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Multiscale Registration of Realtime and Prior MRI
Data for Image Guided Cardiac Interventions

Robert Xu∗, Prashant Athavale, Adrian Nachman, and Graham A. Wright

Abstract—Recently, there is a growing interest in using mag-
netic resonance imaging (MRI) to guide interventional procedures
due to its excellent soft tissue contrast and lack of ionizing
radiation compared to traditional radiographic guidance. One
of these applications is the use of MRI to guide radio-frequency
(RF) ablation of anatomic substrates, within the left ventricle,
responsible for ventricular tachycardia. However, different MRI
acquisition schemes have significant tradeoffs between image
quality and acquisition time. Guidance using high-quality pre-
operative 3D MR images is limited in the case of cardiac interven-
tions because the heart moves dynamically during the procedure.
On the other hand, 2-D real-time MR images acquired during the
intervention sacrifice image quality for shorter image acquisition
time, leading to real-time positional updates of cardiac anatomy.
Ideally, we wish to combine the advantages of live feedback
from realtime images and accurate visualization of anatomical
structures from pre-operative images. Therefore, to improve the
MRI guidance capabilities for cardiac interventions, we describe
a novel multi-scale rigid registration framework to correct for
respiratory motion between the prior and realtime datasets. In
the proposed approach, we use a weighted total variation (TV)
flow algorithm to extract coarse-to-fine features from the input
images and subsequently register the corresponding scales in a
hierarchical manner. Registration experiments were performed
with in-vivo human imaging data, and the target registration
error achieved was 1.51 mm. Thus, the feasibility of motion
correction in an interventional setting has been demonstrated,
which may lead to significant improvements in the guidance of
cardiac interventions.

Index Terms—Image-guided cardiac interventions, magnetic
resonance imaging, multiscale image registration.

I. INTRODUCTION

CARDIOVASCULAR disease remains as one of the main
causes of death in developed nations. Recent mortal-

ity data showed that cardiovascular disease accounted for
over 800,000 deaths or 32.8% of all deaths in the United
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States [1]. One particular disease of interest in this study is
ventricular tachycardia (VT), which is a cardiac arrhythmia
caused by scarring from previous myocardial infarctions. The
current curative treatment of VT requires the use of radio-
frequency (RF) ablation to eliminate the anatomical substrate
responsible for triggering the arrhythmia. To this end, image
guided therapies have been proposed to guide mapping and
ablation catheters to increase the accuracy and efficacy of
cardiovascular procedures [2]–[9].

Traditionally, cardiovascular interventions are carried out
under X-ray fluoroscopic guidance for diagnosis and treatment
of arrhythmias. However, X-ray images have poor soft tissue
contrast and it is therefore difficult to interpret the anatomical
context from the images directly. The use of realtime magnetic
resonance imaging (MRI) to guide cardiac interventions has
also been proposed [2], [8], [10]. Although MRI has inherently
superior soft tissue contrast compared to X-ray fluoroscopy,
realtime MRI guidance also has its limitations. The increased
acquisition frame rate is obtained at the expense of imaging
quality and spatial coverage. Alternatively, the use of high
resolution 3-D imaging roadmaps generated from computer to-
mography (CT) or MRI prior to the intervention have also been
described [11]–[13]. However, one of the major limitations
of guidance using high resolution roadmap images is that the
images remain static, and do not account for patient respiratory
motion during the interventional procedure. The amount of
respiratory motion is subject dependent, and it has been shown
that the movement can potentially exceed 16 mm [14], [15].
Therefore, patient respiratory motion can significantly reduce
the targeting accuracy of RF ablation procedures.

In the ideal paradigm, we would like to combine the ad-
vantages of live feedback from realtime images, and accurate
visualization of anatomical context from high resolution pre-
procedural images. To this end, a number of registration
studies have been reported in literature for aligning realtime
and pre-procedural images in the context of surgical naviga-
tion and adaptive radiation therapy [16]–[19]. However, these
studies focused on less mobile anatomical regions such as the
prostate, rectum, lungs, as well as the head and neck areas. The
registration problem for cardiac intervention is significantly
more challenging due to the highly mobile nature of the heart
[15]. Therefore, many cardiac image registration studies in
the past have focused on offline cardiac analysis [20]–[24].
In a review of cardiac image registration methods [20], the
authors discussed various methods for combining information
from multiple cardiac image modalities for physiologic under-
standing and diagnostic purposes. Aladl et al. [21] proposed
a registration method to align cardiac-gated SPECT and MR
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images for comparison of regional function and perfusion.
Their algorithm requires the myocardium to be initially seg-
mented in the cardiac MR images, which is subsequently
registered to the gated SPECT image via maximization of
mutual information (MI). Perperidis et al. [22] proposed a
4-D deformable registration algorithm to register 3-D MR
imaging sequences from different subjects. Specifically, the
free-form deformation model based on B-splines was used
to separately correct for spatial and temporal misalignments.
However, the reported computational time was approximately
1 hour. More recently, Shi et al. [24] proposed a non-rigid
image registration method to estimate cardiac motion and
evaluate regional volume and strain. In this case, a free-form
deformation method was adopted and a spatially weighted
normalized cross correlation (NCC) metric was chosen to
utilize data from both tagged and untagged MR images.
Although the above mentioned methods are suitable for offline
cardiac function analysis, the extended computational times
render them unsuitable for interventional applications.

Fewer studies have explored cardiac image registration for
interventional purposes [5]–[7]. Huang et al. [5] proposed a
two-step method to register realtime 3-D ultrasound images to
high quality MR/CT images of the beating heart for diagnosis
and surgical navigation. Excellent registration accuracy was
achieved for both the phantom and human studies with an
average target registration error of 2.59 mm and 1.76 mm
respectively. However, this method requires an initial manual
registration step, which is then automatically refined using
a mutual information based registration method. Smolı́ková-
Wachowiak et al. [6] presented an automatic registration
method for aligning 2-D realtime MR images to 3-D pre-
procedural MR images for interventional applications. They
studied the effect of various imaging parameters on registration
accuracy, and compared the efficacy of 2 different similarity
metrics. In the optimal setting, excellent target registration
errors were achieved (i.e. translation error was < 2.7 mm
and rotation error was < 3.6◦), but the capture range of the
algorithm was only reported for up to 10 mm of initial mis-
alignment between the realtime and prior imaging data. Ma et
al. [7] proposed a feature-based algorithm to register 3-D echo
to 3-D MR images for cardiac catheterization. They were able
to achieve a mean error of 4.1 mm based on distance between
anatomical and catheter landmarks. However, the algorithm
initially requires a clinical expert to segment the left ventricle
and identify points along the aorta in the echo image, which
can take approximately 3 minutes. The subsequent automatic
feature-based registration requires an additional 2 minutes to
complete. Therefore, this algorithm is only used to compensate
for bulk patient motion. Although the previous methods show
promise, registration of cardiac images with potentially large
misalignments due to respiratory motion remains challenging
without manual user intervention.

In this paper, we propose a novel framework for registering
pre-procedural 3-D MR images to 2-D realtime MR images
to better utilize MR guidance for cardiac interventions within
the left ventricle (LV). Specifically, a rigid transformation is
applied to correct for respiratory motion induced misalignment
between the prior and realtime datasets. The registration

framework uses a novel edge preserving scale space filter
based on weighted total variation (TV) flow to decompose
each image into coarse and fine scales. Then, the realtime
and prior images are registered in a coarse-to-fine manner
using an edge sensitive distance metric, normalized gradient
field (NGF) [25]. In the proposed approach, large structures
or coarse scales in the images are registered first, before
additional finer scale features are added to iteratively refine
the resulting registration. It is shown that the proposed method
is less likely to be trapped in a local minimum compared to
other registration approaches, and is able to achieve a median
target registration error of 1.51 mm in-vivo.

II. METHODS

A. Image Acquisition

Cardiac images from 8 volunteers were acquired with a
GE Signa HD 1.5T MRI scanner (GE Healthcare, Milwaukee,
WI) using the manufacturer’s 8-channel cardiac imaging coil.
Two separate image acquisition protocols were used to obtain
the images used in this study. For each subject, a pre-
procedural high-resolution scan is first performed to acquire
a prior roadmap image, followed by a low resolution realtime
acquisition.

1) High Resolution Roadmap Acquisition: The prior
roadmap image consists of a multi-slice 3-D volume acqui-
sition, which encompassed the heart of the subject. These
were standard clinical prescription slices parallel to the short
axis (SAX) of the heart. A typical range of 11-13 slices were
acquired to cover the entire left ventricle. For each slice, the
subject was asked to hold their breath at end expiration, while
the GE FIESTA pulse sequence was used to acquire images
gated to mid-diastole. The acquired images had a field of view
(FOV) = 350 mm, in-plane resolution = 1.3×1.3 mm2, and
slice thickness = 8 mm.

2) Low Resolution Realtime Acquisition: A fast spiral bal-
anced steady state free precession (SSFP) sequence was used
to acquire 2-D images in realtime at a frame rate of approxi-
mately 10 frames per second. The FOV was set to 350 mm, and
the obtained resolution was 2.2×2.2×8 mm3. This set of data
was acquired under free breathing. However, physiological
data such as cardiac and respiratory gating information were
also recorded using the electrocardiogram (ECG) trigger and
respiratory bellows respectively. Furthermore, the geometry of
the slice prescriptions mirrors the slices acquired in the high
resolution roadmap images.

B. Multiscale Image Decomposition Based on TV Flow

Medical image registration is often a non-convex and
time consuming optimization problem, which has many local
minima. To tackle this challenging problem, multilevel or
multiscale registration approaches have been proposed in the
past [19], [26], [27] to register images of similar resolution
levels or scales in a coarse-to-fine manner. These methods
focus on first aligning large scale structures to obtain a good
initial transformation before adding finer details to fine-tune
the registration result. Similarly, we propose to use an edge
preserving filter based on TV flow to decompose the prior
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and realtime cardiac images into their natural coarse and fine
scales, and then register the images in a hierarchical approach.

Decomposition of an image f can be considered as gener-
ating a smooth component u and a residual component v =
f −u. In the variational approach described by Rudin, Osher,
Fatemi (ROF) [28] the decomposition can be formulated in
terms of the minimization problem as follows:

f = uλ+vλ, uλ := arginf
u

{∫
Ω

|∇u|+λ

∫
Ω

|f −u|2
}
, (1)

where the Ω ⊂ R2 denotes the imaging domain, and the
minimizer uλ is a smooth version of f with a fixed scale
1/λ. The smooth image uλ is constrained to be in the space
of finite total variation (

∫
Ω
|∇uλ| <∞), and the residual vλ is

in the mathematical space L2, the space of square integrable
functions.

In this study, we consider a different version of the mini-
mization problem compared to (1), shown as follows:

f = uλ+vλ, uλ := arginf
u

{∫
Ω

α |∇u|+λ
∫

Ω

|f−u|2
}
, (2)

where α ≡ α(x) is a spatially varying weight that is in-
dependent of u, but depends on the given data f . Moti-
vated by [29], we now extend this minimization problem (2)
to produce a multiscale decomposition. To this effect, the
multiscale decomposition algorithm can generate a multiscale
family {uλ, vλ} where λ denotes an algorithm specific scale
parameter. First, we consider the decomposition of the original
f into f = uλ0 + vλ0 using a large parameter λ = λ0. Then,
we decompose uλ0

= uλ1
+ vλ1

, with λ1 < λ0. This process
is repeated iteratively with λi+1 < λi to obtain successively
smoothed versions uλi+1

with coarser scale features, thus
producing a nonlinear multiscale decomposition as follows:

f = uλ0
+ vλ0

= uλ1
+ vλ1

+ vλ0

= · · ·

= uλN
+

N∑
i=0

vλi . (3)

Here we note that this multiscale decomposition is equivalent
to removing noise and oscillations at certain scales, thus
smoothing the image at each iteration. This approach differs
from [29], where the algorithm started with a coarse image,
and finer details were successively added at dyadic scales. We
also distinguish the proposed approach from our earlier work
[30], where we introduced a similar decomposition, but the TV
seminorm

∫
Ω
|∇u| was not weighted by the spatially varying

α.
Using the Euler-Lagrange differential equation [31] of (2),

and rearranging equation (3) gives us:

uλN
= f −

N∑
i=0

vλi
= f +

N∑
i=0

1

2λi
div

(
α∇uλi

|∇uλi |

)
, (4)

where {λi}Ni=1 is a monotonically decreasing sequence. Con-
sidering λi as samples from a real valued monotonically

decreasing function λ(t) motivates the following integro-
differential equation:

u(x, t) = f(x) +

∫ t

0

1

2λ(s)
div
(α∇u(x, s)

|∇u(x, s)|
)
ds. (5)

As time t increases, the image u(·, t) becomes successively
smoother versions of the original image f . Differentiating (5)
formally with respect to t yields:

∂u

∂t
= µ(t)div

(α∇u
|∇u|

)
, (6)

where u(t = 0) := f with Neumann boundary condition, and
µ(t) = 1/2λ(t) is the speed function, which is set to µ(t) =
1.1t. We consider equation (6) as multiscale weighted TV flow
(see Appendix for numerical solution to this equation), which
is closely related to total variation flow [32].

To enhance the edge-preserving nature of the flow in (6),
we choose the spatial weight α as follows:

α(x) =
1√

1 + |∇(Gσ ∗ f)(x)|2/β2
(7)

where Gσ is a Gaussian kernel with a small standard deviation
σ, and β ∈ R, which is chosen such that α(x) attains small
values at prominent edges in the image. Small values of β
close to 0 enhance the edge preserving nature of the weighted
TV flow, but could also preserve noise artifacts that have sharp
transitions in intensity. In contrast, as the value of β increases,
α(x) approaches unity, which reduces the constraint on edge
smoothing in the weighted TV flow. For the experiments in
this paper, β was set to 0.07 to emphasize the preservation of
prominent edges belonging to anatomical boundaries.

We observe that the weighted TV flow produces a multiscale
representation of a given image f (see Fig. 1). Theoretically,
this flow differs from the well known edge preserving Perona-
Malik equation, which is defined in [33] as:

∂u

∂t
= div

(
g(|∇u|)∇u

)
. (8)

In fact, if we treat the Perona-Malik equation as the solution
to a minimization problem [34], and set g(s) = 1

1+s2/κ2

as proposed in [33], then (8) can be viewed as a flow
corresponding to minimization of the following functional:

JPM (u) =
κ2

2

∫
Ω

ln
(

1 +
|∇u|2
κ2

)
dx, (9)

which is a fundamentally different minimization problem
compared to our consideration in (2). Moreover, the weight
α in (6) is a function of the original data f rather than u,
which can help to preserve prominent edges at coarser scales.
This stems from the fact that f is a constant, whereas u is
smoothed over time.

C. Hiearchical Multiscale Image Registration

Mathematically, registration of a template image f to a
reference image g can be posed as an optimization problem
as follows:

arg min
w

{
D(f [w], g)

}
, (10)
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t = 0.05t = 0.50t = 1.00t = 1.50

Fig. 1. Image decomposition using weighted TV flow. Images from left
to right show images with coarse to increasingly fine scale features. This
corresponds to decreasing values of the artificial time t in (5).

where w : R3 → R3 is a geometric transformation, and D
measures the distance between the transformed template image
f [w] and the reference image g. In this study, the geometric
transformation chosen is a rigid-body transformation, because
the acquired images are gated to the same cardiac phase.
However, in general, w can be any arbitrary transformation.
The distance measure D is chosen to be the normalized
gradient field measure DNGF , which is defined as [25]:

DNGF = −1

2

∫
Ω

〈n̂(f, x), n̂(g, x)〉2dx ,

n̂(I, x) :=
∇I(x)

‖∇I(x)‖ε
, (11)

where 〈·, ·〉 denotes the vector dot product, and n̂ represents
the normalized gradient of the image. For x ∈ Rm, ‖x‖ε =√∑m

k=1 x
2
k + ε2 and ∇I := (∂1I, · · · , ∂mI). The parameter

ε is a regularizing term that minimizes the effects of small
gradients due to noise, and is automatically set as follows:

ε =
η

V

∫
Ω

|∇I(x)|dx, (12)

where η is the estimated noise level in the image, and V is
the volume of the domain.1

NGF is an alternative to MI based registration metrics, and
is derived from the observation that if two images are similar,
then many intensity changes should occur at the same location.
The motivation for using this edge sensitive metric is that we
wish to align spatial features such as contours and boundaries,
which often denote transitions between tissue types.

The optimization in (10) is achieved via the proposed
multiscale registration framework illustrated in Fig. 2, and the
simplex minimization algorithm [35] was used at each scale.
Smoothed template uf (·, t) and reference ug(·, t) images are
obtained via weighted TV flow (6), where t0 > t1... > tN .
Then, the coarse scale image pairs uf (·, t0) and ug(·, t0)
are subsampled (denoted by operator D↓) by a factor of 2N

before registration; the resulting transformation is used as the
initialization for the image pair with finer scales. This process
is repeated for N additional levels, where the subsampling
factor is reduced by 2 at each level, until the final registration
result is obtained. In this study, the number of levels N = 3.

1In this paper, the value of ε was approximately 0.01 and 0.04 for the
prior and realtime images respectively, assuming image intensity range is
normalized to [0, 1].

III. EXPERIMENTS AND RESULTS

Validation of the proposed multiscale registration frame-
work was performed for prior roadmap and realtime MR
images acquired from 8 volunteers at the Sunnybrook Health
Sciences Centre (Toronto, ON). Specifically, two experimental
protocols were adopted to quantitatively evaluate the registra-
tion accuracy of the proposed registration technique. One is
a controlled experiment, where the ground truth registration
transformations were known, and the registration accuracy
was evaluated based on the proposed framework’s ability to
recover the known transformations. In the second experiment,
the realtime images were acquired during free breathing, and
the ground truth registration parameters were unknown. In
this case, the registration accuracy was estimated via two
different evaluation metrics. In the first evaluation criterion, the
Dice similarity coefficient (DSC) [36] was computed between
the manually segmented LV endocardium boundary from a
realtime image and the corresponding segmentation from a
registered prior image. During the second evaluation, the
in-plane distance between visible landmarks from prior and
realtime images after image registration was computed. Details
are presented in the following sections.

A. Controlled Registration Experiment Setting

To quantitatively evaluate the accuracy of the proposed
framework, a controlled study was performed. The prior
images were acquired during end-expiration breath-holds and
retrospectively gated to the mid-diastolic cardiac phase. On
the other hand, the acquired realtime images were retrospec-
tively gated to the same mid-diastolic cardiac phase and end-
expiration respiratory phase. Moreover, the same geometric
slice prescriptions were used for both the prior and realtime
scans, which were acquired a few minutes apart during the
same scan session. During the session, the volunteer subjects
were securely strapped down by the cardiac imaging coil and
did not move out of the MR bore between the two scans.
Therefore, in this controlled study, the prior and realtime
images were optimally aligned and considered as ground truths
for the ensuing registration. Subsequently, the spatial locations
of landmarks within the heart such as the LV apex, papillary
muscles, and aortic valve annulus were identified, and their
(x, y, z) coordinates were recorded from the aligned images.

Next, a known transformation ωd = 〈θx, θy, θz, tx, ty, tz〉
consisting of rotations and translations was applied to the
prior roadmap image, causing a mean displacement equal to a
predefined value d for the selected landmarks. The rotation
and translation parameters were randomly generated with
independent and identically uniform distributions. For each
predefined value of d = 5, 10, 15, 20 mm, 100 transformations
were generated. Thus, 400 transformations were generated for
each of the 8 volunteer subjects, creating 3200 registration
cases in total. Subsequently, the misaligned 3-D prior roadmap
image f and a 2-D realtime image g were supplied to
the proposed registration framework (Fig. 2) to attempt to
recover the known transformation. During this process, we also
evaluated the effect of using different image decomposition
schemes or registration distance metrics. Since the ground
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Fig. 2. Multiscale TV flow registration framework using the normalized gradient field metric. Both the template f and reference g images are decomposed
into coarse and fine scale images corresponding to decreasing values of t : t0 > t1 > ... > tN . The extracted scale images are then down-sampled and
registered iteratively in a coarse-to-fine manner.

truth transformation is known, the target registration error
(TRE) can be defined as:

TRE =
1

M

M∑
j=1

‖L (f [ωr], j)− L (g, j) ‖l2 (13)

where ωr : R3 → R3 is the recovered geometric transfor-
mation, and M denotes the number of landmarks. The cor-
responding anatomical landmark locations of the transformed
prior and realtime images are represented by L (f [ωr], j) and
L (g, j) respectively, where j = 1, ...,M . Finally, ‖ · ‖l2
represents the Euclidean norm.

B. Controlled Registration Experiment Results

The controlled experimental results obtained using the
proposed registration framework are summarized in Fig. 3a.
In the proposed approach, both the prior and realtime data
were decomposed using the weighted TV flow algorithm,
and subsequently registered via minimizing the NGF metric.
For comparison, the registration results using the NGF metric
with a Perona-Malik hierarchical decomposition scheme (Fig.
3b) and a Gaussian hierarchical decomposition scheme (Fig.
3c) are also presented. Specifically, the same registration
framework shown in Fig. 2 was applied, but the weighted TV
flow decomposition step was replaced by the Perona-Malik
anisotropic diffusion filter [33] in the former approach and a
Gaussian filter in the latter approach. Box-and-whisker plots
were used to describe the results, since the errors were not
normally distributed, as confirmed by the Anderson-Darling
test [37]. The median TREs for all 3 registration approaches

were below the desired clinical accuracy of 5 mm (i.e. the
dotted line in Fig. 3) for initial misalignments of up to 20
mm. However, it was observed that lower upper bounds of
the TREs were achieved with the proposed weighted TV flow
decomposition scheme. Specifically, when we combined the
registration results for all 4 initial misalignment distances, the
median TREs were 1.28, 1.31, and 1.30 mm for the weighted
TV flow, Perona-Malik, and Gaussian approaches respectively.
However, the TREs at the 90th percentile were 4.27, 6.51,
and 9.82 mm for the weighted TV flow, Perona-Malik, and
Gaussian approaches respectively.

Since the TRE distributions were not normally distributed
and displayed positive skew, the non-parametric Wilcoxon
signed-rank test [38] was used to test for statistical significance
between the results of the different registration approaches. A
paired difference test was chosen because, in each registration
trial, the different registration approaches all attempted to
correct for the same misalignment generated by a known
transformation. Using the Wilcoxon signed-rank test [38], we
found at the 1% significance level (i.e. p < 0.01) that lower
target registration errors were achieved using the weighted
TV flow approach compared to Perona-Malik (p < 0.01)
and Gaussian (p < 0.01) pre-processing. The improvement in
registration accuracy may be attributed to the fact that the NGF
measure is sensitive to edge information, and the weighted TV
flow decomposition algorithm is better able to preserve the
prominent edges during its iterative filtering process.

Furthermore, we also compared the registration results ob-
tained via the proposed registration framework using NGF as
the registration metric with other well established distance
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Fig. 3. Comparison of registration results using the NGF distance metric
and different image pre-processing schemes. Registration accuracy was eval-
uated for aligning prior and realtime images (a) with weighted TV flow
pre-processing, (b) with the Perona-Malik anisotropic diffusion filter pre-
processing, and (c) with Gaussian pre-processing. For each approach, there
are 4 box-and-whisker plots, which illustrates the median (notch), interquartile
range (box), and 10th and 90th percentiles (whiskers) of the TRE after
registration for all the volunteers with an initial known misalignment of d
= 5, 10, 15, and 20 mm respectively.

metrics such as NCC and MI. Specifically, the weighted
TV flow algorithm was first used to extract the different
scale features from the prior and realtime images. Then,
the registration was performed using the NCC or MI metric
instead of NGF. The registration results are shown in Fig.
4. Again, the Wilcoxon signed-rank test was used, and we
observe that registrations with NGF achieved significantly
lower TREs compared to registration with NCC (p < 0.01)
and MI (p < 0.01).

Overall, it was observed that the lowest median target regis-
tration error of 1.28 mm was achieved using the combination
of NGF as the distance metric, and weighted TV flow as the
image decomposition method. An example of a successful
registration using the proposed method is shown in Fig. 5.
Note that the difference image between the prior and realtime
image before registration (Fig. 5c) shows distinct anatomical
structures in the region of interest as highlighted by the circle
centred around the LV. On the other hand, the difference
image after registration (Fig. 5f) shows more uniform intensity
variations within the region of interest, which is due to the
inherent difference in the contrast mechanisms of the two
acquisitions rather than structural misalignment.

C. Free Breathing Registration Experiment Setting

To evaluate the proposed registration framework in a more
clinically relevant scenario, the volunteers were asked to
breathe normally during this experiment, while the real-
time images were continuously acquired. The acquired prior
roadmap images still consisted of a stack of slices that
covered the entire LV, and were gated to mid-diastole and end-
expiration as before. In contrast, the acquired realtime images
consisted of a single imaging slice within the LV, and were

(a) (b) (c)
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Fig. 4. Comparison of registration results using the proposed weighted
TV flow registration framework with different distance metrics. Registration
accuracy was evaluated for the (a) NGF metric, (b) NCC metric, and (c)
the MI metric. For each approach, there are 4 box-and-whisker plots, which
illustrates the median (notch), interquartile range (box), and 10th and 90th
percentiles (whiskers) of the TRE after registration for all the volunteers with
an initial known misalignment of d = 5, 10, 15, 20 mm respectively.

(a) (b) (c)

(d) (e) (f)

Fig. 5. Controlled registration experiment between prior 3-D volume and
realtime 2-D image. (a) Initially misaligned imaging slice from the prior 3-D
volume; (b) reference 2-D realtime image; (c) the absolute difference image
between images (a) and (b). (d) The registered imaging slice from the prior 3-
D volume; (e) reference 2-D realtime image; (f) the absolute difference image
between the registered images (d) and (e).

only retrospectively gated to the same mid-diastolic cardiac
phase. Since the realtime images were acquired continuously
in time, and were not gated to end-expiration, they could be in
any arbitrary respiratory phase. Moreover, due to the difference
in respiratory phase between the two datasets, the ground truth
alignment is unknown. A total of 179 registration cases were
performed, which included registrations between 9-29 realtime
single slice 2-D images from each of the 8 subjects and their
corresponding 3-D prior roadmap images.

To correct for the respiratory motion induced misalignment,
we used the proposed registration framework with the NGF
metric to register the prior volume to the realtime image.
The choice of the NGF metric was based on results of the
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previous controlled registration experiment, where registration
using the NGF metric demonstrated higher accuracy compared
to NCC and MI. In terms of image decomposition schemes,
we compared the registration accuracy achieved with the
proposed weighted TV flow algorithm to the Perona-Malik
pre-processing method, and Gaussian pre-processing of the
prior and realtime images.

In this experiment, the registration accuracy was estimated
via the DSC and the in-plane target registration error. DSC is
defined as [36]:

DSC(Mprior,Mrealtime) =
2|Mprior ∩Mrealtime|
|Mprior|+ |Mrealtime|

, (14)

where Mprior and Mrealtime represents the manual segmen-
tation masks of the left ventricle endocardial border from the
prior and realtime images respectively. The DSC measure is
illustrated in Fig. 6, where the overlap between the contours
of the LV endocardial border in the prior and realtime image
is shown in Fig. 6b for the initially misaligned case (DSC
= 82.9%), and Fig. 6d for the motion corrected case using
the proposed registration method (DSC = 95.2%). The higher
DSC indicates improved image alignment, which is confirmed
by visual observation. Alternatively, the in-plane TRE can also
be measured as an indicator of registration accuracy. Equation
(13) can be used to measure the average distance between
visible landmarks (e.g. papillary muscles) in the prior and
realtime datasets from the intersecting imaging plane after
registration.

The manual segmentations and landmark identifications
were performed by two experts. Each observer was asked to
perform the segmentation and landmark identification tasks for
both the realtime and prior images, using a custom MATLAB
application. Each task was performed in two separate sessions,
where each observer was not aware of the other’s results. The
average DSC measure between the two experts’ segmentations
was 97.4%, while the average distance between the identified
landmarks was 0.80 mm.

D. Free Breathing Registration Experiment Results

The free breathing registration experiment results for DSC
and in-plane TRE are summarized in Table I and Table
II respectively. As a baseline reference, we computed the
median DSC and in-plane TRE values for the prior and
realtime datasets before registration was applied. As expected,
a relatively low DSC value (88.0%) and a high in-plane TRE
(4.35 mm) were obtained due to misalignments caused by
respiratory motion. Subsequently, a comparison of the 3 dif-
ferent registration approaches showed that the highest median
DSC value (95.5 %) and lowest median in-plane TRE (1.51
mm) were achieved using the proposed method of applying
weighted TV flow as the pre-processing scheme with NGF
as the registration distance metric. Again, using the Wilcoxon
signed-rank test, it was observed that the proposed method
achieved higher DSC values compared to Perona-Malik (p <
0.01) and Gaussian (p < 0.01) approaches. Similarly, the
proposed method obtained lower in-plane TREs compared to
Perona-Malik (p < 0.01) and Gaussian (p < 0.01) approaches.

(a) (b)

(c) (d)

prior mask

realtime mask

prior mask

realtime mask

Fig. 6. Dice similarity coefficient measure. (a) Extracted 2-D slice from
the prior 3-D volume before registration and the corresponding manual
segmentation of the LV endocardium (dashed line). (b) The direct overlay
of the prior mask from (a) is shown together with the contour of the LV
endocardium (solid line) in the realtime image. (c) Registered prior image
with corresponding LV contour (dashed line). (d) Overlay of the registered
prior contour from (c) and contour of the LV (solid line) in the realtime image.

TABLE I
FREE BREATHING REGISTRATION EVALUATION FOR DIFFERENT IMAGE

PRE-PROCESSING SCHEMES. THE MEDIAN, 10TH PERCENTILE, 90TH
PERCENTILE, AND INTERQUARTILE RANGE (IQR) VALUES FOR DSC
MEASUREMENTS ARE SHOWN FOR N=179 PAIRS OF REALTIME AND

PRIOR IMAGES.

DSC (%)

Registration Median 10th 90th IQR
Method Percentile Percentile

No Registration 88.0 69.6 93.8 8.20

NGF + Gaussian 95.0 92.1 96.8 2.40

NGF + Perona-Malik 95.1 92.1 97.1 2.39

NGF + weighted TV flow 95.5 92.9 97.1 1.93

TABLE II
FREE BREATHING REGISTRATION EVALUATION FOR DIFFERENT IMAGE

PRE-PROCESSING SCHEMES. THE MEDIAN, 10TH PERCENTILE, 90TH
PERCENTILE, AND INTERQUARTILE RANGE (IQR) VALUES FOR IN-PLANE
TRE MEASUREMENTS ARE SHOWN FOR N=179 PAIRS OF REALTIME AND

PRIOR IMAGES.

TRE (mm)

Registration Median 10th 90th IQR
Method Percentile Percentile

No Registration 4.35 2.30 11.54 3.25

NGF + Gaussian 1.70 0.88 3.77 1.22

NGF + Perona-Malik 1.63 0.89 3.34 1.33

NGF + weighted TV flow 1.51 0.85 3.28 1.20
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E. Computational Time

In our experiments, the pre-processing time associated with
weighted TV flow decomposition was approximately 3.08
seconds for a multi-slice prior dataset of size 256× 256× 12,
and 0.27 seconds for a single 2-D realtime image of size
256× 256. The subsequent coarse-to-fine registration process
for a pair of prior and realtime images required 29.17 ± 3.02 s
to complete when the NGF distance metric was used, whereas
the computational time was 27.94 ± 3.38 s and 30.46 ±
4.25 s for registrations with the NCC or MI distance metric
respectively. Thus, the computational complexity of NGF is
slightly higher than NCC, but lower than MI. Currently, the
overall registration framework is implemented using unopti-
mized MATLAB code and evaluated on a MacBook Pro laptop
with 2.66 GHz Core i7 processor and 4GB of RAM.

IV. DISCUSSIONS

A. Distance Metric Evaluation

In the previous section, we demonstrated that the proposed
registration method using the weighted TV flow algorithm
and NGF metric was effective for aligning prior roadmap
and realtime MR images. In fact, in our experiments the
NGF metric outperformed traditional NCC and MI metrics.
This may be explained by analyzing the cost function curves
for each metric, which are visualized in Fig. 7. These cost
curves were generated from a pair of initially aligned prior and
realtime images by applying small rotations and translations
to the prior volume and computing the corresponding distance
metric values.2 For the plots in Fig. 7, no pre-processing
techniques were applied to the prior and realtime images. For
each metric, there are 6 cost curve plots, corresponding to
rotations and translations in 3-D. In each plot, one registration
parameter is varied near the vicinity of the correct registration
value, while the other parameters are kept constant at the
correct registration values.

We observe for the NCC plots (Fig. 7a) that the cost
curves are smoothly varying, and have very few local minima.
However, the cost functions have a relatively broad minimum,
and the global minimum for some registration parameters are
shifted from the correct solution at the 0 offset. This suggests
that registrations using the NCC metric should be robust and
generally converge to the near vicinity of the correct solution,
but will not obtain a very accurate registration. This is evident
in the controlled registration experiment (Fig. 4b), where the
obtained median TREs were relatively stable in the range of 3-
4 mm regardless of the magnitude of the initial misalignment.
In contrast, the MI cost curves (Fig. 7b) are very noisy,
have many local minima, and the global minima from the
different cost curve plots are also shifted from the correct
solution at the 0 offset. Therefore, registrations using the MI
distance metric are prone to be trapped at a local minimum,
which can be far away from the correct registration. This is
demonstrated in the controlled registration experimental results
(Fig. 4b), where the median and upper bounds of the TRE for
MI registrations increased significantly as the magnitude of

2Note that the cost functions have all been normalized to [0 1].

the initial misalignment increased. Finally, for the NGF cost
curves (Fig. 7c), it is shown that all of the curves except for the
translation parameter in the y-direction of the SAX imaging
plane (i.e. Ty) have a sharp global minimum at the correct
registration. This offset in Ty could be due to the presence of
imaging artifacts, which leads to detection and alignment of
false edges. However, this error is minimal, as the NGF cost
function is still dominated by prominent edges corresponding
to true anatomical boundaries. Although the cost curves for
NGF are not as smooth as the NCC curves, the global minima
are more sharply defined and closer to the correct solution.
Also, the number of local minima in the NGF cost curves
is significantly less compared to the MI curves. Accordingly,
the median TREs achieved in the controlled experiment for
registrations with the NGF metric (Fig. 4) were lower than
both NCC and MI.

B. Weighted TV Flow Enhancement

Further improvements to the registration accuracy were
observed in both the controlled and free breathing registration
experiments after the weighted TV flow image decomposition
algorithm was applied to the input images. The fact that the
weighted TV flow algorithm behaves as an edge preserving
filter is particularly useful when applied in conjunction with
an edge sensitive metric such as NGF, since the latter relies on
identification and alignment of prominent edges in the images.
Additionally, the coarse-to-fine scale registration framework
using weighted TV flow can improve the registration robust-
ness by initially removing fine-scale features, leading to a
reduced number of local minima in the cost function. These
characteristics are evident in the NGF cost curves shown in
Fig. 8, where the input prior and realtime images have been
pre-processed using weighted TV flow. We see that all 6 cost
curve plots have their global minimum close to the zero offset
position, and the cost curves for translations Tx and Ty are
smoother compared to the plot produced in Fig. 7c. Thus, the
combination of weighted TV flow and NGF produced the best
registration results in both the controlled and free breathing
experiments of this study.

C. Limitations and Future Works

In the experiments of this study, a rigid-body transformation
model was chosen to correct for respiratory motion induced
misalignment between the realtime and prior images. It was
shown in [39], that a rigid-body transformation is a reasonable
model to describe respiratory motion of the LV, provided that
ECG gating is used to align the corresponding images in
the same cardiac phase. The same rigid-body transformation
model was also adopted for image registration studies in [5],
[6], [21], [40], when ECG gating was applied. Alternatively,
non-rigid transformation models could have been used, which
includes affine and free-form deformable transformations.
The additional degrees of freedom introduced in non-rigid
transformations may be able to describe the motion of the
heart with increased accuracy. However, from an optimization
perspective, the additional degrees of freedom may also lead
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Fig. 7. Cost curves for the different distance metrics. Rotation and translation offsets were applied to a prior image to move it out of alignment with a paired
realtime image. For each transformation, corresponding distance metric values were computed for the (a) NCC metric, (b) MI metric, and (c) NGF metric.
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Fig. 8. NGF cost curves after pre-processing the aligned prior and realtime images with weighted TV flow for t = 0.25. Rotation and translation offsets
were applied to the filtered prior image to move it out of alignment with the filtered realtime image, and corresponding NGF metric values were computed.
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to convergence to undesirable local minima due to the non-
convex nature of the optimization problem. Moreover, the use
of non-rigid registration will also significantly increase the
computational time. These are potentially significant draw-
backs, as the intended application in this study is for realtime
MR intervention. Therefore, a rigid-body motion model was
adopted in the current study.

As part of the future work, we are planning to implement
the proposed registration framework using graphics processing
unit (GPU) acceleration methods to further reduce the overall
computational time. We believe that near realtime (i.e. <1 s)
registration can be achieved after optimization [41]. However,
in the scenario where the registration speed is still insufficient,
then the additional latency may potentially be corrected by
using a motion modelling approach [42]. Specifically, the
real-time registration method would be used in an initial
calibration stage to create a dynamic motion model, which is
then updated periodically as new registration parameters are
obtained. Subsequently, the model should be able to predict
and correct for motion misalignments with minimal latency.

V. CONCLUSION

In this paper, a novel registration framework consisting
of a multiscale edge-preserving filter and an edge sensitive
registration metric was proposed for aligning realtime and
prior roadmap images for the purpose of guiding MRI based
cardiac interventions. This method was validated in a con-
trolled experiment with known ground truth, as well as in a
free breathing experiment using data acquired from 8 human
subjects. In the controlled study, we achieved a median target
registration error of 1.28 mm for initial misalignments of up
to 20 mm. Alternatively, in the free breathing experiment,
the proposed method achieved a median in-plane target reg-
istration error of 1.51 mm. Thus, this proof of concept study
showed that it is feasible to correct for respiratory motion
induced errors to within the accuracy requirement of our target
application. This combination of motion corrected roadmaps
with realtime imaging should lead to significant improvement
in the guidance of cardiac interventions.

APPENDIX
NUMERICAL SCHEME FOR WEIGHTED TV FLOW

In this section we provide the details of a fast semi-implicit
numerical scheme for solving the weighted TV flow (6). Let h
and τ be the space and time discretization steps respectively.
We denote the value of the function u at the location (x, y) ≡
(ih, jh), and at time t = nτ by uni,j . With this notation we

have the following discretization for the right hand side of (6)

µ
(
D−x

[ αi,jD+xui,j√
ε2 + (D+xui,j)2 + (D0yui,j)2

]
+D−y

[ αi,jD+yui,j√
ε2 + (D0xui,j)2 + (D+yui,j)2

])
=

µ

h2

[ αi,j(ui+1,j − ui,j)√
ε2 + (D+xui,j)2 + (D0yui,j)2

− αi−1,j(ui,j − ui−1,j)√
ε2 + (D−xui,j)2 + (D0yui−1,j)2

+
αi,j(ui,j+1 − ui,j)√

ε2 + (D0xui,j)2 + (D+yui,j)2

− αi,j−1(ui,j − ui,j−1)√
ε2 + (D0xui,j−1)2 + (D−yui,j)2

]
,

where, D+, D−, D0 denote the forward, backward and central
difference schemes, respectively. We use the following nota-
tion

CE =
1√

ε2 + (D+xuni,j)
2 + (D0yuni,j)

2

CW =
1√

ε2 + (D−xuni,j)
2 + (D0yuni−1,j)

2

CS =
1√

ε2 + (D0xuni,j)
2 + (D+yuni,j)

2

CN =
1√

ε2 + (D0xuni,j−1)2 + (D−yuni,j)
2
.

Thus, we get the following discretization for (6)

un+1
i,j − uni,j

τ
=

µn+1

h2
[CEαi,ju

n
i+1,j + CWαi−1,ju

n
i−1,j + CSαi,ju

n
i,j+1

+ CNαi,j−1u
n
i,j−1

− (CEαi,j + CWαi−1,j + CSαi,j + CNαi,j−1)un+1
i,j ]

or

un+1
i,j =

[uni,jh
2 + µn+1τ(CEαi,ju

n
i+1,j + CWαi−1,ju

n
i−1,j

+ CSαi,ju
n
i,j+1 + CNαi,j−1u

n
i,j−1)]

h2 + µn+1τ(CEαi,j + CWαi−1,j + CSαi,j + CNαi,j−1)
.
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