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Abstract. Motivated by the hierarchical multiscale image representation of
Tadmor et. al., [25], we propose a novel integro-differential equation (IDE) for
a multiscale image representation. To this end, one integrates in inverse scale
space a succession of refined, recursive ‘slices’ of the image, which are balanced
by a typical curvature term at the finer scale. Although the original moti-
vation came from a variational approach, the resulting IDE can be extended
using standard techniques from PDE-based image processing. We use filtering,
edge preserving and tangential smoothing to yield a family of modified IDE
models with applications to image denoising and image deblurring problems.
The IDE models depend on a user scaling function which is shown to dictate
the BV ∗ properties of the residual error. Numerical experiments demonstrate
application of the IDE approach to denoising and deblurring.

1. Introduction. A black and white image can be realized as a graph of a discrete
function f : Ω ⊂ R2 → R. The values of this function, f(x), denote the intensity of
the image at the discrete points x ∈ Ω: the function f attains its maximum value
at the brightest spots in the image and minimum value of zero at the darkest spots.
The graph of an image consists of discrete pixels which for mathematical analysis,
is postulated as an L2(Ω) function.

Many problems in image processing fall under two broad categories of image
segmentation and image restoration. In image segmentation one is interested in
identifying constituent parts of a given image, whereas image restoration aims to
denoise and deblur an observed image in order to recover its underlying “clean”
image. Additive noise, denoted by η, is inadvertently added to images due to various
reasons, such as limitations of the image capturing facilities or transmission losses.
Besides noise, images could also be blurred due to unfocused camera lens, relative
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motion between the camera and the object pictured, etc; such blurring is modeled by
a linear, continuous operator, T : L2(Ω) → L2(Ω), e.g., convolution with a Gaussian
kernel. Thus, the observed image, f , could be written as f = TU + η, where U is
the clean image sought without blurring and noise. The recovery of the clean image
from its observed blurred and noisy version f , is the problem of image restoration.
This is an ill-posed problem which can be addressed by several inverse problems
solvers. We mention in this context variational techniques using Tikhonov-like
regularization, PDE-based methods, filtering, stochastic modeling and wavelets-
based techniques that were developed for solving these image processing problems
[1, 3, 9, 10, 11, 12, 13, 15, 17, 19, 20, 23, 24, 27].

Image restoration leads to image decomposition. For example, an observed im-
age f with additive noise and no blurring is naturally decomposed into a denoised
part, Uα, and a noisy part, ηα := f − Uα. Here, α is an algorithm-specific scaling
parameter : in the case of Gaussian smoothing, for example, the variance of the
Gaussian kernel may serve as such scaling parameter. Small scale features, cate-
gorized as noise, are then forced into ηα, resulting in a larger scale version, Uα, of
the original image f . Thus, denoising of f generates a multiscale representation,
{Uα}α∈A with a varying scaling parameter α ∈ A. Our paper deals primarily with
image restoration using PDE-based methods. Indeed, the novelty of our approach
is the use of multiscale image representation based on integro-differential equations.
The image representation is motivated by the variational-based hierarchical image
decomposition of [25, 26]. Incidentally, this shows the intimate relation between the
PDE-based and variational approaches in multiscale algorithms for image restora-
tion.

We begin with some examples where denoising methods give rise to multiscale
representations.

1.1. Multiscale representations using PDE-based models. We first discuss
PDE-based models which produce multiscale representation {U(·, t)}t≥0 for a given
image f . For convenience we use the time variable t as the scaling parameter. One
of the earliest PDE-based methods for denoising a given image f := U(·, 0) is the
heat equation

(1.1a)
∂U

∂t
= ∆U, U ≡ U(x, t) : Ω × R+ 7→ R;

∂U

∂n
∣

∣

∂Ω

= 0.

This yields a family of images, {U(·, t) : Ω → R}t≥0, which can be viewed as
smoothed versions of f . In this linear set up, smoothing is implemented by a

convolution with the two-dimensional Gaussian kernel, Gσ(x) = 1
2πσ2 exp

(

− |x|2

2σ2

)

,

with standard deviation σ =
√

2t. Hence, details with a scale smaller than
√

2t
are smoothed out. Here, λ(t) :=

√
2t acts as a scaling function. We can say that

{U(·, t)}t≥0 is a multiscale representation of f , as U(·, t) diffuses from the small
scales in f into increasingly larger scales.

Image denoising by the heat equation is based on isotropic diffusion, and con-
sequently blurs all edges, which may contain useful information about the image.
This drawback was removed by Perona-Malik (PM) model [23], which is based on
nonlinear diffusion

(1.1b)
∂U

∂t
= div(g(|∇U |)∇U), U : Ω × R+ 7→ R;

∂U

∂n
∣

∣

∂Ω

= 0,
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with an initial condition U(·, 0) := f . Here, the diffusion controlling function, g,
is a real valued function that vanishes at infinity, so that the amount of diffusion
decreases as the gradient |∇U | increases. Thus, g is responsible for the anisotropic
nature of the PM model. The family of PM models are not well-posed. They also
pose a problem for noisy images, since noise produces high gradients which can be
confused with relevant edges. These shortcomings were removed by Catté et. al.
[6] by replacing g(|∇U |) with g(|Gσ ⋆∇U |), where Gσ ⋆∇U denotes convolution of
the two-dimensional Gaussian kernel Gσ,

(1.1c)
∂U

∂t
= div(g(|Gσ ⋆ ∇U |)∇U), U : Ω × R+ 7→ R;

∂U

∂n
∣

∣

∂Ω

= 0,

subject to U(·, 0) := f .
The models (1.1) still suffer from a major drawback, namely, the solution U(t)

diffuses to the average value −
∫

f , as t → ∞. Thus, a stopping criteria t = tc must
be sought, so that the desired denoised image Uc := U(tc) is obtained. This raises
the question of an appropriate stopping time tc. The necessity of finding a stopping
time is removed in Nordström’s biased anisotropic model [22]

(1.2)
∂U

∂t
= f − U + div (g(|∇U |)∇U), U : Ω × R+ 7→ R;

∂U

∂n
∣

∣

∂Ω

= 0.

In this case, the solution U(·, t) varies from the initial condition U(·, 0) ≡ 0 to a
desired denoised image Uc, as t → ∞. Thus, the family {U(·, t)}t≥0 is an inverse
scale representation of Uc, with t acting as an inverse scale parameter, e.g., [14, 16, 5]

1.2. Multiscale representations using variational models. Variational ap-
proaches for image processing like Mumford-Shah segmentation [20], [21], Rudin-
Osher-Fatemi (ROF) decomposition [24] etc., fall under a general category of
Tikhonov regularization [27]. Here one solves the ill-posed problem of recover-
ing u from the observed f = Tu + η. We begin by restricting our attention to
the pure denoising problem seeking a faithful, noise free approximation u ∈ X of
f = u + η ∈ L2, where X ( L2 is an appropriate space adapted to measure edges
and textures sought in u (a discussion of the deblurring problem is postponed to
section 5). This leads to the following minimization problem:

f = uλ + vλ, [uλ, vλ] := arginf
f=u+v

{

‖u‖X + λ ‖v‖2
L2

}

.

The term ‖u‖X is a regularizing term and uλ + vλ is a multiscale decomposition of
f which varies with the positive scaling parameter, λ. In the case of the ROF model
[24], for example, edges are sought in the space of bounded variations, X = BV (Ω),
e.g., [2]. This yields the (BV, L2)-decomposition of f :

(1.3) f = uλ + vλ, [uλ, vλ] := arginf
f=u+v

{ ‖u‖BV + λ ‖v‖2
L2},

where ‖u‖BV :=
∫

Ω
|∇u|. For small values of λ, the minimizer uλ is only a large-

scale image, consisting of only main features and prominent edges in f . On the
other hand, if λ is large, then uλ is a small-scale image which contains many details
of f . Therefore, with λ viewed as a varying parameter, the ROF variational decom-
position (1.3) generates a multiscale representation, {uλ}λ>0, of f , with λ serving
as an inverse-scale parameter. The behavior of this multiscale decomposition, as a
function of λ, is tied to the regularity of f , once the variational functional on the
right is interpreted as an interpolation K-functional, [4].
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The Euler-Lagrange equation characterizing the minimizer, uλ, for the variational
problem (1.3) reads,

(1.4a) uλ = f +
1

2λ
div

( ∇uλ

|∇uλ|

)

.

For a fixed λ, the minimizer of (1.3) can be obtained as a steady state solution of
the nonlinear parabolic equation

(1.4b)
∂u

∂t
= f − u +

1

2λ
div

( ∇u

|∇u|

)

, u ≡ u(x, t) : Ω × R+ 7→ R;
∂u

∂n
∣

∣

∂Ω

= 0.

Starting with u(·, 0) := f , the PDE (1.4b) produces a multiscale representation
{u(·, t)}t≥0 which approaches the ROF minimizer, uλ, as t ↑ ∞. Observe that t
in (1.4b) serves as a forward-scale parameter for the variational ROF model (1.3).
Incidentally, the variational-based PDE (1.4b) is related to Nordström model (1.2)

with g(s) :=
1

2λs
.

1.3. A novel multiscale integro-differential model. In this paper, we intro-
duce a novel integro-differential equation (IDE) for multiscale representation of f
(1.5)
∫ t

0

u(x, s) ds = f(x) +
1

2λ(t)
div

( ∇u(x, t)

|∇u(x, t)|

)

, u : Ω × R+ 7→ R;
∂u

∂n
∣

∣

∂Ω

= 0,

subject to appropriate initial condition u(·, 0) = u0(x) outlined in section 3 below.

The integral U(·, t) :=
∫ t

0
u(·, s) ds gives a scaled version of the image f for a given

t. The scaling function, λ(t) is at our disposal. The image U(t) evolves with t,
from a coarse (or larger) scale images, to smaller scale images with finer details, as
λ(t) increases with time. Thus, (1.5) is an inverse scale method, as opposed to the
forward scale methods such as heat equation or PM models (1.1).

The motivation behind this IDE comes from the hierarchical (BV, L2) multiscale
image decomposition of Tadmor et. al., [25, 26], which we will elaborate upon in
the next section. In particular, in section 3.1 we show how the choice of scaling
function λ(t) dictates the size of the residual image V (t) := f − U(t). In sections
4.1 and 4.2, we propose further extensions of our IDE approach which introduce
further refinements to tangential smoothing. A final extension of the IDE model
for dealing with deblurring is presented in section 5. The details of the numerical
schemes used to implement the various IDE models are outlined in the Appendix.

2. Motivation for the Integro-Differential Equation (IDE). Rudin, Osher
and Fatemi introduced a BV-based minimization functional for image denoising in
[24], which in turn led to the unconstrained (BV, L2) decomposition (1.3) in [7, 8].
The minimizer of (1.3), uλ, is a coarse representation of the image f , containing
smooth parts and prominent edges, whereas the residual vλ contains texture and
finer details, declared as “noise” of f . The parameter λ is the inverse scale param-
eter of uλ, i.e. a small value of λ corresponds to more details in vλ and thus, the
image uλ is more coarse and vice versa.

As a first step, we realize that the intensity of images is quantized. If we let τ
denote the small intensity quanta, then we rescale the coarse representation uλ in
τ -units. The corresponding (BV, L2) image decomposition (1.3) takes the form

(2.1) f = τuλ0
+ vλ0

, [uλ0
, vλ0

] := arginf
f=τu+v

{

‖u‖BV +
λ0

τ
‖v‖2

L2

}

.
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Tadmor, Nezzar and Vese observed in [25] that for a small value of the scaling
parameter λ0, the residual image vλ0

may still contain important details when
viewed at a finer scale. Thus, vλ0

can be further decomposed using a refined scaling
parameter λ1 > λ0,

vλ0
= τuλ1

+ vλ1
, [uλ1

, vλ1
] := arginf

vλ0
=τu+v

{

‖u‖BV +
λ1

τ
‖v‖2

L2

}

.

We can continue this process for λ0 < λ1 < λ2 . . .

(2.2) vλj−1
= τuλj

+ vλj
, [uλj

, vλj
] := arginf

vλj−1
=τu+v

{

‖u‖BV +
λj

τ
‖v‖2

L2

}

.

Repeating this refinement step, we obtain the following hierarchical multiscale rep-
resentation of f , [25]

f = τuλ0
+ vλ0

= τuλ0
+ τuλ1

+ vλ1

= . . . . . .

= τuλ0
+ τuλ1

+ . . . τuλN
+ vλN

.

Thus, we have

(2.3)

N
∑

j=0

uλj
τ = f − vλN

.

The Euler-Lagrange equations characterizing minimizers of (2.2) are

(2.4) vλj−1
= τuλj

− 1

2λj
div

( ∇uλj

|∇uλj
|

)

.

From (2.4) and (2.2) we get

vλj
= − 1

2λj
div

( ∇uλj

|∇uλj
|

)

,

and inserting this into (2.3) yields the hierarchical decomposition of f as

(2.5)

N
∑

j=0

uλj
τ = f +

1

2λN
div

(

∇uλN

|∇uλN
|

)

.

We consider a multiscale scaling, continuous in time, u(x, t) : Ω×R+ 7→ R such that
uλj

(x) 7→ u(x, tj := jτ). Observe that the right hand side of (2.5) is homogeneous of
degree zero. Letting τ → 0, the hierarchical description (2.5) motivates a multiscale
representation u(x, ·) which is sought as a solution to our IDE (1.5),

(2.6)

∫ t

0

u(x, s) ds = f(x) +
1

2λ(t)
div

( ∇u(x, t)

|∇u(x, t)|

)

,
∂u

∂n
∣

∣

∣

∂Ω

= 0.

The IDE (2.6) needs to be augmented with a proper choice of a scaling function λ(t)
and one needs to set the initial conditions λ(0) and u(x, 0). These will be discussed
in section 3.2.

An an example for the IDE multiscale representation of an image f ,
{

U(·, t) :=

∫ t

0

u(·, s) ds

}

t≥0

,
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is depicted in figure 3.1. Here, u(x, t) denotes the speed at which the image U(t)
changes with time. The numerical scheme for its evolution using the IDE (1.5) is
prescribed in section 6.

Remark 1. It is instructive to compare our IDE model (2.6) with the time depen-
dent PDE used in solving the ROF minimization, (1.4). In contrast to the forward
scale PDE realization of (1.4b), where the solution evolves from u(·, 0) = 0 to a big-
ger scale image uλ, our IDE model (2.6) is an ‘inverse scale’ model, whose solution
evolves from u(x, 0) = u0(·) to f as λ(t) → ∞.

3. Specifying the augmenting parameters for the IDE. To complete the
formulation of the IDE (2.6), one has to specify a scaling function, λ(t) and the
initial conditions u0(x) ≡ u(x, 0). The function λ(t) serves as an inverse scaling
function: as λ(t) → ∞, the image computed in (2.6)

U(t) :=

∫ t

0

u(x, s) ds,

extracts consecutively smaller scale slices of the original image f . The residual,
V (t) := f − U(t) contains texture and noisy parts of f . The choices of λ(t) and
u0(x) are outlined in sections 3.1 and 3.2 below.

3.1. On the scaling function λ(t). It is argued in [18] that the dual norm,

‖w‖∗ := sup
‖ϕ‖BV 6=0

(w, ϕ)

‖ϕ‖BV
,

is a proper norm to measure texture. The critical role of the scaling function λ(t)
in the IDE model (2.6) and its relationship with the star-norm is outlined in the
following theorem.

Theorem 3.1. Consider the IDE model (2.6)
∫ t

0

u(x, s) ds = f(x) +
1

2λ(t)
div

( ∇u(x, t)

|∇u(x, t)|

)

,

and let V (·, t) be the residual

V (·, t) := f − U(·, t).
Then size of the residual is dictated by the scaling function λ(t),

(3.1) ‖V (·, t)‖∗ =
1

2λ(t)
.

Proof. For ϕ ∈ BV (Ω) we have the following

(3.2) | (V (·, t), ϕ) | =

∣

∣

∣

∣

(

1

2λ(t)
div

( ∇u(·, t)
|∇u(·, t)|

)

, ϕ

) ∣

∣

∣

∣

≤ 1

2λ(t)
‖ϕ‖BV .

Thus, we have ‖V (·, t)‖∗ ≤ 1
2λ(t) . Letting ϕ = u(·, t), we get

(3.3)

∣

∣

∣

∣

(

1

2λ(t)
div

( ∇u(·, t)
|∇u(·, t)|

)

, u(·, t)
)
∣

∣

∣

∣

=
1

2λ(t)
‖u(·, t)‖BV .

From (3.2) and (3.3) we get the desired result (3.1).

Inverse Problems and Imaging Volume 3, No. 4 (2009), 693–710



Multiscale image representation using integro-differential equations 699

t = 1 t = 4

t = 6 t = 10

Figure 3.1. The images, U(t) =
∫ t

0 u(·, s) ds, of the IDE (1.5) at
t = 1, 4, 6, 10. Here, λ(t) = 0.002 × 2t.

The importance of Theorem 3.1 lies in the fact that it enables us to dictate the
star-norm of the residual. For small values of λ(t), we get a significant amount of

texture in the residual and thus, the image U(t) :=
∫ t

0 u(·, s) ds will contain only
features with big scale. On the other hand, as λ(t) increases, more and more details
will appear in U(t). Hence, the function λ(t) can be viewed as an ‘inverse scale
function’ for U(t). In particular, if we choose the scaling function λ(t), such that
limt→∞ λ(t) = c with a prescribed constant c, then limt→∞‖V (t)‖∗ = 1

2c . Thus,
Theorem 3.1 enables us to denoise images to any pre-determined level in the BV ∗

sense.
The previous theorem establishes a weak convergence in the G-topology [18,

§1.14], U(t) ⇀ f , for all L2-images. In fact, a stronger L2-convergence holds for
slightly more regular images, e.g., f ∈ BV . To this end we first prove the following
energy decomposition, interesting in its own sake, along the lines of [25, theorem
2.2].

Theorem 3.2. Consider the IDE model (2.6) associated with an L2- image f , and
let V (·, t) be the residual, V (t) = f −U(t). Then the following energy decomposition
holds

(3.4)

∫ t

s=0

1

λ(s)
‖u(·, s)‖BV ds + ‖V (·, t)‖2

L2 = ‖f‖2
L2.

To verify (3.4), integrate (2.6) against u(·, t) in space and time to find

∫ t

s=0

(

U(·, s), Us(·, s)
)

ds −
(

f, U(·, t)
)

= −
∫ t

s=0

1

2λ(t)
‖u(·, s)‖BV ds.
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The expression on the left is then rewritten as
∫ t

s=0

(

U(·, s), Us(·, s)
)

ds −
(

f, U(·, t)
)

=
1

2
‖U(·, t)‖2

L2 −
(

f, U(·, t)
)

≡ 1

2

[(

U(·, t) − f, U(·, t) − f
)]

− 1

2
‖f‖2

L2,

and (3.4) follows from the last two equalities.

Remark 2. A different, equivalent way of stating Theorem 3.2 is that (u(t), V (t))
form a maximal pair in the sense that they turn the inequality (w, ϕ) ≤ ‖w‖BV ‖ϕ‖∗
into an equality:

(3.5) (u(·, t), V (·, t)) = ‖u(·, t)‖BV ‖V (·, t)‖∗.

Indeed, differentiating (3.4) with respect to time we find

1

λ(t)
‖u(·, t)‖BV + 2 (V (·, t),−u(·, t)) = 0,

and (3.5) follows in view of (3.1), ‖V (·, t)‖∗ = 1/2λ(t).

We now turn to upper-bound the L2-size of the residual. Using the usual duality
estimate together with (3.1) to find

(3.6) ‖V (·, t)‖2
L2 ≤ ‖V (·, t)‖∗‖V (·, t)‖BV =

1

2λ(t)
‖V (·, t)‖BV ,

and it remains to study how fast ‖V (·, t)‖BV grows. To this end we write

V (x, t) = f(x) −
∫ t/2

s=0

u(x, s) ds −
∫ t

s=t/2

u(x, s) ds,

which implies

‖V (·, t)‖BV

≤‖f‖BV + λ

(

t

2

)
∫ t/2

s=0

1

λ(s)
‖u(·, s)‖BV ds + λ(t)

∫ t

s=t/2

1

λ(s)
‖u(·, s)‖BV ds.

Inserting this into (3.6) we end up with the desired upper bound,

‖V (·, t)‖2
L2 ≤ 1

2λ(t)
‖f‖BV +

λ( t
2 )

2λ(t)
‖f‖2

L2 +

∫ t

s=t/2

1

2λ(s)
‖u(·, s)‖BV ds.

Now, the first term on the right vanishes for f ∈ BV at the t = ∞-limit as λ(t) ↑ ∞;
the second term vanishes if λ(t) increases fast enough to form a Hadamard sequence
so that λ(t)/λ( t

2 ) ↑ ∞ (e.g., λ(t) ∼ 2t); and the third term vanishes at t ↑ ∞ as
the tail of the uniformly bounded time integral in the energy bound (3.4). We
summarize by stating the following.

Theorem 3.3. Given an image f ∈ BV , we consider the IDE model (2.6) with
rapidly increasing scaling function λ(t) so that

λ( t
2 )

λ(t)

t→∞−→ 0.

Inverse Problems and Imaging Volume 3, No. 4 (2009), 693–710
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Then, f admits the multiscale representation (where equality is interpreted in L2-
sense)

(3.7a) f(x) =

∫ ∞

s=0

u(x, s) ds,

with energy decomposition

(3.7b) ‖f‖2
L2 =

∫ ∞

s=0

1

λ(s)
‖u(·, s)‖BV ds.

3.2. Setting the initial conditions. At t = 0, the IDE (2.6) reads

f +
1

2λ(0)
div

( ∇u(·, 0)

|∇u(·, 0)|

)

= 0.

Theorem 3.1 tells us that it has no solution if the initial value of the scaling function
λ(0) ≡ λ0 is set such that λ(0) 6= 1/(2‖f‖∗). To gain a better understanding for
the choice of the initial parameters, λ(0) = λ0 and u0, we return to the underlying
discrete version of the IDE, given by hierarchical decomposition (2.5)

N
∑

j=0

uλj
τ = f +

1

2λN
div

(

∇uλN

|∇uλN
|

)

.

This is a discrete version of the IDE (2.6), where the term on the LHS is a quadrature

of the corresponding integral,

∫ t

0

u(x, s)ds, sampled at the equidistant time-steps,

tj = jτ , with τ being the basic intensity quanta.
At t = 0, u(0) ≡ uλ(0) is determined as the solution of

u(0)τ = f +
1

2λ(0)
div

( ∇u(·, 0)

|∇u(·, 0)|

)

.

This is the Euler-Lagrange equation associated with the ROF variational decompo-
sition (2.1), and according to [18, Theorem 3], [25, Corollary 2.5], the minimizer of
the latter vanishes, u(0) ≡ 0, if

(3.8) λ(0) <
1

2‖f‖∗
.

Assuming that (3.8) holds, then at the solution at the next hierarchical step, u(t =
τ) ≡ uλ1

is determined by

u(τ)τ = f +
1

2λ(τ)
div

( ∇u(·, τ)

|∇u(·, τ)|

)

.

Viewed as the corresponding minimizer, u(τ) will vanish if λ(τ) ≡ λ1 < 1/(2‖f‖∗).
This process will continue to produce vanishing solutions u(jτ) ≡ uλj

= 0 until the
first time, t0 := j0τ , when the scale λ(t0) = λj0 becomes large enough so that

(3.9a) λ(t0) ≥
1

2‖f‖∗
.

At this scale, the IDE picks up the first large features of the image f with non-trivial
initial conditions, u(t0),

(3.9b) u(t0)τ = f +
1

2λ(t0)
div

( ∇u(·, t0)
|∇u(·, t0)|

)

.
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The IDE (2.6),(3.9) then can be equivalently written as

(3.10)

∫ t

t0

u(x, s) ds = f(x) +
1

2λ(t)
div

( ∇u(x, t)

|∇u(x, t)|

)

,
∂u

∂n
∣

∣

∣

∂Ω

= 0, t ≥ t0,

where the initial time t0 is determined as the first scale such that (3.9) holds.
This setup is in complete analogy with the initialization process of the hierarchical
decomposition in [26, section 2.3].

4. Extensions of the IDE model. Our IDE model is motivated by a variational
formulation. An important advantage of the IDE model, however, is that it is no
longer limited to a variational formulation and we can therefore extend it using
PDE-based modifications similar to (1.1b) and (1.1c). We will discuss such modifi-
cations in sections 4.1 and 4.2 below.

4.1. IDE with filtered diffusion. Recall that one of the drawbacks in using the
heat equation (1.1a) for denoising is that it results in an isotropic diffusion. The PM
model (1.1b) removes this drawback by introducing a diffusion controlling function,
that controls the diffusion near prominent edges in a given image. We propose a
similar modification to our IDE model, seeking u(x, t) : Ω × R+ 7→ R such that

(4.1a)

∫ t

0

u(x, s) ds = f(x) +
g(|Gσ ⋆ ∇u(x, t)|)

2λ(t)
div

( ∇u(x, t)

|∇u(x, t)|

)

;
∂u

∂n
∣

∣

∂Ω

= 0,

subject to u0(x) ≡ u(·, 0) such that

u0 = f +
1

2λ(0)
g(|Gσ ⋆ ∇u0|) div

( ∇u0

|∇u0|

)

, λ(0) >
g(|Gσ ⋆ ∇u0|)

2‖f‖∗
.

Similar to the PM models (1.1b), we can choose the pre-factor function g so
that it vanishes at infinity to control the diffusion at prominent edges in the image.
Thus, the function g acts here as a high-pass filter which retains prominent edges in

the image
∫ t

0
u(x, s) ds without diffusing them. As choices for such a g-filter, figure

4.1 displays the results of the modified IDE (4.1a) with

(4.1b) g(s) =
1

1 + (s/β)2
,

Here, the constant β determines the extent to which edges are preserved: for small
β’s, relevant edges are preserved whereas for large β’s, they are diffused. Detailed
discussion of the numerical scheme for the filtered diffusion model (4.1) is given in
section 6. Comparing the results of the filtered IDE (4.1a) shown in figure 4.1, we
observe that edges, which are diffused by the basic IDE (2.6) as depicted in figure
3.1, are preserved in figure 4.1. This phenomenon is more apparent for smaller
values of t due to the fact that as t increases, U(·, t) in both models approaches
f , and consequently, suffer from less diffusion of the edges. The usefulness of the
filtered diffusion IDE model becomes apparent when certain edges are required in
the scale-space for smaller values of t. For example, in figure 4.2, the edges are
blurred for smaller values of t with the standard IDE (1.5), but with the filtered
diffusion IDE (4.1a) we retain relevant edges, as shown in figure 4.3.
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t = 1 t = 4

t = 6 t = 10

Figure 4.1. The images, U(t) =
∫ t

0 u(·, s) ds, for the modified IDE
(4.1) at t = 1, 4, 6, 10. Here λ(t) = 0.002 × 2t.

t = 1 t = 4 t = 6 t = 10

Figure 4.2. The images, U(t) =
∫ t

0 u(·, s) ds, of the standard IDE

(1.5) at t = 1, 4, 6, 10. Here, λ(t) = 0.002 × 2t.

t = 1 t = 4 t = 6 t = 10

Figure 4.3. The images, U(t) =
∫ t

0
u(·, s) ds, of the filtered IDE

(4.1a) at t = 1, 4, 6, 10. Here, λ(t) = 0.002× 2t.
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f at t = 0 t = 1 t = 4 t = 7

Figure 4.4. A given noisy image f and the IDE images,
∫ t

0
u(·, s) ds, of (1.5) at t = 1, 4, 7. Here, the scaling function is

λ(t) = 0.002 × 2t. Most of the noise is present at scale t = 7.

4.2. IDE with tangential smoothing. The approach of using the diffusion con-
trolling function works well with natural images with moderate gradients. With
other images, however, such as those which often arise in computer vision and in-
dustrial applications, the boundaries of their internal objects are marked with large,
sharp gradients; for example, characteristic function χD, where D ⊂ Ω. In such
cases, we can choose to smooth only in the tangential direction to the boundaries
of the objects, e.g., [1]. To this end, write ∆u := uTT + uNN , where uTT and uNN

are the tangential and normal diffusion components, i.e.

uTT = ∆u − uNN = |∇u| div

( ∇u

|∇u|

)

, uNN =

〈 ∇u

|∇u| ,∇
2u

∇u

|∇u|

〉

.

Restricting the diffusion in our IDE model to tangential directions, this leads to
modified IDEs with tangential smoothing,

∫ t

0

u(x, s) ds = f(x) +
1

2λ(t)
|∇u(x, t)| div

( ∇u(x, t)

|∇u(x, t)|

)

;
∂u

∂n
∣

∣

∂Ω

= 0,(4.2)

and with tangential smoothing and filtering,

∫ t

0

u(x, s) ds

=f(x) +
g(|Gσ ⋆ ∇u(x, t)|)

2λ(t)
|∇u(x, t)| div

( ∇u(x, t)

|∇u(x, t)|

)

;
∂u

∂n
∣

∣

∂Ω

= 0.(4.3)

As before, u : Ω × R+ 7→ R evolves in inverse scale space starting with λ(0) and
u0(x) ≡ u(·, 0),

u0τ = f +
1

2λ(0)
g(|Gσ ⋆∇u0|)|∇u0| div

( ∇u0

|∇u0|

)

, λ(0) ≥ g(|Gσ ⋆ ∇u0|)|∇u0|
2‖f‖∗

.

Numerical experiments are shown in figures (4.4)-(4.6). Compare the standard IDE
results (1.5) shown in figure 4.4 with the tangential smoothing (4.2) shown in figure
4.5 and with additional filtering, (4.3), in figure 4.6: the point here is that tangential
diffusion model preserves the edges, while denoising the rest of the image in a much
faster rate than in the standard IDE model.

5. The IDE model for deblurring. We now extend our IDE model to deblurring
of images. Blurring is modeled by a continuous, linear operator T : L2(Ω) →
L2(Ω). Examples of a blurring operator include convolution with a Gaussian kernel,
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f at t = 0 t = 1 t = 4 t = 7

Figure 4.5. The same noisy image f and the corresponding
∫ t

0
u(·, s) ds, of the IDE with tangential smoothing (4.2) at t =

1, 4, 7. The same scaling function as before, λ(t) = 0.002 × 2t.
Large portion of the noise is suppressed at t = 7 but there is nor-
mal diffusion of edges.

f at t = 0 t = 1 t = 4 t = 7

Figure 4.6. The same noisy image and the images,
∫ t

0
u(·, s) ds,

of IDE with tangential smoothing and filtering (4.3) at t = 1, 4, 7.
Here, λ(t) = 0.002 × 2t and g(s) = 1/(1 + (s/5)2). Noise is sup-
pressed with minimal normal edge diffusion.

directional averaging etc. Thus, an observed image is expressed as f = TU , where U
is the original unblurred image which we aim to recover. Hierarchical decomposition
of blurred images was discussed in [26]. To this end, one sets a sequence of increasing
scaling parameters λ0 < λ1 < λ2 . . . . Starting with v−1 = f , we get the following
iteration

(5.1) vλj−1
= τTuλj

+ vλj
, arginf
vλj−1

=τTu+v
{ ‖u‖BV +

λj

τ
‖v‖2

L2}.

This gives us a hierarchical multiscale representation of the blurred image f
presented in [26],

f = τTuλ0
+ vλ0

= τTuλ0
+ τTuλ1

+ vλ1

= . . . . . .

= τTuλ0
+ τTuλ1

+ . . . τTuλN
+ vλN

.

Thus, after applying the conjugate T ∗ to the above equation we obtain,

(5.2) τ
N
∑

j=0

T ∗Tuλj
= T ∗f − T ∗vλN

.
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Using the Euler-Lagrange characterization of the minimizer in (5.1),

T ∗vλj−1
= τT ∗Tuλj

− 1

2λj
div

( ∇uλj

|∇uλj
|

)

,

which, in view of T ∗vλj−1
= τT ∗Tuλj

+ T ∗vλj
implies

T ∗vλj
= − 1

2λj
div

( ∇uλj

|∇uλj
|

)

.

Using the above expression we can rewrite (5.2) as

(5.3)

N
∑

j=0

T ∗Tuλj
τ = T ∗f +

1

2λN
div

(

∇uλN

|∇uλN
|

)

.

As τ → 0, the expression (5.3) motivates the following integro-differential equation
(IDE) for deblurring, where u(x, t) : Ω × R+ 7→ R is sought such that

∫ t

0

T ∗Tu(x, s) ds = T ∗f(x) +
1

2λ(t)
div

( ∇u(x, t)

|∇u(x, t)|

)

;
∂u

∂n
∣

∣

∂Ω

= 0.(5.4)

In this IDE,

∫ t

0

u(·, s) ds provides a multiscale representation of the unblurred im-

age U(x, t) :=
∫ t

0
u(x, s) ds. Note that the blurring operator T is in general non-

invertible for general L2 images, but it is assumed to be invertible on the restricted

set of multiscale representations

∫ t

0

T ∗Tu(x, s) ds. Thus, the deblurring IDE (5.4)

gives us a recipe to extract the unblurred image U from its blurred version f .
We can see the deblurring result of (5.4) in figure 5.1. Furthermore, we can

modify the deblurring integro-differential equation using edge enhancing filtering,

where a U(x, t) =

∫ t

0

u(x, s) ds : Ω × R+ 7→ R is sought as a solution of

(5.5) T ∗TU(x, t) = T ∗f(x) +
g(|Gσ ⋆ u(x, t)|)

2λ(t)
div

( ∇u(x, t)

|∇u(x, t)|

)

;
∂u

∂n
∣

∣

∂Ω

= 0.

Conclusions. We introduced a novel integro-differential equation (IDE) for mul-
tiscale decomposition of images. This is a continuous analogue of the hierarchical
decomposition in [25, 26] with the same computational complexity of one ROF
solver per time step. The basic IDE evolves in inverse time scale. Its continuous
formulation enables us to incorporate related techniques from PDE-based methods
of filtering, anisotropic tangential smoothing and deblurring. The resulting fam-
ily of IDE models depend on a scaling function, λ(t), at our disposal, which is
shown to dictate the size of the error measured in the weak BV ∗-norm. Numer-
ical simulations show the utility of our IDE model as a promising alternative for
PDE-based models. In particular, the deblurring results based on the IDE model
are particularly striking.

6. Appendix: Numerical discretizations. In this appendix we describe the
numerical implementation of (1.5) and (5.4). First let us concentrate on the basic
IDE model (1.5), rewritten here for convenience:

(6.1)

∫ t

0

u(x, s) ds = f(x) +
1

2λ(t)
div

( ∇u(x, t)

|∇u(x, t)|

)

.
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(a) (b)

Figure 5.1. Image (a) shows a blurred image of Lenna blurred
using a Gaussian kernel with σ = 1. Image (b) shows the result of
the deblurring IDE model (5.4), as t → ∞.

As usual, U(t) :=

∫ t

0

u(x, s) ds is the exact solution. Let ∆t be the time step and

Un+1 will denote the corresponding computed solution at tn+1 = (n + 1)∆t:

Un+1 = Un + Wn+1, Wn+1 ≡ Wn+1
i,j := un+1

i,j ∆t,

where un+1
i,j ≡ un+1(ih, jh) is the approximate solution of the IDE at grid point

(ih, jh). With this, the IDE (6.1) is discretized at t = tn+1:

Un
i,j + ωk+1

i,j = fi,j

+
1

2λ(n+1)h2





ωk
i+1,j − ωk+1

i,j
√

ε2 + (D+xωk
i,j)

2 + (D0yωk
i,j)

2

−
ωk+1

i,j − ωk
i−1,j

√

ε2 + (D−xωk
i,j)

2 + (D0yωk
i−1,j)

2



(6.2)

+
1

2λ(n+1)h2





ωk
i,j+1 − ωk+1

i,j
√

ε2 + (D0xωk
i,j)

2 + (D+yωk
i,j)

2

−
ωk+1

i,j − ωk
i,j−1

√

ε2 + (D0xωk
i,j−1)

2 + (D−yωk
i,j)

2



 .

The nonlinear system (6.2) is solved using Jacobi iterations which leads to the
fixed-point iterations for computing ωk+1:

ωk+1
i,j =

2λ(n+1)h2(fi,j − Un
i,j) + cEωk

i+1,j + cW ωk
i−1,j + cSωk

i,j+1 + cNωk
i,j−1

2λ(n+1)h2 + cE + cW + cS + cN
.

(6.3a)
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Here, λ(n+1) = λ(tn+1) are the discrete scaling parameters and cE , cW , cS , cN are
the discrete coefficients

cE :=
1

√

ε2 + (D+xωk
i,j)

2 + (D0yωk
i,j)

2
,

cW :=
1

√

ε2 + (D−xωk
i,j)

2 + (D0yωk
i−1,j)

2
,

cS :=
1

√

ε2 + (D0xωk
i,j)

2 + (D+yωk
i,j)

2
,

cN :=
1

√

ε2 + (D0xωk
i,j−1)

2 + (D−yωk
i,j)

2
,

In the computations above we set h = 1. To minimize the grid effects, we
alternate the directions in which the above iterations were carried out, starting at
the top-left corner position (1, 1), fixing i = 1 we vary j = 1 to jmax (East-South
direction), initiating the next iteration at the top-right corner, and so on. This

fixed point iterations (6.3a) yield ωk k→∞−→ Wn+1 ≡ un+1∆t and we can update the
computed image U :

(6.3b) Un+1 = Un + Wn+1.

Next, we consider the filtered IDE (4.1a), which is rewritten here for convenience
as

∫ t

0

u(x, s) ds = f(x) +
g(|Gσ ⋆ ∇u(x, t)|)

2λ(t)
div

( ∇u(x, t)

|∇u(x, t)|

)

.

The only difference here is the additional diffusion controlling function g(|Gσ ⋆
∇u(x, t)|), where Gσ is the two-dimensional Gaussian smoothing with standard
deviation σ. The function g(s) = 1

1+(s/β)2 with β = 5 is used in our numerical

experiments. We approximate

g(|Gσ ⋆ ∇u(x, t)|) ≈ g

(

∣

∣

∣
Gσ ⋆

∇ωn
i,j

∆t

∣

∣

∣

)

,

and the expression on the right enters into the RHS of (6.2). We end up with the
same discrete IDE scheme (6.3) with λ(n) 7→ λ(n)

/

g
(∣

∣Gσ ⋆ ∇ωn
i,j/∆t

∣

∣

)

.

Finally, we describe the numerical implementation of the deblurring IDE models
(5.4) and its filtered version (5.5). The equation (5.4) is rewritten here for conve-
nience.

(6.4) T ∗T

∫ t

0

u(x, s) ds = T ∗f(x) +
1

2λ(t)
div

( ∇u(x, t)

|∇u(x, t)|

)

.

Let U(t) :=

∫ t

0

u(x, s) ds. As before, the left hand side of the above equation is

approximated as follows

Un+1 = Un + Wn+1, Wn+1 ≡ Wn+1
i,j := un+1

i,j ∆t,(6.5)

and time-marching to a steady solution of (6.4) yields the following iteration for
computing Wn+1 as Wn+1 = limωk,
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ωk+1
i,j − ωk

i,j

δt
=T ∗fi,j − T ∗TUn

i,j

+
1

2λ(n+1)h2
(cEωk

i+1,j + cW ωk
i−1,j + cSωk

i,j+1 + cNωk
i,j−1)

− 1

2λ(n+1)h2
ωk+1

i,j (cE + cW + cS + cN ),

where cE , cW , cS , cN are defined as before.
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