
ALL CONTINUOUS FUNCTIONS ON [a, b] ARE RIEMANN-INTEGRABLE

PRASHANT ATHAVALÉ

1. The statement of the theorem

Theorem. All real-valued continuous functions on the closed and bounded interval [a, b] are Riemann-
integrable.

1.1. We need to know the following theorems.

(i) Monotone convergence theorem
(ii) Extreme value theorem

(iii) Heine-Cantor theorem

1.2. We need to know the following concepts.

(i) The lower sum LP , upper sum UP and Riemann sum RP for a partition P of [a, b].
(ii) A sequence of dyadic partitions {P2n}∞n=0 of [a, b].

(iii) Corresponding sums L2n , U2n and R2n for a dyadic partition P2n .
(iv) The refinement P ′ of P.
(v) Uniform continuity.

2. Modus Operandi

In this manuscript we follow the following five steps:

(I) We show that limn→∞ L2n and limn→∞ U2n exist. We will use the monotone convergence
theorem for this. In particular, we show that {L2n}∞n=0 is bounded and monotone increasing
i.e. L2n ≤ L2n+1 .

(II) We will show that limn→∞(U2n − L2n) = 0.
To this effect we use the fact that f is uniformly continuous on [a, b], which follows from
Heine-Cantor theorem.
We further conclude from (I) that limn→∞ U2n = limn→∞ L2n .
We denote this limit by I, i.e. limn→∞ L2n = I.

(III) Now, for a general partition P of [a, b], we prove that LP ≤ LP′ ≤ UP′ ≤ UP , where P ′
is a refinement of P. The proof of the fact that LP ≤ LP′ is very similar to the proof of
L2n ≤ L2n+1 .

(IV) We show lim‖P‖→0(RP −RP′) = 0. This is done by realizing that |RP −RP′ | ≤ UP − LP ,
but we show limn→∞ UP − LP = 0.

(V) Finally we show lim‖P‖→0RP = I.
This follows from the observation: |RP − I| ≤ |RP −RP′ |+ |RP′ − L2n |+ |L2n − I|.
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3. Preliminaries

Theorem (Monotone convergence theorem). Every bounded and monotone sequence is convergent.

Theorem (Extreme value theorem). A continuous function f on a closed and bounded (nonempty)
interval [a, b] attains its extreme values.

Definition (Continuity at a point). We say that the function f is continuous at x0 ∈ [a, b] if for
each ε > 0, there exists δ > 0 such that
whenever |x− x0| < δ
thenever1 |f(x)− f(x0)| < ε.

(Note, that this δ may not work for a different x0.)

Definition (Continuity on an interval). We say that a function f is continuous on [a, b] if it is
continuous at each point in [a, b].

Definition (Uniform continuity). We say that that the function f is uniformly continuous on [a, b]
if for each ε > 0 there exists a δ > 0 such that

whenever |x1 − x2| < δ

thenever |f(x1)− f(x2)| < ε.

for all x1, x2 ∈ [a, b].

(Note, that the same δ works for all x1, x2 ∈ [a, b]. The uniform continuity is much stronger
condition than the continuity. All uniformly continuous function are continuous, but all continuous
functions are not uniformly continuous.)

Theorem (Heine-Cantor). Every continuous function on a closed and bounded interval is uni-
formly continuous.

Definition (Partition). We define a partition P of [a, b] as a finite sequence of numbers {x0, x1, x2, . . . , xn}
such that x0 = a < x0 < x1 < x2 · · · < xn = b.

Definition (Refinement of a partition). We say that P ′ is a refinement of P if P ′ contains all the
points of P, with few more points.

Definition (Norm of a partition). Norm of a partition P denoted by ‖P‖ is defined as ‖P‖ =
max1≤i≤n |xi − xi−1|.

Definition (Sequence of dyadic partition of an interval). We define the partition P20 = {a, b}. We
obtain the refinement P2n+1 of P2n by adding midpoints of subintervals from the previous partition
P2n .

i.e. P20 = {a, b}

P21 = {a, a+ b

2
, b}

P22 = {a, a+
b− a

4
, a+ 2

b− a
4

, a+ 3
b− a

4
, b}

. . .

1the word “thenever” is copyrighted by Prashant Athavalé
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Thus, we construct a sequence of partitions {P2n}n=0.
Note, that there are 2n subintervals in the partition P2n of [a, b], each of length

(
b−a
2n

)
.

Definition (Riemann sum RP). We define the Riemann sum RP as

RP :=

n∑
i=1

f(x∗i )4xi,

where x∗i is any point in the ith subinterval [xi−1, xi] of the partition P of [a, b].

Definition (Lower sum). We define the lower sum LP as

LP :=

n∑
i=1

fmini 4xi,

where fmini is the minimum value of the function f on the ith subinterval [xi−1, xi] of the partition
P of [a, b].

Note, we know from the extreme value theorem that there exists a point xmini ∈ [xi−1, xi] such that
f(xmini ) = fmini .

Definition (Upper sum). We define the upper sum UP as

UP :=

n∑
i=1

fmaxi 4xi,

where fmaxi is the maximum value of the function f on the ith subinterval [xi−1, xi] of the partition
P of [a, b].

Again, we know from the extreme value theorem that there exists a point xmaxi ∈ [xi−1, xi] such
that f(xmaxi ) = fmaxi .

Remark. Special cases of the lower, upper, and Riemann sums for the dyadic partition P2n are
denoted by L2n ,U2n and R2n . An important fact is that for dyadic partition 4xi =

(
b−a
2n

)
for all

subintervals of [a, b]. Thus,

L2n :=
(b− a

2n

) 2n∑
i=0

fmini , U2n :=
(b− a

2n

) 2n∑
i=0

fmaxi , R2n :=
(b− a

2n

) 2n∑
i=0

f(x∗i ).

Definition. We define the Riemann integral as the limit of the Riemann sum i.e.∫ b

a

f(x) dx = lim
‖P‖→0

RP = lim
‖P‖→0

n∑
i=0

f(x∗i )4xi,

where x∗i is a point in the ith subinterval of [a, b], i.e. x∗i ∈ [xi−1, xi].

4. Results about the sequence of dyadic partition {P2n}∞n=0

Lemma 1. If f is a continuous function on [a, b] then the sequences {L2n}∞n=1 and {U2n}∞n=1 are
bounded.
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Proof. Let M := maxx∈[a,b] f(x) and m := minx∈[a,b] f(x). By the extreme value theorem m and
M exist and are finite real numbers. The following is true for all i and n:

m ≤ fmini ≤ fmaxi ≤M
2n∑
i=1

m ≤
2n∑
i=1

fmini ≤
2n∑
i=1

fmaxi ≤
2n∑
i=1

M

(b− a
2n

) 2n∑
i=1

m ≤
(b− a

2n

) 2n∑
i=1

fmini ≤
(b− a

2n

) 2n∑
i=1

fmaxi ≤
(b− a

2n

) 2n∑
i=1

M

m(b− a) ≤ L2n ≤ U2n ≤M(b− a)

�

Now if we could show that the sequence {L2n}∞n=0 is monotone increasing, then we can conclude
from the monotone convergence theorem that sequence {L2n}∞n=0 must converge. To show that
{L2n}∞n=0 is monotone increasing we need to show that L2n+1 ≥ L2n .

Lemma 2. For the dyadic sequence of partitions of [a, b], the sequence {L2n}∞n=1 is monotone
increasing.

Proof. Let us divide the ith subinterval [xi−1, xi] in half to get two subintervals, the left subinterval:

[xi−1,
xi−1+xi

2 ] and the right subinterval: [xi−1+xi

2 , xi]. Let fmini,left be the minimum value of f on

the left subinterval and fmini,right be the minimum value of f on the right subinterval. As fmini is the

minimum over the bigger subinterval [xi−1, xi], we must have

fmini,left ≥ fmini as well as fmini,right ≥ fmini .

Thus, adding these equations and dividing by 2 we get

1

2
(fmini,left + fmini,right) ≥ fmini

2n∑
i=1

1

2
(fmini,left + fmini,right) ≥

2n∑
i=1

fmini

(b− a
2n

) 2n∑
i=1

1

2
(fmini,left + fmini,right) ≥

(b− a
2n

) 2n∑
i=1

fmini

(b− a
2n+1

) 2n∑
i=1

(fmini,left + fmini,right) ≥
(b− a

2n

) 2n∑
i=1

fmini

Notice that the left side of the above inequality
(
b−a
2n+1

)∑2n

i=1(fmini,left + fmini,right) = L2n+1 and the

right hand side
(
b−a
2n

)∑2n

i=1 f
min
i = L2n , thus we have

L2n+1 ≥ L2n ,

i.e. the sequence {L2n}∞n=1 is monotone increasing. �

Similarly, we can prove that for the dyadic sequence of partitions of [a, b], the sequence {U2n}∞n=1

is monotone decreasing.
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Theorem 1. The limits limn→∞ L2n and limn→∞ U2n exist.

Proof. We have proven that the sequences {L2n}∞n=1 and {U2n}∞n=1 are bounded and monotone,
thus we conclude from the monotone convergence theorem that the sequences converge. �

Now we would like to show that limn→∞{L2n}∞n=1 = limn→∞{U2n}∞n=1. Why? because we
already know that L2n ≤ R2n ≤ U2n , thus if limn→∞ L2n = limn→∞ U2n = I, then we can conclude
by the squeeze theorem that limn→∞R2n = I.

Lemma (The small-span lemma). If f is a continuous function on [a, b], then for any ε > 0 there
exists a real number δ > 0 such that whenever ‖P‖ < δ, then fmaxi −fmini < ε on any ith subinterval
of P.

Proof. If f is continuous on the closed and bounded interval [a, b], then by the Heine-Cantor theorem
f is uniformly continuous on [a, b]. Let ε > 0 be given. As f is uniformly continuous, there exists
δ > 0 such that

whenever |x1 − x2| < δ

thenever |f(x1)− f(x2)| < ε.

Given δ > 0 we can always find a partition P of [a, b] with ‖P‖ < δ. It follows that the length of
any ith subinterval i.e. |xi − xi−1| ≤ ‖P‖ < δ. We know that |xmaxi − xmini | ≤ |xi − xi−1|, hence
|xmaxi −xmini | < δ. Thus, as a consequence of uniform continuity of f , we get |f(xmaxi )−f(xmini )| =
fmaxi − fmini < ε for any ith subinterval. �

Remark. The small-span lemma can also be stated in terms of dyadic partitions: If f is a
continuous function on [a, b], then for any ε > 0 there exists an integer N and therefore such that
whenever n > N , thenever fmaxi − fmini < ε on any ith subinterval of P2n .

Lemma 3. For a sequence P2n of dyadic partitions of [a, b ]

lim
n→∞

(U2n − L2n) = 0.

Proof. Notice, that U2n − L2n ≤
(
b−a
2n

)∑2n

i=1 f
max
i − fmini .

To prove that limn→∞ U2n − L2n = 0, we need to show that for any ε > 0 there exists an integer
N such that U2n − L2n < ε for all n > N .
By the small-span lemma, for any ε∗ there exists an integer N such that for all i and for all n > N .

fmaxi − fmini < ε∗

2n∑
i=1

fmaxi − fmini <

2n∑
i=1

ε∗

(b− a
2n

) 2n∑
i=1

fmaxi − fmini <
(b− a

2n

) 2n∑
i=1

ε∗ =
(b− a

2n

)
2n ε∗ = (b− a)ε∗

U2n − L2n < (b− a)ε∗.

This is true for any ε∗ > 0, hence it is true for ε∗ = ε
b−a . Thus, for any ε > 0 there exists an integer

N such that | U2n − L2n | < ε for all n > N , i.e. limn→∞(U2n − L2n) = 0. �

Remark 1. As limn→∞ L2n and limn→∞ U2n both exist, and limn→∞(U2n − L2n) = 0, we can
conclude that limn→∞ L2n = limn→∞ U2n .
Let us denote this limit by I, i.e. limn→∞ L2n = I.
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Moreover, L2n ≤ R2n ≤ U2n , and limn→∞ L2n = limn→∞ U2n = I;
we can conclude limn→∞R2n = I.

5. Results related to the general partition P

Let P be a general partition on [a, b].

Lemma 4.

lim
‖P‖→0

(UP − LP) = 0.

Proof. To show that lim‖P‖→0(UP − LP) = 0, we need show that for any ε > 0 there exists δ > 0
such that whenever |‖P‖ − 0| < δ i.e. whenever ‖P‖ < δ, thenever UP − LP < ε. Let us look at
UP − LP .

UP − LP =

n∑
i=1

(fmaxi − fmini )4xi

Let ε > 0 be given. Due to the uniform continuity of f we can find a number δ > 0 for any ε∗ > 0,
such that whenever ‖P‖ < δ, thenever fmaxi − fmini < ε∗, for any ith subinterval in P. Notice also
that

∑n
i=14xi = b− a. Thus,

UP − LP =

n∑
i=1

(fmaxi − fmini )4xi <
n∑
i=1

ε∗4xi = ε∗
n∑
i=1

4xi = ε∗(b− a)

Thus, UP − LP < ε∗(b− a).

This is true for any ε∗ > 0, thus we set ε∗ = ε
b−a . Hence, given ε > 0 we have found a number δ > 0

such that whenever ‖P‖ < δ, thenever UP − LP < ε, i.e. lim‖P‖→0(UP − LP) = 0. �

Lemma 5. Let P ′ be a refinement of P i.e. P ′ is obtained by adding more points to P. Then
LP ≤ LP′ ≤ UP′ ≤ UP .

Proof. LP′ ≤ UP′ is true by definition. The proof of LP ≤ LP′ is very similar to the proof of
L2n ≤ L2n+1 . This is left to the reader. Similarly, UP′ ≤ UP also follows. �

Remark. LP′ ≤ RP′ ≤ UP′ by definition, and LP ≤ RP ≤ UP , also by definition. Thus, it is true
that

LP ≤ LP′ ≤ RP′ ≤ UP′ ≤UP
LP ≤ RP ≤ UP

Theorem 2.

lim
‖P‖→0

|RP −RP′ | = 0.

Proof. We see from the previous remark, that both RP and RP′ lie somewhere between LP and
UP . Thus, |RP −RP′ | < UP −LP . But from the lemma ?? we have lim‖P‖→0(UP −LP) = 0, thus
we conclude that lim‖P‖→0 |RP −RP′ | = 0. �
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6. The final stroke

Theorem 3.
lim
‖P‖→0

RP = I.

Proof. We want to show that given any ε > 0 there exists δ > 0 such that whenever ‖P‖ < δ
thenever |RP − I| < ε.
Let us first fix ε > 0, and now look at |RP − I|.

|RP − I| = |RP−L2n + L2n − I|
≤ |RP − L2n |+ |L2n − I| (triangle inequality)

= |RP−RP′ +RP′ − L2n |+ |L2n − I|
≤ |RP −RP′ |+ |RP′ − L2n |+ |L2n − I| (triangle inequality)

(1) If P ′ is a refinement of P, then given any ε1 > 0, we can find δ1 > 0 such that whenever
‖P‖ < δ1 thenever |RP −RP′ | < ε1. Let us choose ε1 = ε

3 . Thus, there exists δ1 > 0 such
that whenever ‖P‖ < δ1 thenever |RP −RP′ | < ε

3 .

(2) Note that P2n is a special type of partition P, and thus L2n is a special type of Riemann
sum RP . Hence, if P ′ is also a refinement of P2n . Thus, given ε2 = ε

3 there exists δ2 > 0

such that whenever ‖P2n‖ = b−a
2n < δ2, thenever |RP′ − L2n | < ε

3 .

Note, that we need both (1) and (2), therefore we need P ′ to be a refinement of both P and
P2n , i.e. P ′ contains all points of P and all point of P2n and few more.

(3) As I = limn→∞ L2n , by definition of limits, for ε3 = ε
3 there exist N3 such that |L2n−I| < ε

3

for all n > N3 i.e. for all ‖P2n‖ = b−a
2n < δ3 = 1

2N3
.

We want (1), (2) and (3) to be true simultaneously. Thus we replace δ1, δ2 and δ3 with the minimum
of three values, δ = min{δ1, δ2, δ3}. Thus all 3 inequalities will be true for this δ. So, whenever
‖P‖ < δ, thenever |RP − I| ≤ |RP −RP′ |+ |RP′ − L2n |+ |L2n − I| < ε

3 + ε
3 + ε

3 = ε. �

DONE!


