Mathematical models described by partial differential equations (PDEs) have been a necessary tool to model nearly all physical phenomena in science and engineering. Due to the growth of the complexity in emerging technologies, the increase in the complexity of the PDEs for realistic problems become inevitable. Some of the complexities are, for example, complicated domains, high-dimensional spatial domains, multiscale, large-scale problems, etc. This project will develop a new algorithm for solving partial differential equations (PDEs) in high dimensions by solving associated backward stochastic differential equations (BSDEs) using neural networks, as is done in deep machine learning. Another option is to employ radial basis functions to reduce the dimensions in the numerical simulation. The project can be future enhanced by adding complicated computational domains, large scale problems with or without multiscale feature. If a particular student became interested in parallel computing, there could be a productive a collaboration between this REU site and the NSF REU Site: High Performance Computing with Engineering Applications, led by the Department of Electrical and Computer Engineering, Clarkson University, Potsdam, NY.
A spatial embedding of a graph is a way to place a graph in space, so that vertices are points and edges are arcs that meet only at vertices. Mathematicians have studied graphs that are intrinsically linked: that is, in every spatial embedding, there exists a pair of disjoint cycles that form a nonsplittable link. Sachs and Conway and Gordon showed that the complete graph on 6 vertices is intrinsically linked. More recently, people have studied graphs that have non-split links with more than 2 components, as well as knotted cycles, in every spatial embedding. We will use tools from graph and knot theory. Experience in these areas is not required.
Rheumatoid arthritis (RA) is an autoimmune inflammatory joint disease with a complex pathophysiological basis. The chronic and debilitating nature of the disease requires diagnosis and management under close rheumatologist supervision, however, a severe shortage of rheumatologists in the rural area creates barriers to proper care. Smart devices provide the opportunity to monitor individuals for risk of RA. To make optimal use of the data gathered by modern smart devices in RA risk assessment, it is necessary to mine predictable factors that have high associations with RA. Preliminary statistical studies conducted by Prof. Sumona Mondal (Mathematics, Clarkson University) and his collaborator on this project Prof. Shantanu Sur (Biology, Clarkson University) have indicated that factors related to human lifestyles such as high body mass index and depression, and demographic factors such as gender and ethnicity show correlation with RA, providing the potential to use these factors in smart RA risk prediction. As part of this research, the REU student will investigate the association of socioeconomic factors with RA and will develop learning-based algorithms to improve rural RA care by identifying critical factors associated with the disease and building predictive models.
An image can be viewed as a function. The image data can be damaged and part of the image is destroyed. Inpainting is a problem of filling in missing part of an image. There exist various ways to fill in missing information in the image processing literature. These methods can be categorized into variational based and exemplar-based inpainting methods. In variational methods we solve a minimization problem to flow the information from the boundary into the missing region. The variational methods are successful when the missing regions are composed of large number of small disconnected regions. In exemplar based methods parts of the missing region are systematically replaced by a similar patch from the known part of the data. The exemplar-based methods are often employed when the missing regions are composed of small number of large regions. The order of filling the data is crucial in such methods. In this project, we would like to explore whether these two approaches could be combined to produce better inpainting results. We intend to use the variational method to decide the order of inpainting in the exemplar method.