}{2^{n}}<\delta_{2}$, thenever $\left|\mathcal{R}_{\mathcal{P}^{\prime}}-\mathcal{L}_{2^{n}}\right|<\frac{\epsilon}{3}$.

Note, that we need both (1) and (2), therefore we need \mathcal{P}^{\prime} to be a refinement of both \mathcal{P} and $\mathcal{P}_{2^{n}}$, i.e. \mathcal{P}^{\prime} contains all points of \mathcal{P} and all point of $\mathcal{P}_{2^{n}}$ and few more.
(3) As $I=\lim _{n \rightarrow \infty} \mathcal{L}_{2^{n}}$, by definition of limits, for $\epsilon_{3}=\frac{\epsilon}{3}$ there exist N_{3} such that $\left|\mathcal{L}_{2^{n}}-I\right|<\frac{\epsilon}{3}$ for all $n>N_{3}$ i.e. for all $\left\|\mathcal{P}_{2^{n}}\right\|=\frac{b-a}{2^{n}}<\delta_{3}=\frac{1}{2^{N_{3}}}$.

We want (1), (2) and (3) to be true simultaneously. Thus we replace δ_{1}, δ_{2} and δ_{3} with the minimum of three values, $\delta=\min \left\{\delta_{1}, \delta_{2}, \delta_{3}\right\}$. Thus all 3 inequalities will be true for this δ. So, whenever $\|\mathcal{P}\|<\delta$, thenever $\left|\mathcal{R}_{\mathcal{P}}-I\right| \leq\left|\mathcal{R}_{\mathcal{P}}-\mathcal{R}_{\mathcal{P}^{\prime}}\right|+\left|\mathcal{R}_{\mathcal{P}^{\prime}}-\mathcal{L}_{2^{n}}\right|+\left|\mathcal{L}_{2^{n}}-I\right|<\frac{\epsilon}{3}+\frac{\epsilon}{3}+\frac{\epsilon}{3}=\epsilon$.

[^0]: ${ }^{1}$ the word "thenever" is copyrighted by Prashant Athavalé

