Clarkson University
The CAMP building
Of Interest
CRCD Home
ME 437 Home
Syllabus
Assignments
Downloads
Site Map
Course Notes
Engineering Mathematics
Review of Viscous Flows
Review of Computational Fluid Mechanics

Particle Adhesion
Simulation Methods
Experimental Techniques
Applications
Search Powered by Google

The National Science Foundation
ME 437 The National Science Foundation
 Aerosols
Introduction to Aerosols | Drag, Lift Forces | Aerosol Kinetics | Virtual Mass, Basset Forces & BBO Equation | Nonspherical Particles | Brownian Motions | Particle Deposition Mechanisms | Electrodynamics | Aerosol Coagulation |

Brownian Motions

Brownian Motion in a Force Field

Consider the following Langevin equation:

(18)

where
(19)

is a conservative force field. The corresponding Fokker-Planck equation for the transition probability density function is given as:

(20)

The stationary solution to (20) is given by

(21)

Using (19), we find

(22)

For a gravitational force field,

(23)

and

(24)



Dr. Goodarz Ahmadi | Turbulence & Multiphase Fluid Flow Laboratory | Department of Mechanical & Aeronautical Engineering
Copyright © 2002-2005 Dr. Goodarz Ahmadi. All rights reserved.
Potsdam, New York, 13699
ahmadi@clarkson.edu