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ABSTRACT

Recent research in perinatal pathology argues that analyzing properties of the placenta may reveal important
information on how certain diseases progress. One important property is the structure of the placental fetal
stems. Analysis of the fetal stems in a placenta could be useful in the study and diagnosis of some diseases
like autism. To study the fetal stem structure effectively, we need to automatically and accurately track fetal
stems through a sequence of digitized hematoxylin and eosin (H&E) stained histology slides. There are many
problems in successfully achieving this goal. A few of the problems are: large size of images, misalignment of
the consecutive H&E slides, unpredictable inaccuracies of manual tracing, very complicated texture patterns of
various tissue types without clear characteristics, just to name a few. In this paper we propose a novel algorithm
to achieve automatic tracing of the fetal stem in a sequence of H&E images, based on an inaccurate manual
segmentation of a fetal stem in one of the images. This algorithm combines global affine registration, local
non-affine registration and a novel ‘dynamic’ version of the active contours model without edges. We first use
global affine image registration of all the images based on displacement, scaling and rotation. This gives us
approximate location of the corresponding fetal stem in the image that needs to be traced. We then use the
affine registration algorithm “locally” near this location. At this point, we use a fast non-affine registration
based on L2-similarity measure and diffusion regularization to get a better location of the fetal stem. Finally, we
have to take into account inaccuracies in the initial tracing. This is achieved through a novel dynamic version of
the active contours model without edges where the coefficients of the fitting terms are computed iteratively to
ensure that we obtain a unique stem in the segmentation. The segmentation thus obtained can then be used as
an initial guess to obtain segmentation in the rest of the images in the sequence. This constitutes an important
step in the extraction and understanding of the fetal stem vasculature.
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1. INTRODUCTION

Understanding the three dimensional structure of placental fetal stems can help doctors identify where prenatal
development diverged from normality. This could potentially help lead to earlier diagnoses of significant life-long
diseases.5, 6 However, the process of identifying fetal stems in the placenta is currently impossible. Manual
extraction of the fetal stems would be costly and extremely time-consuming; an expert must hand-trace the fetal
stems in each histology slide of the three dimensional volume. By automating the detection of fetal stems, we
hope to increase efficiency and reduce costs for emerging placental research.

Hematoxylin and eosin (H&E) stained images are commonly used for understanding the tissue structures.
The H&E images are obtained by slicing the placental tissue vertically near the area of interest. The digitized
images thus obtained are high resolution images, where the cell nuclei are stained blue and the other structures
in various shades of red, pink and orange.

H&E staining serves a fundamental purpose in the study of tissue structure in a single slide. An approach
based on a study of a single slide does not capture understanding of the movement of the blood vessels inside
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a human organ. Any study aiming to analyze the vasculature of a placenta needs to incorporate knowledge
incorporated in the consecutive slices.

Nevertheless, to extract the vasculature structure, it is essential to successfully follow the blood vessels from
one slide to the other. This problem is difficult because no two consecutive slices are registered. The slices may
not have the same orientation, scaling and there may be a linear translation between two consecutive slices. To
overcome this, we propose to use affine registration of the slices with four parameters: angle of rotation (θ),
scaling (α), translation in the x and y directions (tx1 and tx2). Such rigid registration produces a sequence of
globally registered H&E images, which could be viewed as a movie, depicting a fluid motion of the placental
tissues.

At this point we should note that the affine registration should be done only at a ‘global’ level, not at a local
level. This is because of the fact that the blood vessels move inside the placenta. So the location of a cross
section of a blood vessel does not match the same blood vessel’s cross section in the next slide. Affine registration
at a local level will actually align these cross sections, where in reality they should not be aligned.

Once the entire sequence is registered with affine registration, we would like to follow the blood vessels at a
local level. Our approach here is to start with some initial knowledge of the location of a blood vessel, and then
follow this blood vessel through the sequence of H&E slices. This is the segmentation step in our algorithm.

The additional difficulty here is that the blood vessels (and any other tissue, in general) change shape
nonlinearly in space. For example a blood vessel may change its thickness, or may be deformed. Thus, only
parametric affine registration is not sufficient in following the blood vessels along the H&E sequence. A global
affine registration then should be followed by a non-affine registration.

2. DETAILS OF THE METHODS

In this paper we try to solve the problem of tracking the placental fetal vessels, through a sequence of H&E images.
This is a very difficult problem. Existing algorithms based on edge detection or even on texture segmentation
would not work, due to the complexity of the data. We propose a method made of several steps, as explained
next.

2.1 Global multilevel parametric registration

As described before, we need to perform affine registration of the sequence of H&E images. We postulate that
the images are scaled, rotated and translated. To obtain a sequence of registered images we register the second
image (target image, T ) with the first image (source image, S) to obtain a new registered second image. Then
the third image is taken as the target image and it is registered to the newly registered second image and so on,
giving us a sequence of globally registered images.

To this effect we use a parametric registration, with four parameters: the angle of rotation (θ), scaling factor
(α), translation in the x1-direction (tx1), and the translation in the x2-direction (tx2). The target image, T , is
transformed into T (R(x)) where R is the following transformation

R(x) ≡ R(x1, x2) = α

(
cos θ sin θ
− sin θ cos θ

)(
x1

x2

)
+

(
tx1

tx2

)
. (1a)

To find an optimal vector, z of parameters z = (α, θ, tx1 , tx2)
T in order to register a target image T to the

source image S, we minimize the following energy functional,4

E(x, α, θ, tx1 , tx2) ≡ E(x, z) :=
∫
Ω

|S(x)− T (R(x))|2 dx (1b)

over all affine transformations R. This can be done using Newton’s method which takes the form of the following
iteration

zk+1 = zk + (∇2
zEk)−1∇zEk. (1c)
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Here we face another problem, the fact that the images are extremely large. Their size affects the optimization
speed. Thus we opt for a multilevel approach in the registration, in the sense that we first downsample the
given image by a factor of 2n. We then perform the minimization (1) to obtain the parameter vector z(n) =

(α(n), θ(n), t
(n)
x1 , t

(n)
x2 )T = arginfz E(x, z). Then we perform the minimization with the downsampling factor 2n−1,

using z
(n−1)
0 = (α(n), θ(n), 2 t

(n)
x1 , 2 t

(n)
x2 )T as the initial guess. We can then repeat the process till we reach the

full resolution image. This process produces a sequence of globally registered H&E images. The result of this
registration is depicted in Figure 1.

(a)

(b)
Figure 1. (a) The second image in the sequence, (b) The second image after the affine registration.

2.2 Manual tracing of fetal stem and local parametric registration

The next step is the segmentation of the fetal stem in the sequence obtained from the previous step. We opt for
a semiautomated process to do this, where we use one H&E slide where a blood vessel is traced manually. This
tracing is done after the global parametric registration. This tracing need not be very accurate, see Figure 2(b).
We use this tracing for two purposes. Firstly, it gives us an approximate location and size of the blood vessel in
the next image. This is possible due to the global registration. Secondly, the manual tracing will later serve as
an initial guess for the active contours model without edges.1, 2

Now that we have an approximate location and size of the blood vessel that we intend to follow, we extract
two smaller regions of interest from the two consecutive slides to be registered. At this point due to the movement
of the blood vessels, the locations of the blood vessels do not match. This can be corrected by performing an
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affine registration. As the sizes of these regions are much smaller, we need not use a multilevel approach to
achieve this. We note that in this step the size of the blood vessels is distorted, but this is later reversed as we
know the parameters of this registration.

2.3 Local diffusion registration

Even after the affine rigid registration, the two blood vessels are not likely to match completely. This is due to
the non-linear change of shapes of the tissues from one slide to the other. In order to follow the blood vessels,
we need the blood vessels from two consecutive slides to match as precisely as possible. To this effect we should
allow for nonlinear change in shapes. In non-parametric registration we are looking for a transformation of the
target Tu, where Tu(x) := T (x− u(x)). The problem here is to look for an optimal flow u(x) = (u1(x), u2(x))
such that the warped target image Tu is close to the source image S with respect to some measure, i.e. we need
to minimize D(S, Tu) over all u. A direct minimization of the distance has some drawbacks: the problem is
ill-posed since small changes of the input data may lead to large changes of the output data. The solution is
not unique since the problem is not convex and the deformation may not be continuous. This leads us to use a
regularizing term R(u). We then look for an optimal flow u that solves the following minimization problem

inf
u

αR(u) +D(S, Tu). (2)

In the current application we use L2 distance measure, i.e. D(S, Tu) = ‖S − Tu‖L2(Ω). There are several
ways4to formulate the regularizer R. Some of them are linearized elastic potential, static elastic potential, diffu-
sion potential, diffusion potential, biharmonic potential, etc. For our application we chose diffusion regularization
R(ui) := ‖∇ui‖L2(Ω) introduced by Fischer et al.3

inf
ui

α‖∇ui‖2L2(Ω) + ‖S − Tui‖2L2(Ω) (3)

The idea behind this regularizer is to privilege smooth deformations while minimizing oscillations of the
components of the displacement. The Euler-Lagrange differential equations associated with this problem are

α�ui + (Tui − S)∇Tui = 0. (4)

These can be discretized and solved using the steady state of the corresponding time dependent differential
equations

∂ui

∂t
= α�ui + (Tui − S)∇Tui . (5)

2.4 Dynamic active contours without edges

After the registration we transfer the manually traced curve from the source image onto the transformed regions
of interest in target image. This curve C0 should be close to the tracing around the corresponding blood vessel
in the transformed target image. We use this curve as an initial curve for the active contours without edges
model,1, 2 where we solve the following minimization problem for the transformed target image T0:

inf
c1,c2,C

μLength(C) + λ1

∫
inside(C)

|T0(x)− c1|2 dx+ λ2

∫
outside(C)

|T0(x)− c2|2 dx.

Here, C is the unknown curve, c1 and c2 are unknown average constants of the image inside and outside the
curve respectively.

We know that the segmentation should give a unique stem. Thus, coefficients of the fitting terms, i.e. μ, λ1

and λ2 are computed iteratively to ensure that we obtain a unique ‘stem’ in the segmentation. Thus we get a
contour C that gives a reasonable segmentation of the fetal stem in the next consecutive image.
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2.5 Transferring of the tracing

Now that we have the contour traced out in the target image, we then invert the non-affine diffusion map u to
obtain a tracing of the blood vessel which is locally registered using non-rigid registration. Then we use the local
affine deformation map to transfer this contour onto the local region of interest of original target image and onto
the entire target image consequently. This process now can be repeated where we can use the target image and
the resultant contour C to obtain segmentation in the next slide in the histology sequence.

3. NUMERICAL RESULTS

In our paper we approach the problem of tracing of the blood vessels in multiple stages. We use parametric
registration, non-local registration and Chan-Vese segmentation in combination to segment the blood vessels.
Due to the dynamic computation of coefficients in the Chan-Vese segmentation1, 2 our method succeeds even if
the initial curve is inaccurate. In Figure 2 we show the details of the initial tracing in the source image.

(a) (b)
Figure 2. (a) Details of the blood vessel in the source image, (b) Initial manual tracing of the blood vessel in the source
image.

In Figure 3 we see that the blood vessel is accurately segmented, even though the tracing in the initial image
is not accurate. Furthermore, the target image used here is not even the consecutive image, it is in fact the fifth
image in the sequence.

(a) (b)
Figure 3. (a) Details of the blood vessel in the target image, (b) Result of the segmentation in the target image.
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3.1 Conclusion

The proposed algorithm was devised as a first step in the tracing of fetal stems in the sequence of placental
H&E slides. It uses manual tracing in one of the images as a starting point and then tries to follow the shape
in the consecutive images. The significance of this method lies in the fact that it can be used to trace any other
tissue type in the human body as the identification of the fetal stem itself is not done automatically, making
this method very adaptable for many other types of H&E slides. In the future we would like to incorporate the
branching of the blood vessels. In the current version, manual intervention is needed to take the branching into
account. In the H&E sequence used here, most of the maternal blood was drained out. The algorithm makes
use of this fact in the segmentation step. This can not be guaranteed in general and the H&E protocol needs to
take this into consideration.
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