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Abstract. Extreme learning machines are a type of single layer feed forward network that utilize randomly chosen input and

bias weights and have output weights which are determined via a simple linear method. In this study, it is shown that extreme

learning machines can be accurately used to return logical operations, such as AND, OR, XOR, and NOT. This paper showcases

this ability by creating models comprised of extreme learning machines that run Tic-Tac-Toe and Conway’s Game of Life.

1 Introduction5

Since their discovery in 2006 (Huang et al., 2006b), extreme learning machines (ELMs) have become a popular form of feed

forward neural network due to their simplicity and associated quick training times. Extreme learning machines differ from

traditional single layer feed forward networks (SLFNs) as the input and bias weights of the ELM are randomly selected, with

only the output weights being trained via a simple inverse operation. This drastically reduces training time, while still producing

results that are competitive with machine learning methods that are trained more extensively (Bonakdari and Ebtehaj, 2016;10

Peng et al., 2013; Bhat et al., 2008). Researchers have applied extreme learning machines to tasks from time series forecasting

(Xing et al., 2019; Zhang et al., 2017) to object recognition (de Chazal et al., 2015; Rong et al., 2014; Sreekanth et al., 2014)

with success. The ability for the extreme learning machine to be able to approximate various functions has been explained

by universal approximation theory (Huang et al., 2006a), which can be understood heuristically as the ELM piecing together

random functions in a manner that fits the observed data set.15

Single layer ELMs are essentially a weighted sum of the outputs from a layer of neurons with randomly selected internal

synaptic weights. Therefore if the extreme learning machine is able to model fundamental logical operators, this is indicative

of how the brain can perform complex computations with very minimal adjustment to the synaptic weights, as the logic gates

can be arranged in an organized manner that allows for more advanced computation. It has been shown in the past that a single

perceptron (which is a rough model for a biological neuron) is capable of modelling several logical operators (Adesola, 2015).20

Therefore our goal is to rather show how a network of neurons with randomly chosen internal weights (i.e., an ELM) can still

give rise to computation by being able to mimic logical operators.

2 Extreme Learning Machines

The single layer extreme learning machine is defined as follows (Huang et al., 2006b). The input data on the jth time step

xj = [xj,1 xj,2 . . . xj,dx]
⊺ is transformed by the input weights wi = [wi,1 wi,2 . . . wi,dx], where it is then summed with a25
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bias term bi. The values of the input and bias weights are sampled from the same normal distribution N(0,σ). The value of

wi ∗xj + bi is then transformed by activation function g(s), which is commonly chosen to be the hyperbolic tangent function,

the sigmoid function, or the radial basis function (Wang et al., 2021). After being transformed by the activation function this

is effectively the output of a single perceptron, which is then weighted appropriately depending on the output node it is going

to βi = [βi,1 βi,2 . . . βi,dy]. The resulting output yj = [yj,1 yj,2 . . . yj,dy] is then the summation of the aforementioned process30

i= 1 to Ñ times, hence corresponding to Ñ neurons.

Ñ∑
i=1

βig(wi ∗xj + bi) = yj (1)

Figure 1. Architecture of the extreme learning machine.

For training of the extreme learning machine, a matrix H ∈ IRN×Ñ is compiled for each of the N samples of the input data

x ∈ IRdx×N which will then be used to find the output weights.

H=


g(w1 ∗x1 + b1) . . . g(wÑ ∗x1 + bÑ)

...
. . .

...

g(w1 ∗xN + b1) . . . g(wÑ ∗xN + bÑ)

 (2)35

Therefore with the use of the matrix H, Eq. (1) can be expressed compactly by Eq. (3) for the training phase.

Hβ = y (3)
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As it is desired that the extreme learning machines output target values y = t (where y,t ∈ IRdx×N ), the values of the

output weights β are chosen such that it minimizes the following (where λ is the regularization parameter and || · || denotes the

Euclidean norm),40

β = argmin
β̂

(||Hβ̂− t||2 +λ||β̂||2) (4)

This in practice is known as a ridge regression, which includes the term λ||β̂||2 to prevent over fitting (Afkham et al.; Yu

et al., 2013). The solution to Eq. 4 is then given by Eq. 5.

β = (H⊺H+λI)−1H⊺t (5)

Therefore with the trained output weights, the value of yj simply becomes a function of the value of the input f(xj).45

2.1 Training

The extreme learning machines are trained to replicate the following common logical operators, AND, OR, NOT, and XOR.

As the AND, OR, and XOR operators have only two inputs and the NOT operator has only one input, their respective values

of dx are 2 and 1 respectively - with all four sharing a value of dy = 1 (as they all have only one output). To train an extreme

learning machine to a given logical operator L : IRdx → IRdy , input data x ∈ IRdx×N is generated from a random sequence of50

0′s and 1′s perturbed with noise, denoted by x= r+ z, where r ∈ IRdx×N is a matrix containing randomly selected values of

0 and 1 and z ∈ IRdx×N is the added noise. Therefore the target data is then tj = L(rj,1 , rj,2) when dx= 2 and tj = L(rj)
when dx= 1. The noise term z which has values sampled from a uniform distribution U(−ϵ,ϵ), is introduced to prevent model

divergence when the logic gates are connected in series, as the ELM operator will learn to treat account for all of the points

within the epsilon neighborhood surrounding the operational points.55

Figure 2. The AND gate modelled by an extreme learning machine.

The following metaparameters are chosen for the model g(s) = tanh(s), N = 4,000, Ñ = 200, λ= 1e− 4 , σ = 30, and

ϵ= 5e− 5. Though the ELM utilizes random weights with success, the magnitude of these weights can significantly effect

model results (Dong and Li, 2021; Dudek, 2016). Therefore value of σ was optimized, as it was observed that results were
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best for a value of σ ≳ 15. The value of the regularization parameter λ was also tuned, and it was found that results were the

best when λ≳ 10−7, which is indicative that the ridge regression was ultimately necessary as the regression would simplify60

to ordinary least squares when λ= 0. The value of the perturbance was chosen to be ϵ= 5e− 5, as this was only about 2− 3

orders of magnitude greater than the exact values returned by the ELM, and hence is quite a large guard band against signal

divergence.

2.2 Results

To present results for each of the four logical operators trained, a truth table is provided with the output being the corresponding65

trained ELM output, along with a figure for each ELM operator depicting the surface created, where it is seen to intersect the

same operational points described by the truth table.

Table 1. Resulting truth table returned by the various extreme learning machines operating as logical operators.

xj,1 xj,2 ORELM ANDELM XORELM NOTELM

0 0 5.7291e-08 -5.8191e-08 -6.0687e-08 -

0 1 1.0000 -1.5527e-07 1.0000 -

1 0 1.0000 -6.9759e-08 1.0000 -

1 1 1.0000 1.0000 -3.1476e-08 -

0 - - - 1.0000

1 - - - 3.4806e-07
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Figure 3. Surface formed by the various extreme learning machines operating as logical operators. The following operators are depicted (a)

OR, (b) AND, (c) XOR, and (d) NOT.

Via Table 1 and Fig. 3 it is evident that the extreme learning machine is able to form a function which when inputted values

xj,1 and xj,2 it returns the corresponding value associated with the logical operator with practical perfection. The reason for70

choosing such a large value of Ñ is the increased complexity of such function, allowing it to not only intersect the points

where the logical operator is satiated but to also flatten out near the points, hence accounting for the additive noise. This ability

to flatten is quantified numerically by calculating the magnitude of the gradient of each ELM operator at each of the four

operational points. For the function to effectively keep the signal from diverging, the magnitude of the gradient should be less

than 1, as that indicates that even in the direction of maximal change at the point, the difference between the evaluated output75

and the ideal value (0 or 1) is less than the original perturbance. As the NOT operator only has one input, the magnitude of the

derivative is calculated.

∂LELM

∂xj,1
(xj,1,xj,2)≊

LELM (xj,1 + ϵ,xj,2)−LELM (xj,1,xj,2)

ϵ
(6)

∂LELM

∂xj,2
(xj,1,xj,2)≊

LELM (xj,1,xj,2 + ϵ)−LELM (xj,1,xj,2)

ϵ
(7)
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|∇LELM (xj,1,xj,2)|=

√(
∂LELM

∂xj,2
(xj,1,xj,2)

)2

+

(
∂LELM

∂xj,1
(xj,1,xj,2)

)2

(8)80

Table 2. Resulting truth table returned by the various extreme learning machines operating as logical operators.

xj,1 xj,2 |∇ORELM | |∇ANDELM | |∇XORELM | |∇NOTELM |

0 0 0.0487 0.0310 0.0614 -

0 1 0.0038 0.1480 0.0596 -

1 0 0.034 0.0325 0.0349 -

1 1 0.0232 0.0701 0.0459 -

0 - - - 0.0139

1 - - - 0.0395

It is seen via Table 2 that the magnitude of the gradient for each of the logical operators at the 4 operational points is well

below 1, hence indicating that the resulting function does flatten out and accounts for the added noise. In general, the ability

for the ELM to function as a logical operator is to be expected, as it has been proved that a SLFN with Ñ hidden nodes and

randomly chosen input and bias weights can learn Ñ observations (Huang, 2003; Tamura and Tateishi, 1997). Therefore it85

should not be a surprise that our trained ELMs can learn to return 4 different logical combinations (when inputted with exact

values of 0 or 1) with the rather generous value of Ñ = 200 hidden nodes. But our results prove that the ELM is not only able

to output these values with precision, but is also able to keep the signal from diverging by flattening near the operational points.

A much smaller value of Ñ could be chosen (which would still accurately output exact values at the operational points as seen

in Table 1) and transform the output by an activation function (such as a shifted unit step) to account for the noise, though90

this does not follow the traditional ELM framework described above. To showcase the ability of a large number of the extreme

learning machines to operate in a circuit, two examples ran by ELMs are presented in the proceeding two sections: Conway’s

Game of Life and tic-tac-toe.

3 Tic-Tac-Toe

The use of ELM as logic gates is explored by providing the computational power to host a game of tic-tac-toe. The game of95

tic-tac-toe (also commonly known as noughts and crosses) is a game where two players take turns placing markers in a 3× 3

box, with the ultimate goal of completing three of their marks in the same row, column, or diagonal. The same previously

trained ELM logic gates are utilized in a circuit which was implemented with the use of Simulink. A schematic of the circuit

can be found below in Fig. 4.
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Figure 4. Schematic of the circuit used to play tic-tac-toe.

The player indicator displays which player it’s turn it is, who then must select where they would like to place their mark100

by toggling one of the switches to the on position. This value is then sent to the input memory block, which holds the input.

The basis for this specific block was heavily influenced by the circuit made available online by Ngoc Long (Long, 2021). This

block consists of sub-blocks such as D Latches and a demultiplexer, which are all solely functions of the trained ELM logic

gates 1 . The memory block also computes which player’s turn it is by determining whether the sum of the current inputs is

even or odd, which is used to appropriately store the next input to player A or B.105

This output for each player is then sent to both a win and tie evaluator. The win evaluators basically check to see if a player

meets one of the win conditions (i.e., full row, column, or diagonal). Meanwhile the tie evaluator simply checks to see if the

board is full. If a player has won or there is a tie, this result is indicated next to the board and the memory block is disabled,

hence not allowing players to continue selecting squares. By playing the game, the circuit is seen to perform as expected - once

again verifying the efficacy of the logic gates arranged in series.110

4 Conway’s Game of Life

Conway’s Game of Life is a discrete dynamical system consisting of a grid of cells who’s "life" and "death" is governed by

a set of rules. The game is widely known for the complex structures which appear out of the ostensibly simple laws which

dictate the evolution of the system (Peña and Sayama, 2021). These rules are described as follows. For a cell a0 which is alive

on the tth time step (at0 = 1): if the number of alive neighbors n≤ 1 the cell will be dead on the next time step at+1
0 = 0 (hence115

simulating the consequences of solitude), if 2≤ n≤ 3 the cell will remain alive on the next time step at+1
0 = 1, and if n≥ 4

1There are a couple other blocks included (such as the built in hold block) to make the model compatible with Simulink.
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the cell dies on the next time step at+1
0 = 0 (hence simulating the consequences of overpopulation). Meanwhile if the cell is

dead on the tth time step (at0 = 0), it can only become alive on the next time step if n= 3.

A combination of 41 logic gates can used to determine whether the cell a0 will be equal to one or zero on the next time step

as it is a function of it’s own current value and the value of the surrounding neighbors (Shard, 2013). Therefore rather than120

training the ELM on a single logic gate, we now train it to mimic the complete combinational logic circuit consisting of 41

logic gates in order to learn the rules of the Game of Life.

Figure 5. Figure depicting how the grid of cells evolves over time with the use of the trained ELM logic gates. Yellow corresponds to alive

(1) and dark blue corresponds to dead (0).

The 9 dimensional input data is once again perturbed for noise resistance. As the combinational logic circuit is more complex,

the value of Ñ is changed to Ñ = 2000. To display the efficacy of the single ELM acting as the computational power for the

game, the evolution of a glider is depicted below in Fig. 6.125

Figure 6. The evolution of a glider over nine time steps dictated by the ELM circuit. The yellow cells correspond to alive (1) and the dark

blue squares correspond to dead (0).
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The glider is seen to properly evolve over the time frame, as it begins it’s ascent to the upright corner of the domain. From

this simulation the ELM is seen to function properly, hence being able to learn complex combinational logic circuits.

5 Conclusion

The use of extreme learning machines is demonstrated to operate functionally as a logic gate. The extreme learning machine

was seen to form a surface such that the operational points were intersected with near perfection and the surface flattened out130

near the points to account for the added noise during training. This effectively kept the signal from diverging, hence allowing

us to connect the ELM logic gates into large circuits capable of providing the power to play the Game of Life and tic-tac-toe.

These results can be of potential interest in the field of neuroscience, as if the ELM is capable of mimicking a logic gate,

complex circuits consisting of these logic gates with minimally adjusted synaptic weights can be constructed and allow for

advanced computation.135

Code availability. The code is available online at https://github.com/BenWalleshauser/ELM-Logic .
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