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ABSTRACT

Segmentation of myocardium in Late Gadolinium Enhanced
(LGE) MR images is often difficult due to accumulation of
contrast agent in the infarct areas, leading to poor delineation
from adjacent blood pools. Thus, manual determination of the
endo- and epicardial contours is challenging, time consuming,
and subject to significant intra- and inter-observer variabil-
ity. In this paper, we propose to use prior information from
cine images of the same patient to achieve accurate segmenta-
tion in the corresponding LGE images. The proposed method
first delineates the endo- and epicardial borders in the higher
quality cine images of the patient’s heart. Then, a robust mul-
tiscale registration framework incorporating multiscale total
variation (TV) flow as a preprocessing procedure is used to
align the 3D cine and 2D LGE data for the same patient. The
contours from the cine images are then propagated to the LGE
dataset using the same transformation. Promising results were
achieved through experimental validation.

Index Terms— Cardiovascular MRI, image registration,
image segmentation, multiscale total variation flow

1. INTRODUCTION

Viability assessment for a patient who has experienced prior
myocardial infarction is essential for treatment planning. In
particular, the location and size of the infarct inside the my-
ocardium are important factors for determining the feasibil-
ity and value of revascularization procedures. Typically, two
imaging datasets are acquired for viability assessment. First, a
cine cardiac magnetic resonance (CMR) imaging acquisition
is used to obtain a stack (10-15 slices) of images for evaluat-
ing the wall motion of the left ventricle (LV). Then, a gadolin-
ium based contrast agent is injected into the patient, and a late
gadolinium enhancement (LGE) MR scan is performed after a
waiting period of approximately 15-20 minutes. The contrast
agent will tend to accumulate in the infarct region due to the
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increased extracellular volume as a result of collagen fibres
in the infarcted tissue replacing healthy myocytes. This will
cause hyper-enhancement of the infarct region in the LGE im-
ages.

To locate and quantify the infarct tissue, a contouring step
is required to delineate both the endocardial and epicardial
borders of the myocardium in LGE images. The current clin-
ical practice of manually contouring the LGE images is te-
dious, time consuming, and subject to significant intra- and
inter-observer variability. However, automatic segmentation
of the myocardial contours in LGE images is extremely chal-
lenging due to intensity inhomogeneity in the myocardium
caused by the accumulation of contrast agent. Thus, most of
the existing techniques use prior information from segmented
cine CMR images to constrain the segmentation in LGE im-
ages [1, 2]. This approach is chosen because intensity val-
ues corresponding to the myocardium are relatively homoge-
neous in cine images and the intensity distributions between
myocardium and the nearby blood pool have minimal overlap.
Therefore, robust techniques exist for automatic segmentation
of cine CMR images [3, 4]. In theory, the segmented contours
from cine images can be directly transferred to the LGE im-
ages, as the patients are asked to lie still between the cine
and LGE scans. However, in practice mis-alignments occur
due to inadvertent patient movement, and respiratory motion.
Therefore, when the contours from cine images are used as
prior information, an accurate registration method is required
to propagate the contours onto the LGE dataset.

In this paper, we propose a multiscale framework for reg-
istering the 3D cine volume to each of the 2D LGE slices,
leading to automatic propagation of 3D cine contours onto the
LGE images. We believe a 3D approach can be more accu-
rate than a 2D framework as presented in [1], because correc-
tions to potential through-plane motion can also be applied. In
particular, both datasets are decomposed through a multiscale
total variation (TV) flow [5, 6] scheme that yields different
representations of the given images. Then, the images are it-
eratively registered in a coarse-to-fine manner. Finally, the
contours obtained from the cine dataset are propagated, using



the previous registration transform, to the LGE dataset.

2. METHODS

The proposed segmentation method combines several tech-
niques to find the myocardial contours in the LGE dataset.
The first step requires accurate delineation of myocardial con-
tours in the cine image sequence. This can either be per-
formed manually by an expert, which is less challenging com-
pared to direct contouring of LGE images, or automatically
using algorithms in [3, 4]. Next, multiscale TV flow is applied
to both the cine and LGE datasets to decompose the images
into coarse and fine scale features, which are then iteratively
registered. Subsequently, the obtained registration parameters
are used to transfer the cine contours onto the LGE dataset.
The block diagram of this framework is illustrated in Fig. 1.
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Fig. 1. Contouring workflow for LGE images using prior in-
formation from the corresponding cine volume.

2.1. Preprocessing using multiscale TV flow

Multiscale decomposition can be used to represent anatomi-
cal structures of varying scales, which are inherent in medical

images. This is useful for registration techniques, which can
focus on initially aligning large scale structures in two differ-
ent datasets, while ignoring small scale features. This would
provide a good initial guess of the registration parameters for
subsequent registrations, where finer features are iteratively
added in a coarse-to-fine manner.

In this paper, decomposition of an image f can be per-
ceived as generating a smooth component u and a residual
component v = f − u. Furthermore, the multiscale decom-
position algorithms can generate a multiscale family {uλ, vλ}
where λ denotes an algorithm specific scale parameter. An
example of a variational method for image decomposition [7]
involves finding a solution uλ that minimizes the following
energy term:

E(u, f) :=
1

λ

∫
Ω

|∇u|+
∫

Ω

|f − u|2, (1)

where Ω ⊂ R2 denotes the imaging domain, and a smoothed
version of f is represented by uλ with scale ∼ 1/λ. The
choice of scaling parameter λ determines the amount of
smoothing that is applied to the original image f . In the
multiscale decomposition framework, f is first decomposed
into f = uλ0

+ vλ0
. Then, we decompose uλ0

= uλ1
+ vλ1

,
with λ1 < λ0. This process is repeated iteratively to get
successively smoothed versions uλi+1

with coarser scale fea-
tures according to uλi

= uλi+1
+ vλi+1

. Thus, the following
nonlinear multiscale decomposition is produced:

uλN
= f −

N∑
i=0

vλi = f +

N∑
i=0

1

2λi
div

(
∇uλi

|∇uλi
|

)
. (2)

The divergence term in (2) formally comes from the Euler-
Lagrange differential equation [8] of (1). This multiscale rep-
resentation leads to the following integro-differential equa-
tion:

u(x, t) = f(x) +

∫ t

0

1

2λ(s)
div
( ∇u(x, s)

|∇u(x, s)|

)
ds, (3)

where λ(t) is a real-valued, monotone decreasing function.
That is, as time t increases, smoothing also increases. Differ-
entiating (3) with respect to t yields:

∂u

∂t
= µ(t) div

( ∇u
|∇u|

)
, (4)

where we set the initial condition u(x, t = 0) := f with
the Neumann boundary condition, and µ(t) = 1/2λ(t) is the
speed function, which is emperically set to µ(t) = 101+2t.
We consider equation (4) as multiscale TV flow, which is
closely related to total variation flow [6]. The multiscale TV
flow is used to decompose the cine and LGE datasets into
their respective multiscale representations with successively
larger scale structures. An example is shown in Fig. 2, where
multiscale TV flow is applied to a single slice cine image.
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Fig. 2. Multiscale TV flow preprocessing: (a) - (c) show a
cine image that has been decomposed using multiscale TV
flow. Total amount of smoothing decreases from left to right,
leading to coarse-to-fine representations of the original image.

2.2. Multiscale registration

Direct overlay of the contours from the cine image sequence
onto the LGE dataset is not accurate because of potential pa-
tient motion between the two scans. Therefore, a robust reg-
istration method is required to first align the cine dataset with
the LGE dataset, before applying the same transform to prop-
agate the cine contours.

The general image registration task can be posed as an
optimization problem as follows:

arg min
w

{
Dist(f [w], g)

}
(5)

where w := 〈θx, θy, θz, tx, ty, tz〉 represents the registration
parameters consisting of rotations and translations in x, y, z
respectively; f [w] and g represent the transformed cine vol-
ume and the reference LGE slice respectively. A rigid trans-
form is used to align the two datasets, because both acquisi-
tions are ECG gated to the same cardiac phase. The distance
measure (Dist) between the two images is chosen to be mu-
tual information (MI) [9] and the optimizer used is the sim-
plex method [10].

Furthermore, the registration process is performed in a
multiscale framework as illustrated in Fig. 3. The images
f , g, and the initial guess of the registration parameters w0

are inputs to the registration framework. Next, coarse scale
features are extracted from the the original images f and g
using multiscale TV flow, equation (4), to produce uf (·, tN )
and ug(·, tN ) for a large value tN . These images are further
down-sampled, represented by the operator D in Fig. 3, and
subsequently registered using equation (5) to produce optimal
registration parameters w1 for the current scale. The latter
acts as an initial guess for registration of finer scale feature
images uf (·, tN−1) and ug(·, tN−1), where tN−1 < tN . This
process is iteratively repeated, where the optimal transforma-
tion wi+1 is used as the initial guess for the next finer scale
registration until wfinal is obtained at the finest level.

The multiscale registration approach is adopted because
the optimization cost function is not strictly convex, leading
to the presence of local minima. Thus, the optimizer may be-
come trapped in one of these local minima, which is not the
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Fig. 3. Multiscale registration: registration is executed in a
coarse-to-fine manner, where optimal registration parameters
obtained at a coarse scale are used as initial guess at the next
scale. This is repeated until optimal registration transform is
obtained at the finest scale.

desired global solution. A multiscale scheme is more robust
to local minima because initial registration only focuses on
coarse scale features. This is equivalent to optimizing over a
smoothed version of the cost function, such that the optimizer
can converge to near vicinity of the desired solution. How-
ever, the iterative addition of finer scale features allows the
algorithm to fine-tune the registration parameters until con-
vergence is established at the optimal solution. Furthermore,
the multiscale framework can reduce total registration time,
since the input images are down-sampled at coarse scales. Im-
provements in accuracy and speed due to the use of a multi-
scale framework were described in a previous study [11].

3. RESULTS

Quantitative evaluation of the proposed method was per-
formed on data from 17 patients with previous myocardial
infarctions. Each LGE dataset consists of a stack of 10-15
slices with imaging size of 256×256 and imaging resolution
of 1.36×1.36 mm. The average perpendicular distance be-
tween the LGE contours obtained from the proposed method
and the manually delineated contours by an expert were
1.92±0.87 mm and 1.65±0.73 mm for endo- and epicardial
borders respectively. In contrast, a 2D-2D affine registration
method without the use of the multiscale TV flow regis-
tration framework obtained errors of 2.75±1.32 mm and
2.69±1.28 mm for endo- and epicardial contours respec-
tively. Lastly, direct overlay of cine contours onto the LGE
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Fig. 4. Contour comparisons: different contour propagation
method results are compared with the manually delineated
contours by an expert (i.e. ground truth). This is illustrated
for 3 different patient images (a)-(c). White arrows shows the
inaccuracies in the contours as a result of the direct overlay
and 2D-2D registration methods.

dataset without registration resulted in errors of 2.77±1.72
mm and 2.76±1.62 mm for endo- and epicardial contours re-
spectively. Example results from the aforementioned contour
propagation methods are illustrated in Fig. 4. The total reg-
istration time needed per dataset for the proposed multiscale
method is approximately 30 s on a 2.66 GHz Intel Dual Core
i7 Apple Macbook Pro with 4GB of memory.

4. CONCLUSIONS

In this paper, we presented a segmentation method for LGE
images through the use of prior cine contours. The proposed
method takes advantage of the fact that cine and LGE images
are typically acquired within the same patient scan session
approximately 15-20 minutes apart. Thus, the misalignment
between the two datasets is relatively small due to inadver-
tent patient motion. Given myocardial contours from the cine
images, our method accurately registers the 3D cine dataset to
each individual 2D LGE imaging slice, and the same transfor-
mation is used to propagate the cine contours onto the LGE
images. To ensure robustness and accuracy of the registration,
a multiscale TV flow and multiscale registration framework
is implemented to iteratively register the two datasets in a
coarse-to-fine manner. Excellent results were shown through
evaluation with real patient datasets.
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