ENERGY METHODS IN IMAGE PROCESSING
WITH EDGE ENHANCEMENT

PRASHANT ATHAVALET

Abstract. Digital images are can be realized as L?(R?) objects. Noise is introduced in a digital
image due to various reasons. Some of the reasons are the limitations of the image capturing device,
e.g. improper lens adjustments, blurring due to relative motion between the camera and the object.
Noise can also be added during the signal transmission. Thus the observed image f deviates from
the original image v and we write f = Ru + 7, where R represents a linear blurring operator and 7
denotes an additive noise.

Various variational methods are used in order to recover the original image u. In particular we
will look at the problem of minimizing following energy functional

B(u) = /Q ¢><|Vu|>+A/Q \f — Rul?.

When the function ¢ is identity, in absence of blurring, this problem is the Rudin-Osher-Fatemi min-
imization problem. We will discuss the existence and uniqueness of the solution of this minimization
problem. The solution is obtained either iteratively or using the gradient descent scheme. If one uses
uniform grid for numerical implementation it becomes difficult to simulate sharp edges. In this paper
a new approach is presented where the grid depends on the value of the gradient. This can also be
written in a form of a partial differential equation where the parameter A is replaced by a function
1= X/g(|G*Vu|), where g is a real valued function on Rt with g(0) = 1 and lims_,c g(s) = 0. Nu-
merical experiments are presented in this paper to demonstrate the difference between the traditional
uniform grid method and the proposed method.
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1. Introduction. A greyscale (black and white) digital image is obtained by
sampling and quantization of an analogue image. The image can be degraded due
to various reasons like improper focusing of the camera lens, mechanical defects,
atmospheric turbulence etc. There could also be some noise introduced by errors in
signal transmission. A common model is to let u :  C R?2 — R be the clean image.
The operator R represents the blurring operator and 7 represents the additive noise.
Hence, the observed image f can be expressed as f = Ru + 1. The problem is to
recover the image u. The first idea to recover the image u by minimization of energy
was proposed by Tikhonov and Arsenin [13]. They proposed the minimization of the
following functional to recover u

F(u):/Q|Vu\2+)\/Q|ffRu|2dx. (1.1)

The first the smoothing term which forces the gradient to be small, thus reducing the
noise. The second term is the fidelity term. The Euler-Lagrange differential equation
for minimizing (1.1) is as follows:

Vu+ MR*f — R*Ru) = 0
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with the Neumann boundary condition

ou
% =0 on 69

But the Laplacian operator is an isotropic smoothing operator which smooths the
edges along with the noise. This is undesirable.
Rudin, Osher, and Fatemi [10] considered minimizing the following functional

/|Vu|+>\/ w)2da. (1.2)

The v = f —u part is given a lot of attention, from the modern view point. This part
contains not only the noise but also the edges and the texture, which are important
for any image.

Aubert and Vese [4] studied minimization of the following functional, which was
originally proposed by Geman and Geman [7].

= [ otvud+a [ 17 = Ruf? (1.3)

This approach was earlier taken by Geman and Geman [7].

2. Minimizing the functional F(u). The natural space on which we would be
able to seek a solution is the space V = {u € L*(Q),Vu € L*()?}. Unfortunately
this space is not reflexive [3]. Hence we have to consider the relaxed functional E
instead of F, given by

/¢ V) —|—c/ (u+—u_)dH1+c/ |cu|+/ luo — Rul?,
Q—S, Q

¢(s)
r

Existence and uniqueness of the minimizer of E(u): Let us discuss the
existence and uniqueness of the minimizer of the E (u) in the space BV i.e. the space
of bounded variations [2], [14]. We shall follow the treatment in [3]. The existence
of the minimizer of F(u) is proved by first showing that a minimizing sequence wu,, is
bounded in BV () and thus there exists a ug in BV (2) such that Un s Uo and

where ¢ = lim,_, |

Ru,, TQ;RUO Finally from the weak semicontinuity property of the convex function

of measures and the weak semicontinuity of the L? norm, we get
/ |Rug — f|> < liminf/ |Ru, — f|?
Q n—-4oo QO
[ ol1vual) < timin [ 6(170,),
Q n—-+4oo Q

That is,

E(up) <liminf = inf  E(u).
n—-+00 u€EBV(Q)
i.e. ug is a minimum point of E(u).
To prove the uniqueness of the minimizer we assume that the R.1 # 0. Let ug and
vg be two minima of E(u). Because of the convexity of E(u) we get that Vug = Vg
and Rug = Rvg. Hence, u = v + ¢. This implies that Rc = 0. This is contradiction
to our assumption that R.1 # 0. Hence, ¢ = 0 i.e. ug = vg.
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3. Selection of the function ¢. The Euler Lagrange equation for minimization
of E(u) in (1.3) is as follows

(¢ ([Vu]) ) f ey
dw( Sl Vu) F2MR*Ru—R*f) =0 (3.1)
Now for each point x € Q where |Vu(z)| # 0 one can define the vectors N(z) and
T(z) as

V(o) ey — () @)

V) = K@) Vo)

The vectors N(x) and T'(x) are respectively the normal and tangent to the level curves
at . Let V2u denote the Hessian matrix i.e.

V2U — Ugy Ugy
Uy  Uyy
Let unyny and upr denote the second derivatives of u in the direction of N(z) and
T(z), i.e.

1

uny = (N, V2uN) = VuP (U2 Ugg + 2Uglytigy + U Uy,)
1

upp = (T, V?uT) = W(uiuyy — 2UgpUylUgy + uzum)

Using this notation one can write the Euler Lagrange differential equation as

- (W“TT + ¢”(|VUDuNN> +2MR"Ru— R"f) = 0. (3.2)

o' ([Vul)
[Vl
derivatives along N and T allows us to see clearly the action of the diffusion operator
in the direction of 7" and N. This also helps in deciding the properties that the

function ¢ must have. To this effect we follow [3].

Writing the divergence term div ( Vu) as a weighted sum of two directional

3.1. Conditions on ¢ at low gradients. When the image has a low gradients
ie. it at a point x € € the gradient |Vu| is small , then we would like to have a
uniform smoothing in all directions. Thus we need the coefficients of uryr and uyy
to be equal as |[Vu| — 0F. Hence, we have the following condition
/

lim m ¢ (s) = ¢"(0) > 0.

s—0t S s—0+

Thus if |[Vu| — 07 the (3.2) becomes
—¢"(0)(urr + uyn) + 2A(R* Ru — R*f) = 0.
But note that urr + unn = Ugz + Uyy = Au. Hence we get,
—¢"(0)Au + 2\(R*Ru — R*f) = 0.

This is a uniformly elliptic equation with strong isotropic smoothing properties. We
also impose that the function ¢ is relatively insensitive to small changes in the gradient
of the image. Thus we also impose lim,_ o+ ¢'(s) = 0.



3.2. Conditions on ¢ near edges. If there is an edge at = € Q2 we do not want
isotropic smoothing. In fact we desire smoothing only in the direction of T'(z) and
no smoothing in the direction of N(z). Thus in (3.2) we need the coefficient of uyn
to be zero and the coefficient of upr to be some positive number (. i.e. we have the
following conditions on ¢.

i 6() =0 33)
slggo @ =03>0. (3.4)

Unfortunately, the conditions (3.3) and (3.4) are not compatible with each other.
Hence usually a compromise is found.

4. Rudin Osher Fatemi model (ROF model). The first model to consider
the minimization of the total variation was introduced by Rudin, Osher and Fatemi.
They considered minimizing the functional J(u) which is re-written here for conve-
nience.

J(u):/Q|Vu|+/\/Q(ffu)2dx.

The functional E(u) in (1.3) is a generalized version of the ROF model. So the
analysis of functional F(u) applies to the J(u) in (1.2) also. The Euler Lagrange
differential equation for minimization of J(u) is as follows

_div (%) + U= f) =0, (4.1)

If we denote v = f — u, this minimization can be considered as a decomposition of f
into v and v. Multiscale image decomposition was proposed by Tadmor, Nezzar and
Vese [11], [12], where they achieve multiscale image decomposition by decomposing
the v part again by doubling the A. Where the u part contains homogeneous regions
and the v part contents textures and noise. The ROF decomposition was studied
by Y. Meyer in [9]. He introduced the Banach space G and the associated norm as
follows.
DEFINITION 4.1. G(Q) is the subspace of W—1°(Q) defined by

G(Q) ={veLl*Q):v=div(g),g € L=(Q), g- N =0 on 9Q}.
The subspace G(2) can be endowed with the norm
v]l« = inf{||g|[ () : v = div(g), g- N =0 on 0Q}.

Meyer [9] also showed an interesting connection between the the G-space and the
space of bounded variations i.e. the BV space. He proved the following theorem
which also appears in [5].



THEOREM 4.2. If f,u,v are three functions in L*(R?) and if || f|| > 55, then the
Rudin-Osher-Fatemi decomposition f = u + v is characterized by the following two
conditions

Joll. = 55 and [ ua)oe) = 5clulav.

We follow [9] to define the extremal pair v and v as follows.

DEFINITION 4.3. Let u and v be real valued functions in L*(R?) and u € BV.
We say that (u,v) is an extremal pair if

[ @@y = [ul oy o]l
The term div (\Vu\ ) (zp) is a curvature at a point xg of a level curve of u at zo,
up to a sign factor. It is easy to observe the following corollary.

COROLLARY 4.4. With Neumann boundary conditions on u the star-norm of the

u

function w = div (lg—‘) s unity.

Proof. Let w = div (IVul) and ¢ be a test function. Thus,

| [wel=1 [ a (3 |V|90|

— [ == vy
AR
< / Vel
Q
| Jo wel <
fQ Vel
Thus, ||w|. < 1. (4.2)
Also taking ¢ = u one gets,
[l = [ vu
Q Q
‘ fQ uv| _
fQ [Vul
Thus, [|wl], > ol _ (4.3)
Jo IVl

Using (4.2) and (4.3) we see that ||w|. = 1.0

5. Solving the ROF model. The Euler Lagrange differential equation (4.1)
corresponding to the ROF model (1.2) can be written as

—f+ —d (%) in Q. (5.1)



On the boundary we impose the Neumann boundary condition, i.e. g—“ = 0 on the
boundary 0€2. Numerical implementation can be done using fixed point iteration as
n [11]. The functional (1.2) is replaced by its regularized form

€ u):/ \/52+|Vu\2+)\/(f—u)2dx.
Q Q

The associated Euler Lagrange differential equations for this regularized func-
tional reads

Vu ) )
VeE2+ [ Vul?

with @ =0 on 0N.
ov

The region € is covered with computational grid (x;,y;) = (ih, jh) where h is a cell
size. Let Dy = Dy(h), D_ = D_(h), and Dy := (D4 + D_)/2 denote the usual
forward, backward, and centered divided difference.

ThUS7 DJFIUZ'J' = (ui+1’j—ui}j)/h, D,mui,j = (uﬁj—ui,l’j)/h? Der’LLi’j = (ui’jJrl_
uij)/hy Doytij = (i = tij-1)/h, Dogtiij = (wit1; — ti-1,)/2h and Doyu;; =
(wi,j41 — wij—1)/2h. With this notation (5.2) can be discretized as follows.

u:f—i—%div( (5.2)

Uj5 = fl,] 1 |: D+£ui,j
Ve2 + (Diwtig)? + (Doyui,j)?
[ Dyt
V2 + (Dogi))? + (Dyyui ;)
o 1 [ Uit1,j — U _ Ujj — Ui—1,j
T2AR? V2 + (Diauig)? + (Doyuig)? /€2 + (D—guij)? + (Doyui-1,;)?

41 [ i1 — Ui B Ui — U1
2A? L\ /2 + (Dogui j)? + (Diyui)? /€% + (Doatij—1)% + (D—yui ;)2

The fixed point iteration can be written as follows

n+1 n+1 n

n+1 - 1 { Uilp1j — Uij B Ui j — U1 ]
) j 2
PAREL\JE2 4+ Dyt 4 (Doyuil )2\ [€2 4 (Dputy)? + (Doyuiy )2
n+1 n+1 n

1

Uig+1 — Ui Ui g Uij—1 }

Now let us use the notation A_i_xum = (ui-‘rl,j - ui,j), A_muiyj = (um — ui_l,j),
Apyuig = (W1 —Uig), Ayuij = (Uij —Uij—1), Dowlij = (Uit1,j —ui—1,7)/2 and
Aoyt j = (Ui 541 — i j—1)/2 in the above equation to get the following.

+ o | - :
e \/52+(D0Iu§fj)2+(D+yu§fj)2 \/ + (Doguil;_1)? + (D-yuii;)?

n n+1 n+1 n
n+1 ~f 1 [ Uy — g _ up }
17]
LSy + (a2 + (o, (Jlem)? + (A2 + (Boguiy P
L L upjn —ups! 3 up - upi

2)\}1[\/(€h)2+(A0xuzj)2+(A+yu?7j)2 \/( h)2 + (Dol 1) + (A_yur,)2

B



Now let us use the following notation.

1 1
CE = y CWw = ’
VE? + (Asauf)? + (Aoyui)? V2 + (Asuf ) 4 (Boyufty )2
1 1
Cs = ,CN =

VE? + (Do 2+ Ay, 2 [(6h)? + (Bosuf; )2 + (A yuf)?

With this notation the fixed point iteration can be written as

il 2M\hfi ;i + CEU?+17]' + CWU;LLJ' + CSUZ‘L,]'+1 + CNUZ-LJ,1 (5.3)
wiT 2\ +cp +cw +cs +on ' '

6. Role of ‘h’ in numerical computation. In image processing there is always
the question of what the distance between the pixels should be taken for an image of
pixel-size (M x M). Some authors use h = 1, and the others use h = 1/M. Taking a
different value of h results in different results in image processing algorithms whenever
numerical derivatives are used. The reason this happens is due to the fact that the
numerical derivatives change with the change in h.

If the image is of pixel-size (256 x 256) and the image is a grey scale 8-bit image,
i.e. it has 28 = 256 intensity levels [8], then it makes sense to take h = 1. Since, in that
case each row (and each column) of the image f would be a mapping fron : K — K,
where K is a closed interval [0, 256].

So, one way is to take h = 1 always. But now the problem comes when we
try these algorithms on a scaled version of an image i.e. image of lenna which is
(256 x 256) pixel-size image of lenna and (512 x 512) pixel-size image of lenna. It is
desirable for any algorithm to have the same effect on the image irrespective of its
size i.e. the results from differently scaled images should be scaled versions of each
other. This will happen if the the domain of the image f is always Q = [0, 2°] x [0, 2°].
Hence, for an image of pixel-size (M x M) we should take h = % But one should
note that the selection of different cell size, which is uniform throughout the image
amounts to only scaling effect.

7. New method proposed for images with sharp edges. At points of dis-
continuities the derivative of the function w is undefined. But the numerical approxi-
mation of the (5.2) assigns a finite values to derivatives at sharp edges. For example
let the function y be defined as follows.

(x)_ 0 ifxz<O
L Y

The derivative of y(x) at x = 0 is the dirac delta function d(x) which is a measure.

Vu
[Vul
gradient Vyu grow very large. This can be achieved by taking large value of the cell
size when we see large value of the numerical gradient V,u. i.e. we should modify
the cell size h to h depending on the gradient Vju for some fixed h. Thus we let the
new cell size I to be equal to h/g(|G x Vjul) for some real valued function g on R™.
As discussed in the previous section we may select this fixed h as 2—1\; We denote by
|GxVu| the smoothed version of the numerical gradient V,u obtained by convolving

Besides, we need to find div . This suggests that we should not let the numerical



it with some smoothing kernel G. The function g should be chosen such that & ~ h
when the gradient Vju is low and & — oo if Vju — oco. Thus, we need the function
g to have the following properties

g(0) =1 and
lim ¢(s) = 0.
There are many functions which satisfy these properties. We can select g(s) =1/(1+
sP) for some p > 0. For 8-bit greyscale image of size 256 x 256 we get i = 14+ |G*VulP.
With this notation the fixed point iteration (5.3) is an approximation of the
following partial differential equation

GV L Vuy
=f+ o div (|Vu|) in Q.

Which can be written as follows

=+ dw(w ‘) in 0. (7.1)

Where, p =

controls the diffusion just as in the work by Alvarez et. al. [1]. This approach can be
generalized for (3.1) which can be modified as

cp _ g, YUG*Vul) ¢ ([Vul)
RRu=Rf+ 52 dlv( al vu).

W. The function ¢g(|G * Vu|) can be seen as a function that

On the boundary we impose the Neumann boundary condition a—z =0.

8. Numerical experiments. Numerical experiments were done on 256 x 256
sized grey scale 8 bit images of a black and white circle and the image of Lenna as
shown in Figure 8.1. All the experiments were done with A~ = 1 and A = 0.0001.
The Figure 8.2 shows the implementation of standard ROF method with uniform
grid i.e. with constant cell size h = 1 . The image on the left is the u part of the
original image. The image on the right is the v part. The Figure 8.3 shows the u part
and v part of the image of circle, obtained with the new proposed method i.e. using
(7.1). Note that the v part is identically equal to zero. Similarly, Figure 8.4 shows
the implementation of the standard ROF method with uniform grid on the image of
Lenna. Compare that to the results obtained with the new proposed method in Figure
8.5. In the numerical experiments, the smoothed gradient |G+ Vu| was obtained using

—54 [6]. Here, 0 = h was used. The

the smoothing Gaussian kernel G(z,y) =
function g was taken as g(s) =

Fze
-
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