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SOS Optimization to Find Lyapunov Functions of Mass-Spring-Damper Systems

1 Introduction

Lyapunov functions are a powerful method to verify the stability of a system. Commonly they are used in
control theory to demonstrate that a particular input provides asymptotic local or global stability. One
particular challenge of using a Lyapunov method to prove stability of a controller is the formulation of
the Lyapunov function for one’s system, as there is usually no straightforward or algorithmic approach to
doing so. This paper demonstrates the use of sum-of-squares (SOS) optimization to find the Lyapunov
function for a given autonomous dynamical system. Sum-of-squares optimization allows for the explicit
programming of inequality constraints to ensure the Lyapunov function is positive definite with respect
to the system states and the derivative of the Lyapunov function is negative semi-definite. An equality
constraint is also added to the problem as the equilibrium will be a fixed point. Two examples are given,
namely the linear and nonlinear mass-spring-damper system. SOS optimization is performed with the
use of the software PyDrake.

2 LaSalle’s Invariance Principle

The autonomous system is defined by ẋ = f(x) where x ∈ Rn×1 corresponds to the system state. For a
given Lyapunov function V (x), LaSalle’s invariance principle states that if the following conditions are
met:

V (x) ≥ 0;∀x ̸= 0 (1)

−V̇ (x) = −∂V

∂x
f(x) ≥ 0;∀x (2)

V (0) = 0 (3)

lim
∥x∥→∞

V (x) → ∞ (4)

then the origin of the system is globally asymptotically stable. The challenging aspect of many controls
problem is finding a suitable V (x) for one’s system, which is nontrivial for nonlinear systems. This is
performed in this paper numerically using SOS optimization.

3 SOS Optimization

3.1 Problem Formulation

The candidate Lyapunov function chosen in this paper is a fixed-degree polynomial with unknown coeffi-
cients. For a system with n states and fixed degree 2, this would be:

Vα(x) = α0 + α1x1 + ...+ αnxn + αn+1x
2
1 + ...+ α2nx1xn + ...+ αn!+n+1x

2
n (5)

The goal of the optimization is to find the set of coefficients α that satisfy the conditions of LaSalle’s
invariance principle for a given system. A matrix P is said to be positive semi-definite if the following is
true.

x⊺Px ≥ 0;∀x (6)
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But in general, a matrix P is said to be positive semi-definite if the following holds:

m(x)⊺Pm(x) ≥ 0;∀x (7)

where m(x) is a vector of monomials. This results is useful for finding the coefficients of a Lyapunov
candidate, as if a polynomial p(x):

p(x) = c1 + c2x1 + c3x
2
1 + c4x2 + c5x

2
2 + ... (8)

can be written as:
p(x) = m(x)⊺Pm(x) (9)

If P is positive semidefinite (P is often called the Gram matrix), then p(x) ≥ 0;∀x. Therefore, we
can rewrite the search for the Lyapunov function in terms of the SOS constraint rather than the positive
semi-definite condition, which is preferable as the SOS constraint is more computationally tractable [3].
The optimization problem is now as follows.

Vα(x) = α1x1 + ...+ αnxn + αn+1x
2
1 + ...+ α2nx1xn + ...+ αn!+n+1x

2
n (10)

Where we want to find α s.t.:

V (x) is SOS (11)

−V̇ (x) is SOS (12)

Note that the radial constrain Eq. 4 is no longer included, as it is automatically satisfied by the
inequality constraints and the form of the Lyapunov candidate. The equality constraint Eq. 3 is also
automatically satisfied by making α0 = 0.

3.2 Solving SOS Programs

The goal is now to find the coefficients α comprising the two Gram matrices in the inequality constraints
for V (x) and −V̇ (x) such the the Gram matrices are simultaneously positive semi-definite. Unfortunately,
there is not a great deal of information as to how to explicitly solve these problems, but generally sum of
squares programs reformulate the problem to be solved by semi-definite programs, which are then solved
efficiently - commonly with the use of interior point methods[2]. Semi-definite program solvers include the
likes of SeDuMi, SDPT3, CSDP, SPDNAL, SPDA, and MOSEK [2]. The optimization toolbox used in
this paper is PyDrake, a Python and C++ toolbox supported by the Toyota Research Institute that can
be used to model dynamical systems, run mathematical programs, and model multibody kinematics and
dynamics [1]. For SOS optimization problems, PyDrake will preferably default to using either MOSEK
or Clarabel depending on the form of the optimization problem. The Python code used in the subsequent
sections follows the forms of the examples provided for the Underactuated Robotics course at MIT [4].

4 Linear Mass-Spring-Damper

The linear Mass-spring-damper has dynamics described by the following coupled differential equations.

f(x) =

[
ẋ0
ẋ1

]
=

[
−2ζωx0 − ω2x1

x0

]
(13)

Where ζ is the damping ratio and ω is the natural frequency. The goal is to find a Lyapunov function
to prove that the system has global asymptotic convergence to the origin. The Lyapunov candidate now
takes the following form with degree 2.
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Vα(x) = α1x1 + α2x2 + α3x1x2 + α4x
2
1 + α5x

2
2 (14)

The value of ζ is chosen to be 0.5 to correspond to an underdamped system, and the natural frequency
ω is chosen to be 1 rad/s. By solving the optimization problem using PyDrake, the following Lyapunov
function is found for the system:

V (x) = 1.472520x0x1 + 1.951927x20 + 1.000000x21 (15)

Note that this equation is equal to the sum of squares -

V (x) =
[
x0 x1

] [1.951927 0.73626
0.73626 1.00000

] [
x0 x1

]
(16)

where the Gram matrix has eigenvalues of λ = 2.35267, 0.599254, therefore confirming that V (x) is
positive semi-definite. The negative derivative of the Lyapunov function is therefore the following:

V̇ (x) = −2.43133x20 − 3.37637x0x1 − 1.47252x21 (17)

−V̇ (x) =
[
x0 x1

] [ 2.43133 1.688185
1.688185 1.47252

] [
x0 x1

]
(18)

The Gram matrix for −V̇ (x) has eigenvalues of λ = 3.70, 0.20 therefore verifying that −V̇ (x) is
positive definite and confirming V (x) is a valid Lyapunov function provided via the optimization. This
ultimately tells us that the origin of the system f(x) is globally asymptotically stable, which is intuitive
as the damper dissipates energy until the system is at rest at the origin. The code can be ran below with
the use of the DeepNote workspace attached below.

Linear Case Deepnote Workspace (Link)

5 Nonlinear Mass-Spring-Damper

The previous formulation for the linear mass-spring-damper demonstrated the use of SOS optimization
to solve for the Lyapunov function for a linear system, which is typically easily found for linear systems
by observing the total energy. The goal is to now find the Lyapunov function for the system with the
nonlinear spring, described by the new f(x) below.

f(x) =

[
ẋ0
ẋ1

]
=

[
−2ζωx0 − ω2x31

x0

]
(19)

The Lyapunov candidate is now chosen to have fixed degree of 4 to account for the nonlinear term
in the dynamics. The values of ζ and ω are chosen to be ζ = 0.5 and ω2 = 1 as in the linear case. By
performing SOS optimization, the following Lyapunov function is found.

V (x) = 0.722598x0x1 + 1.00000x20 + 0.361299x21 + 0.5000x41 (20)

V (x) =
[
x0 x1 x21

]  1.0000 0.361299 0
0.361299 0.361299 0

0 0 0.50000

 [
x0 x1 x21

]
(21)

The Gram matrix for V (x) has eigenvalues of λ = 1.15, 0.50, 0.16. The derivative of the optimized
Lyapunov function is the following.
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V̇ (x) = −1.2774x20 − 0.722598x41 (22)

−V̇ (x) =
[
x0 x21

] [1.2774 0
0 0.722598

] [
x0 x21

]
(23)

The Gram matrix for −V̇ (x) of course has eigenvalues of λ = 1.2274, 0.722598. This analysis verifies
the nontrivial nonlinear mass-spring-damper system is globally asymptotically stable at the origin for the
given choice of ζ and ω. The code can be ran below with the use of the DeepNote workspace attached
below.

Nonlinear Case DeepNote Workspace (Link)

6 Conclusion

This work covers the application of SOS optimization to the solution of Lyapunov functions. It was
found that the optimization technique returned valid Lyapunov functions for the linear and nonlinear
mass-spring-damper systems. Future work may possibly involve applying this methodology to establish
regions of attraction for various control laws, particularly the common linear-quadratic-regulator optimal
control methodology. This strategy can also be used to possibly observe the effect of higher order terms
in the quadratic-quadratic-regulator optimal control methodology.
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7 Code

7.1 PyDrake Initialization in DeepNote

1 import matp lo t l i b . pyplot as p l t
2 import mpld3
3 import numpy as np
4 from IPython . d i sp l ay import Markdown , d i sp l ay
5 from pydrake . a l l import (
6 Jacobian ,
7 MathematicalProgram ,
8 Solve ,
9 SymbolicVectorSystem ,

10 ToLatex ,
11 Variable ,
12 Var iab les ,
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13 )
14 from pydrake . symbol ic import Polynomial
15

16 from underactuated import p l o t 2d pha s e po r t r a i t , running as notebook
17

18 i f runn ing as notebook :
19 mpld3 . enable notebook ( )

7.2 Linear Case

1 #l i n e a r mass spr ing damper
2

3 de f s o s op t im i z e ( ) :
4 prog = MathematicalProgram ( )
5 x = prog . NewIndeterminates (2 , ”x” )
6 f = [−1∗x [ 0 ] − x [ 1 ] , x [ 0 ] ]
7

8 V = prog . NewSosPolynomial ( Var i ab l e s ( x ) , 2) [ 0 ] . ToExpression ( )
9 pr in t ( ”Candidate : ” )

10 d i sp l ay (Markdown( ”$V(x ) = ” + ToLatex (V) + ”$” ) )
11 prog . AddLinearConstraint (V. Subs t i tu t e ({x [ 0 ] : 0 , x [ 1 ] : 0}) == 0)
12 prog . AddLinearConstraint (V. Subs t i tu t e ({x [ 0 ] : 0 , x [ 1 ] : 1}) == 1)
13 Vdot = V. Jacobian (x ) . dot ( f )
14

15 prog . AddSosConstraint(−Vdot )
16

17 r e s u l t = Solve ( prog )
18 a s s e r t r e s u l t . i s s u c c e s s ( )
19

20 pr in t ( ” So lu t i on : ” )
21 d i sp l ay (
22 Markdown(
23 ”$V(x ) = ”
24 + ToLatex (
25 Polynomial ( r e s u l t . GetSolut ion (V) )
26 . RemoveTermsWithSmallCoeff icients (1 e−5)
27 . ToExpression ( ) ,
28 6 ,
29 )
30 + ”$”
31 )
32 )
33

34

35 s o s op t im i z e ( )

7.3 Nonlinear Case

1 #non l inea r mass sp r ing damper
2

3 de f s o s op t im i z e ( ) :
4 prog = MathematicalProgram ( )
5 x = prog . NewIndeterminates (2 , ”x” )
6 f = [−x [ 1 ]∗∗3 − x [ 0 ] , x [ 0 ] ]
7

8 V = prog . NewSosPolynomial ( Var i ab l e s ( x ) , 4) [ 0 ] . ToExpression ( )
9 pr in t ( ”Candidate : ” )

10 d i sp l ay (Markdown( ”$V(x ) = ” + ToLatex (V) + ”$” ) )
11 prog . AddLinearConstraint (V. Subs t i tu t e ({x [ 0 ] : 0 , x [ 1 ] : 0}) == 0)

5



12 prog . AddLinearConstraint (V. Subs t i tu t e ({x [ 0 ] : 1 , x [ 1 ] : 0}) == 1)
13 Vdot = V. Jacobian (x ) . dot ( f )
14

15 prog . AddSosConstraint(−Vdot )
16

17 r e s u l t = Solve ( prog )
18 a s s e r t r e s u l t . i s s u c c e s s ( )
19

20 pr in t ( ” So lu t i on : ” )
21 d i sp l ay (
22 Markdown(
23 ”$V(x ) = ”
24 + ToLatex (
25 Polynomial ( r e s u l t . GetSolut ion (V) )
26 . RemoveTermsWithSmallCoeff icients (1 e−5)
27 . ToExpression ( ) ,
28 6 ,
29 )
30 + ”$”
31 )
32 )
33

34

35 s o s op t im i z e ( )
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